Properties

Label 841.2.e.j.270.3
Level $841$
Weight $2$
Character 841.270
Analytic conductor $6.715$
Analytic rank $0$
Dimension $24$
Inner twists $12$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [841,2,Mod(63,841)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(841, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([11]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("841.63");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 841 = 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 841.e (of order \(14\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.71541880999\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(4\) over \(\Q(\zeta_{14})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{14}]$

Embedding invariants

Embedding label 270.3
Character \(\chi\) \(=\) 841.270
Dual form 841.2.e.j.651.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.268155 + 0.556829i) q^{2} +(-0.483198 + 0.385338i) q^{3} +(1.00883 - 1.26503i) q^{4} +(3.47243 - 1.67223i) q^{5} +(-0.344139 - 0.165729i) q^{6} +(-1.39417 - 1.74823i) q^{7} +(2.18001 + 0.497572i) q^{8} +(-0.582567 + 2.55239i) q^{9} +O(q^{10})\) \(q+(0.268155 + 0.556829i) q^{2} +(-0.483198 + 0.385338i) q^{3} +(1.00883 - 1.26503i) q^{4} +(3.47243 - 1.67223i) q^{5} +(-0.344139 - 0.165729i) q^{6} +(-1.39417 - 1.74823i) q^{7} +(2.18001 + 0.497572i) q^{8} +(-0.582567 + 2.55239i) q^{9} +(1.86230 + 1.48513i) q^{10} +(1.34732 - 0.307516i) q^{11} +1.00000i q^{12} +(-0.0525301 - 0.230149i) q^{13} +(0.599613 - 1.24511i) q^{14} +(-1.03350 + 2.14608i) q^{15} +(-0.412577 - 1.80762i) q^{16} +4.38197i q^{17} +(-1.57747 + 0.360046i) q^{18} +(3.79509 + 3.02648i) q^{19} +(1.38766 - 6.07972i) q^{20} +(1.34732 + 0.307516i) q^{21} +(0.532524 + 0.667764i) q^{22} +(1.11366 + 0.536310i) q^{23} +(-1.24511 + 0.599613i) q^{24} +(6.14393 - 7.70425i) q^{25} +(0.114068 - 0.0909659i) q^{26} +(-1.50650 - 3.12829i) q^{27} -3.61803 q^{28} -1.47214 q^{30} +(-4.37796 - 9.09093i) q^{31} +(4.39236 - 3.50279i) q^{32} +(-0.532524 + 0.667764i) q^{33} +(-2.44001 + 1.17505i) q^{34} +(-7.76458 - 3.73922i) q^{35} +(2.64115 + 3.31189i) q^{36} +(-4.59016 - 1.04767i) q^{37} +(-0.667563 + 2.92478i) q^{38} +(0.114068 + 0.0909659i) q^{39} +(8.40196 - 1.91769i) q^{40} +3.85410i q^{41} +(0.190056 + 0.832688i) q^{42} +(3.13961 - 6.51947i) q^{43} +(0.970194 - 2.01463i) q^{44} +(2.24527 + 9.83719i) q^{45} +0.763932i q^{46} +(-6.82450 + 1.55765i) q^{47} +(0.895899 + 0.714456i) q^{48} +(0.445042 - 1.94986i) q^{49} +(5.93748 + 1.35519i) q^{50} +(-1.68854 - 2.11736i) q^{51} +(-0.344139 - 0.165729i) q^{52} +(1.80194 - 0.867767i) q^{53} +(1.33795 - 1.67773i) q^{54} +(4.16422 - 3.32086i) q^{55} +(-2.16942 - 4.50484i) q^{56} -3.00000 q^{57} +6.09017 q^{59} +(1.67223 + 3.47243i) q^{60} +(-0.483198 + 0.385338i) q^{61} +(3.88812 - 4.87555i) q^{62} +(5.27436 - 2.54000i) q^{63} +(-0.212690 - 0.102426i) q^{64} +(-0.567270 - 0.711334i) q^{65} +(-0.514629 - 0.117461i) q^{66} +(-0.339982 + 1.48956i) q^{67} +(5.54332 + 4.42065i) q^{68} +(-0.744779 + 0.169991i) q^{69} -5.32624i q^{70} +(2.33027 + 10.2096i) q^{71} +(-2.54000 + 5.27436i) q^{72} +(-5.94777 + 12.3507i) q^{73} +(-0.647498 - 2.83687i) q^{74} +6.09017i q^{75} +(7.65718 - 1.74770i) q^{76} +(-2.41599 - 1.92669i) q^{77} +(-0.0200647 + 0.0879092i) q^{78} +(-5.93748 - 1.35519i) q^{79} +(-4.45539 - 5.58689i) q^{80} +(-5.14291 - 2.47670i) q^{81} +(-2.14608 + 1.03350i) q^{82} +(-6.20015 + 7.77474i) q^{83} +(1.74823 - 1.39417i) q^{84} +(7.32766 + 15.2161i) q^{85} +4.47214 q^{86} +3.09017 q^{88} +(2.04281 + 4.24195i) q^{89} +(-4.87555 + 3.88812i) q^{90} +(-0.329118 + 0.412701i) q^{91} +(1.80194 - 0.867767i) q^{92} +(5.61850 + 2.70573i) q^{93} +(-2.69737 - 3.38239i) q^{94} +(18.2392 + 4.16297i) q^{95} +(-0.772623 + 3.38508i) q^{96} +(2.78512 + 2.22106i) q^{97} +(1.20508 - 0.275051i) q^{98} +3.61803i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 2 q^{4} + 2 q^{5} - 6 q^{6} - 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 24 q - 2 q^{4} + 2 q^{5} - 6 q^{6} - 6 q^{9} + 8 q^{13} + 6 q^{16} + 16 q^{20} + 10 q^{22} - 4 q^{23} - 10 q^{24} - 26 q^{25} - 60 q^{28} + 72 q^{30} - 10 q^{33} + 16 q^{34} - 30 q^{35} - 8 q^{36} - 12 q^{38} - 10 q^{42} + 18 q^{45} + 8 q^{49} - 16 q^{51} - 6 q^{52} + 8 q^{53} - 22 q^{54} - 72 q^{57} + 12 q^{59} - 16 q^{62} + 10 q^{63} + 8 q^{64} + 26 q^{65} - 24 q^{67} + 24 q^{71} - 34 q^{74} + 22 q^{78} + 42 q^{80} + 4 q^{81} - 14 q^{82} + 4 q^{83} - 60 q^{88} + 20 q^{91} + 8 q^{92} + 16 q^{93} - 14 q^{94} + 4 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/841\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{5}{14}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.268155 + 0.556829i 0.189614 + 0.393738i 0.974004 0.226530i \(-0.0727382\pi\)
−0.784390 + 0.620268i \(0.787024\pi\)
\(3\) −0.483198 + 0.385338i −0.278975 + 0.222475i −0.752974 0.658050i \(-0.771381\pi\)
0.473999 + 0.880525i \(0.342810\pi\)
\(4\) 1.00883 1.26503i 0.504414 0.632515i
\(5\) 3.47243 1.67223i 1.55292 0.747845i 0.556374 0.830932i \(-0.312192\pi\)
0.996542 + 0.0830872i \(0.0264780\pi\)
\(6\) −0.344139 0.165729i −0.140494 0.0676585i
\(7\) −1.39417 1.74823i −0.526945 0.660768i 0.445122 0.895470i \(-0.353160\pi\)
−0.972067 + 0.234702i \(0.924589\pi\)
\(8\) 2.18001 + 0.497572i 0.770748 + 0.175918i
\(9\) −0.582567 + 2.55239i −0.194189 + 0.850798i
\(10\) 1.86230 + 1.48513i 0.588910 + 0.469640i
\(11\) 1.34732 0.307516i 0.406231 0.0927197i −0.0145224 0.999895i \(-0.504623\pi\)
0.420754 + 0.907175i \(0.361766\pi\)
\(12\) 1.00000i 0.288675i
\(13\) −0.0525301 0.230149i −0.0145692 0.0638319i 0.967121 0.254318i \(-0.0818509\pi\)
−0.981690 + 0.190486i \(0.938994\pi\)
\(14\) 0.599613 1.24511i 0.160253 0.332769i
\(15\) −1.03350 + 2.14608i −0.266848 + 0.554115i
\(16\) −0.412577 1.80762i −0.103144 0.451904i
\(17\) 4.38197i 1.06278i 0.847126 + 0.531391i \(0.178331\pi\)
−0.847126 + 0.531391i \(0.821669\pi\)
\(18\) −1.57747 + 0.360046i −0.371812 + 0.0848638i
\(19\) 3.79509 + 3.02648i 0.870653 + 0.694323i 0.953225 0.302262i \(-0.0977419\pi\)
−0.0825715 + 0.996585i \(0.526313\pi\)
\(20\) 1.38766 6.07972i 0.310289 1.35947i
\(21\) 1.34732 + 0.307516i 0.294009 + 0.0671056i
\(22\) 0.532524 + 0.667764i 0.113534 + 0.142368i
\(23\) 1.11366 + 0.536310i 0.232214 + 0.111828i 0.546373 0.837542i \(-0.316008\pi\)
−0.314159 + 0.949370i \(0.601722\pi\)
\(24\) −1.24511 + 0.599613i −0.254157 + 0.122395i
\(25\) 6.14393 7.70425i 1.22879 1.54085i
\(26\) 0.114068 0.0909659i 0.0223705 0.0178399i
\(27\) −1.50650 3.12829i −0.289927 0.602039i
\(28\) −3.61803 −0.683744
\(29\) 0 0
\(30\) −1.47214 −0.268774
\(31\) −4.37796 9.09093i −0.786305 1.63278i −0.774273 0.632851i \(-0.781884\pi\)
−0.0120317 0.999928i \(-0.503830\pi\)
\(32\) 4.39236 3.50279i 0.776466 0.619211i
\(33\) −0.532524 + 0.667764i −0.0927005 + 0.116243i
\(34\) −2.44001 + 1.17505i −0.418458 + 0.201519i
\(35\) −7.76458 3.73922i −1.31245 0.632044i
\(36\) 2.64115 + 3.31189i 0.440191 + 0.551982i
\(37\) −4.59016 1.04767i −0.754618 0.172237i −0.172128 0.985075i \(-0.555064\pi\)
−0.582490 + 0.812838i \(0.697921\pi\)
\(38\) −0.667563 + 2.92478i −0.108293 + 0.474463i
\(39\) 0.114068 + 0.0909659i 0.0182654 + 0.0145662i
\(40\) 8.40196 1.91769i 1.32847 0.303214i
\(41\) 3.85410i 0.601910i 0.953638 + 0.300955i \(0.0973053\pi\)
−0.953638 + 0.300955i \(0.902695\pi\)
\(42\) 0.190056 + 0.832688i 0.0293262 + 0.128487i
\(43\) 3.13961 6.51947i 0.478786 0.994210i −0.512026 0.858970i \(-0.671105\pi\)
0.990813 0.135240i \(-0.0431807\pi\)
\(44\) 0.970194 2.01463i 0.146262 0.303717i
\(45\) 2.24527 + 9.83719i 0.334706 + 1.46644i
\(46\) 0.763932i 0.112636i
\(47\) −6.82450 + 1.55765i −0.995455 + 0.227206i −0.689065 0.724700i \(-0.741978\pi\)
−0.306390 + 0.951906i \(0.599121\pi\)
\(48\) 0.895899 + 0.714456i 0.129312 + 0.103123i
\(49\) 0.445042 1.94986i 0.0635774 0.278551i
\(50\) 5.93748 + 1.35519i 0.839686 + 0.191653i
\(51\) −1.68854 2.11736i −0.236443 0.296490i
\(52\) −0.344139 0.165729i −0.0477236 0.0229825i
\(53\) 1.80194 0.867767i 0.247515 0.119197i −0.306013 0.952027i \(-0.598995\pi\)
0.553529 + 0.832830i \(0.313281\pi\)
\(54\) 1.33795 1.67773i 0.182071 0.228310i
\(55\) 4.16422 3.32086i 0.561503 0.447784i
\(56\) −2.16942 4.50484i −0.289901 0.601985i
\(57\) −3.00000 −0.397360
\(58\) 0 0
\(59\) 6.09017 0.792873 0.396436 0.918062i \(-0.370247\pi\)
0.396436 + 0.918062i \(0.370247\pi\)
\(60\) 1.67223 + 3.47243i 0.215884 + 0.448288i
\(61\) −0.483198 + 0.385338i −0.0618672 + 0.0493375i −0.653935 0.756551i \(-0.726883\pi\)
0.592068 + 0.805888i \(0.298312\pi\)
\(62\) 3.88812 4.87555i 0.493792 0.619196i
\(63\) 5.27436 2.54000i 0.664507 0.320010i
\(64\) −0.212690 0.102426i −0.0265862 0.0128033i
\(65\) −0.567270 0.711334i −0.0703612 0.0882301i
\(66\) −0.514629 0.117461i −0.0633465 0.0144584i
\(67\) −0.339982 + 1.48956i −0.0415354 + 0.181978i −0.991440 0.130561i \(-0.958322\pi\)
0.949905 + 0.312539i \(0.101179\pi\)
\(68\) 5.54332 + 4.42065i 0.672226 + 0.536082i
\(69\) −0.744779 + 0.169991i −0.0896608 + 0.0204645i
\(70\) 5.32624i 0.636607i
\(71\) 2.33027 + 10.2096i 0.276552 + 1.21165i 0.902120 + 0.431484i \(0.142010\pi\)
−0.625568 + 0.780169i \(0.715133\pi\)
\(72\) −2.54000 + 5.27436i −0.299342 + 0.621590i
\(73\) −5.94777 + 12.3507i −0.696133 + 1.44554i 0.189847 + 0.981814i \(0.439201\pi\)
−0.885981 + 0.463722i \(0.846514\pi\)
\(74\) −0.647498 2.83687i −0.0752701 0.329780i
\(75\) 6.09017i 0.703232i
\(76\) 7.65718 1.74770i 0.878339 0.200475i
\(77\) −2.41599 1.92669i −0.275328 0.219567i
\(78\) −0.0200647 + 0.0879092i −0.00227188 + 0.00995376i
\(79\) −5.93748 1.35519i −0.668018 0.152471i −0.124955 0.992162i \(-0.539879\pi\)
−0.543064 + 0.839692i \(0.682736\pi\)
\(80\) −4.45539 5.58689i −0.498128 0.624633i
\(81\) −5.14291 2.47670i −0.571435 0.275189i
\(82\) −2.14608 + 1.03350i −0.236995 + 0.114131i
\(83\) −6.20015 + 7.77474i −0.680555 + 0.853389i −0.995405 0.0957523i \(-0.969474\pi\)
0.314850 + 0.949141i \(0.398046\pi\)
\(84\) 1.74823 1.39417i 0.190747 0.152116i
\(85\) 7.32766 + 15.2161i 0.794797 + 1.65041i
\(86\) 4.47214 0.482243
\(87\) 0 0
\(88\) 3.09017 0.329413
\(89\) 2.04281 + 4.24195i 0.216538 + 0.449645i 0.980736 0.195336i \(-0.0625796\pi\)
−0.764199 + 0.644981i \(0.776865\pi\)
\(90\) −4.87555 + 3.88812i −0.513929 + 0.409844i
\(91\) −0.329118 + 0.412701i −0.0345009 + 0.0432628i
\(92\) 1.80194 0.867767i 0.187865 0.0904710i
\(93\) 5.61850 + 2.70573i 0.582612 + 0.280571i
\(94\) −2.69737 3.38239i −0.278212 0.348867i
\(95\) 18.2392 + 4.16297i 1.87130 + 0.427111i
\(96\) −0.772623 + 3.38508i −0.0788555 + 0.345489i
\(97\) 2.78512 + 2.22106i 0.282786 + 0.225515i 0.754602 0.656183i \(-0.227830\pi\)
−0.471816 + 0.881697i \(0.656401\pi\)
\(98\) 1.20508 0.275051i 0.121731 0.0277843i
\(99\) 3.61803i 0.363626i
\(100\) −3.54793 15.5445i −0.354793 1.55445i
\(101\) 0.268155 0.556829i 0.0266824 0.0554066i −0.887202 0.461382i \(-0.847354\pi\)
0.913884 + 0.405975i \(0.133068\pi\)
\(102\) 0.726218 1.50801i 0.0719063 0.149315i
\(103\) −2.04282 8.95017i −0.201285 0.881886i −0.970156 0.242482i \(-0.922038\pi\)
0.768871 0.639404i \(-0.220819\pi\)
\(104\) 0.527864i 0.0517613i
\(105\) 5.19270 1.18520i 0.506755 0.115664i
\(106\) 0.966397 + 0.770676i 0.0938648 + 0.0748546i
\(107\) −1.50512 + 6.59435i −0.145505 + 0.637500i 0.848596 + 0.529042i \(0.177448\pi\)
−0.994101 + 0.108458i \(0.965409\pi\)
\(108\) −5.47718 1.25013i −0.527042 0.120294i
\(109\) 8.96701 + 11.2443i 0.858884 + 1.07701i 0.996253 + 0.0864862i \(0.0275638\pi\)
−0.137369 + 0.990520i \(0.543865\pi\)
\(110\) 2.96581 + 1.42826i 0.282778 + 0.136179i
\(111\) 2.62167 1.26253i 0.248838 0.119834i
\(112\) −2.58493 + 3.24139i −0.244252 + 0.306283i
\(113\) −6.21108 + 4.95317i −0.584289 + 0.465955i −0.870471 0.492220i \(-0.836185\pi\)
0.286181 + 0.958175i \(0.407614\pi\)
\(114\) −0.804465 1.67049i −0.0753450 0.156456i
\(115\) 4.76393 0.444239
\(116\) 0 0
\(117\) 0.618034 0.0571373
\(118\) 1.63311 + 3.39119i 0.150340 + 0.312184i
\(119\) 7.66068 6.10919i 0.702253 0.560028i
\(120\) −3.32086 + 4.16422i −0.303151 + 0.380140i
\(121\) −8.18996 + 3.94408i −0.744542 + 0.358552i
\(122\) −0.344139 0.165729i −0.0311569 0.0150044i
\(123\) −1.48513 1.86230i −0.133910 0.167918i
\(124\) −15.9169 3.63293i −1.42938 0.326247i
\(125\) 4.16297 18.2392i 0.372347 1.63136i
\(126\) 2.82869 + 2.25581i 0.252000 + 0.200963i
\(127\) −15.5445 + 3.54793i −1.37935 + 0.314828i −0.846954 0.531666i \(-0.821566\pi\)
−0.532398 + 0.846494i \(0.678709\pi\)
\(128\) 11.3820i 1.00603i
\(129\) 0.995144 + 4.36001i 0.0876175 + 0.383877i
\(130\) 0.243975 0.506620i 0.0213981 0.0444335i
\(131\) 6.21592 12.9075i 0.543088 1.12773i −0.431165 0.902273i \(-0.641897\pi\)
0.974252 0.225460i \(-0.0723884\pi\)
\(132\) 0.307516 + 1.34732i 0.0267659 + 0.117269i
\(133\) 10.8541i 0.941170i
\(134\) −0.920597 + 0.210120i −0.0795275 + 0.0181516i
\(135\) −10.4624 8.34352i −0.900464 0.718096i
\(136\) −2.18034 + 9.55271i −0.186963 + 0.819138i
\(137\) 6.96674 + 1.59011i 0.595208 + 0.135852i 0.509504 0.860468i \(-0.329829\pi\)
0.0857042 + 0.996321i \(0.472686\pi\)
\(138\) −0.294372 0.369131i −0.0250586 0.0314225i
\(139\) −1.16387 0.560489i −0.0987180 0.0475401i 0.383873 0.923386i \(-0.374590\pi\)
−0.482591 + 0.875846i \(0.660304\pi\)
\(140\) −12.5634 + 6.05019i −1.06180 + 0.511335i
\(141\) 2.69737 3.38239i 0.227159 0.284849i
\(142\) −5.06012 + 4.03531i −0.424636 + 0.338636i
\(143\) −0.141549 0.293930i −0.0118369 0.0245797i
\(144\) 4.85410 0.404508
\(145\) 0 0
\(146\) −8.47214 −0.701159
\(147\) 0.536310 + 1.11366i 0.0442341 + 0.0918530i
\(148\) −5.95602 + 4.74977i −0.489582 + 0.390428i
\(149\) −5.99675 + 7.51968i −0.491273 + 0.616036i −0.964236 0.265046i \(-0.914613\pi\)
0.472963 + 0.881082i \(0.343184\pi\)
\(150\) −3.39119 + 1.63311i −0.276889 + 0.133343i
\(151\) 2.40898 + 1.16010i 0.196040 + 0.0944078i 0.529328 0.848417i \(-0.322444\pi\)
−0.333288 + 0.942825i \(0.608158\pi\)
\(152\) 6.76742 + 8.48608i 0.548910 + 0.688312i
\(153\) −11.1845 2.55279i −0.904214 0.206381i
\(154\) 0.424977 1.86195i 0.0342456 0.150040i
\(155\) −30.4043 24.2466i −2.44213 1.94753i
\(156\) 0.230149 0.0525301i 0.0184267 0.00420577i
\(157\) 14.5623i 1.16220i 0.813833 + 0.581099i \(0.197377\pi\)
−0.813833 + 0.581099i \(0.802623\pi\)
\(158\) −0.837554 3.66956i −0.0666322 0.291935i
\(159\) −0.536310 + 1.11366i −0.0425321 + 0.0883189i
\(160\) 9.39466 19.5082i 0.742713 1.54226i
\(161\) −0.615033 2.69463i −0.0484714 0.212367i
\(162\) 3.52786i 0.277175i
\(163\) −5.88315 + 1.34279i −0.460804 + 0.105175i −0.446619 0.894724i \(-0.647372\pi\)
−0.0141841 + 0.999899i \(0.504515\pi\)
\(164\) 4.87555 + 3.88812i 0.380717 + 0.303612i
\(165\) −0.732494 + 3.20926i −0.0570245 + 0.249841i
\(166\) −5.99181 1.36759i −0.465054 0.106146i
\(167\) −6.56402 8.23102i −0.507939 0.636935i 0.460061 0.887888i \(-0.347828\pi\)
−0.967999 + 0.250952i \(0.919256\pi\)
\(168\) 2.78415 + 1.34077i 0.214802 + 0.103443i
\(169\) 11.6624 5.61631i 0.897107 0.432024i
\(170\) −6.50780 + 8.16052i −0.499125 + 0.625883i
\(171\) −9.93567 + 7.92344i −0.759800 + 0.605920i
\(172\) −5.08000 10.5487i −0.387346 0.804333i
\(173\) −4.09017 −0.310970 −0.155485 0.987838i \(-0.549694\pi\)
−0.155485 + 0.987838i \(0.549694\pi\)
\(174\) 0 0
\(175\) −22.0344 −1.66565
\(176\) −1.11174 2.30856i −0.0838008 0.174014i
\(177\) −2.94276 + 2.34677i −0.221191 + 0.176394i
\(178\) −1.81425 + 2.27500i −0.135984 + 0.170518i
\(179\) −14.4155 + 6.94214i −1.07747 + 0.518880i −0.886506 0.462718i \(-0.846874\pi\)
−0.190960 + 0.981598i \(0.561160\pi\)
\(180\) 14.7094 + 7.08369i 1.09638 + 0.527987i
\(181\) 3.70619 + 4.64742i 0.275479 + 0.345440i 0.900254 0.435365i \(-0.143381\pi\)
−0.624775 + 0.780805i \(0.714809\pi\)
\(182\) −0.318058 0.0725948i −0.0235761 0.00538108i
\(183\) 0.0849954 0.372389i 0.00628304 0.0275278i
\(184\) 2.16093 + 1.72328i 0.159306 + 0.127042i
\(185\) −17.6909 + 4.03784i −1.30066 + 0.296868i
\(186\) 3.85410i 0.282596i
\(187\) 1.34753 + 5.90390i 0.0985409 + 0.431736i
\(188\) −4.91427 + 10.2046i −0.358410 + 0.744246i
\(189\) −3.36864 + 6.99506i −0.245033 + 0.508816i
\(190\) 2.57286 + 11.2724i 0.186655 + 0.817787i
\(191\) 17.0344i 1.23257i −0.787524 0.616284i \(-0.788637\pi\)
0.787524 0.616284i \(-0.211363\pi\)
\(192\) 0.142240 0.0324654i 0.0102653 0.00234299i
\(193\) −9.75111 7.77625i −0.701900 0.559747i 0.206195 0.978511i \(-0.433892\pi\)
−0.908095 + 0.418764i \(0.862463\pi\)
\(194\) −0.489908 + 2.14643i −0.0351733 + 0.154104i
\(195\) 0.548208 + 0.125125i 0.0392580 + 0.00896038i
\(196\) −2.01766 2.53006i −0.144118 0.180719i
\(197\) 5.66871 + 2.72991i 0.403879 + 0.194498i 0.624784 0.780797i \(-0.285187\pi\)
−0.220905 + 0.975295i \(0.570901\pi\)
\(198\) −2.01463 + 0.970194i −0.143173 + 0.0689487i
\(199\) −3.64997 + 4.57692i −0.258740 + 0.324449i −0.894186 0.447696i \(-0.852245\pi\)
0.635446 + 0.772145i \(0.280816\pi\)
\(200\) 17.2272 13.7382i 1.21815 0.971441i
\(201\) −0.409704 0.850760i −0.0288983 0.0600080i
\(202\) 0.381966 0.0268750
\(203\) 0 0
\(204\) −4.38197 −0.306799
\(205\) 6.44495 + 13.3831i 0.450135 + 0.934715i
\(206\) 4.43593 3.53753i 0.309066 0.246472i
\(207\) −2.01766 + 2.53006i −0.140237 + 0.175851i
\(208\) −0.394349 + 0.189908i −0.0273432 + 0.0131678i
\(209\) 6.04388 + 2.91058i 0.418064 + 0.201329i
\(210\) 2.05240 + 2.57363i 0.141629 + 0.177597i
\(211\) 11.3603 + 2.59292i 0.782077 + 0.178504i 0.594876 0.803818i \(-0.297201\pi\)
0.187201 + 0.982322i \(0.440058\pi\)
\(212\) 0.720093 3.15493i 0.0494562 0.216682i
\(213\) −5.06012 4.03531i −0.346714 0.276495i
\(214\) −4.07553 + 0.930213i −0.278597 + 0.0635881i
\(215\) 27.8885i 1.90198i
\(216\) −1.72764 7.56927i −0.117551 0.515024i
\(217\) −9.78942 + 20.3279i −0.664549 + 1.37995i
\(218\) −3.85659 + 8.00830i −0.261202 + 0.542391i
\(219\) −1.88523 8.25972i −0.127392 0.558140i
\(220\) 8.61803i 0.581028i
\(221\) 1.00851 0.230185i 0.0678395 0.0154839i
\(222\) 1.40603 + 1.12127i 0.0943662 + 0.0752546i
\(223\) −0.594968 + 2.60673i −0.0398420 + 0.174559i −0.990934 0.134348i \(-0.957106\pi\)
0.951092 + 0.308907i \(0.0999632\pi\)
\(224\) −12.2473 2.79538i −0.818310 0.186774i
\(225\) 16.0850 + 20.1700i 1.07233 + 1.34467i
\(226\) −4.42360 2.13030i −0.294254 0.141705i
\(227\) 18.8199 9.06320i 1.24912 0.601546i 0.311846 0.950133i \(-0.399053\pi\)
0.937276 + 0.348587i \(0.113338\pi\)
\(228\) −3.02648 + 3.79509i −0.200434 + 0.251336i
\(229\) −1.79180 + 1.42891i −0.118405 + 0.0944251i −0.680902 0.732374i \(-0.738412\pi\)
0.562497 + 0.826799i \(0.309841\pi\)
\(230\) 1.27747 + 2.65270i 0.0842340 + 0.174914i
\(231\) 1.90983 0.125658
\(232\) 0 0
\(233\) 15.2361 0.998148 0.499074 0.866559i \(-0.333674\pi\)
0.499074 + 0.866559i \(0.333674\pi\)
\(234\) 0.165729 + 0.344139i 0.0108340 + 0.0224971i
\(235\) −21.0928 + 16.8210i −1.37594 + 1.09728i
\(236\) 6.14393 7.70425i 0.399936 0.501504i
\(237\) 3.39119 1.63311i 0.220281 0.106082i
\(238\) 5.45602 + 2.62748i 0.353661 + 0.170314i
\(239\) −17.2973 21.6901i −1.11887 1.40301i −0.904612 0.426236i \(-0.859839\pi\)
−0.214255 0.976778i \(-0.568732\pi\)
\(240\) 4.30568 + 0.982743i 0.277930 + 0.0634358i
\(241\) −1.03527 + 4.53583i −0.0666878 + 0.292178i −0.997264 0.0739193i \(-0.976449\pi\)
0.930576 + 0.366098i \(0.119306\pi\)
\(242\) −4.39236 3.50279i −0.282351 0.225168i
\(243\) 13.5947 3.10289i 0.872098 0.199051i
\(244\) 1.00000i 0.0640184i
\(245\) −1.71524 7.51494i −0.109582 0.480112i
\(246\) 0.638736 1.32635i 0.0407243 0.0845649i
\(247\) 0.497187 1.03242i 0.0316352 0.0656912i
\(248\) −5.02059 21.9966i −0.318807 1.39679i
\(249\) 6.14590i 0.389480i
\(250\) 11.2724 2.57286i 0.712930 0.162722i
\(251\) 15.3649 + 12.2531i 0.969825 + 0.773410i 0.973992 0.226581i \(-0.0727549\pi\)
−0.00416682 + 0.999991i \(0.501326\pi\)
\(252\) 2.10775 9.23465i 0.132776 0.581728i
\(253\) 1.66538 + 0.380111i 0.104701 + 0.0238974i
\(254\) −6.14393 7.70425i −0.385505 0.483407i
\(255\) −9.40404 4.52875i −0.588904 0.283601i
\(256\) 5.91243 2.84728i 0.369527 0.177955i
\(257\) −14.4527 + 18.1231i −0.901535 + 1.13049i 0.0893797 + 0.995998i \(0.471512\pi\)
−0.990915 + 0.134492i \(0.957060\pi\)
\(258\) −2.16093 + 1.72328i −0.134534 + 0.107287i
\(259\) 4.56787 + 9.48528i 0.283834 + 0.589386i
\(260\) −1.47214 −0.0912980
\(261\) 0 0
\(262\) 8.85410 0.547008
\(263\) −7.24942 15.0536i −0.447018 0.928243i −0.995737 0.0922361i \(-0.970599\pi\)
0.548719 0.836007i \(-0.315116\pi\)
\(264\) −1.49317 + 1.19076i −0.0918980 + 0.0732862i
\(265\) 4.80599 6.02652i 0.295229 0.370206i
\(266\) 6.04388 2.91058i 0.370574 0.178459i
\(267\) −2.62167 1.26253i −0.160443 0.0772655i
\(268\) 1.54135 + 1.93279i 0.0941530 + 0.118064i
\(269\) 5.84957 + 1.33513i 0.356654 + 0.0814040i 0.397094 0.917778i \(-0.370019\pi\)
−0.0404396 + 0.999182i \(0.512876\pi\)
\(270\) 1.84036 8.06315i 0.112001 0.490708i
\(271\) 7.95931 + 6.34734i 0.483494 + 0.385573i 0.834683 0.550731i \(-0.185651\pi\)
−0.351189 + 0.936305i \(0.614223\pi\)
\(272\) 7.92091 1.80790i 0.480276 0.109620i
\(273\) 0.326238i 0.0197448i
\(274\) 0.982743 + 4.30568i 0.0593697 + 0.260116i
\(275\) 5.90864 12.2694i 0.356305 0.739874i
\(276\) −0.536310 + 1.11366i −0.0322821 + 0.0670344i
\(277\) 4.75794 + 20.8459i 0.285877 + 1.25251i 0.890127 + 0.455713i \(0.150616\pi\)
−0.604250 + 0.796795i \(0.706527\pi\)
\(278\) 0.798374i 0.0478833i
\(279\) 25.7541 5.87820i 1.54186 0.351919i
\(280\) −15.0663 12.0150i −0.900383 0.718032i
\(281\) −5.14571 + 22.5448i −0.306967 + 1.34491i 0.552411 + 0.833572i \(0.313708\pi\)
−0.859379 + 0.511340i \(0.829149\pi\)
\(282\) 2.60673 + 0.594968i 0.155228 + 0.0354298i
\(283\) 3.26463 + 4.09372i 0.194062 + 0.243347i 0.869337 0.494220i \(-0.164546\pi\)
−0.675274 + 0.737567i \(0.735975\pi\)
\(284\) 15.2663 + 7.35184i 0.905886 + 0.436252i
\(285\) −10.4173 + 5.01670i −0.617066 + 0.297163i
\(286\) 0.125712 0.157638i 0.00743350 0.00932131i
\(287\) 6.73785 5.37326i 0.397723 0.317173i
\(288\) 6.38165 + 13.2516i 0.376042 + 0.780860i
\(289\) −2.20163 −0.129507
\(290\) 0 0
\(291\) −2.20163 −0.129062
\(292\) 9.62369 + 19.9838i 0.563184 + 1.16946i
\(293\) 6.66735 5.31704i 0.389511 0.310625i −0.409080 0.912498i \(-0.634150\pi\)
0.798591 + 0.601874i \(0.205579\pi\)
\(294\) −0.476304 + 0.597266i −0.0277786 + 0.0348333i
\(295\) 21.1477 10.1842i 1.23126 0.592946i
\(296\) −9.48528 4.56787i −0.551321 0.265502i
\(297\) −2.99174 3.75152i −0.173598 0.217685i
\(298\) −5.79524 1.32272i −0.335709 0.0766234i
\(299\) 0.0649307 0.284480i 0.00375504 0.0164519i
\(300\) 7.70425 + 6.14393i 0.444805 + 0.354720i
\(301\) −15.7747 + 3.60046i −0.909237 + 0.207527i
\(302\) 1.65248i 0.0950893i
\(303\) 0.0849954 + 0.372389i 0.00488286 + 0.0213932i
\(304\) 3.90495 8.10872i 0.223964 0.465067i
\(305\) −1.03350 + 2.14608i −0.0591778 + 0.122884i
\(306\) −1.57771 6.91240i −0.0901917 0.395156i
\(307\) 19.1803i 1.09468i 0.836910 + 0.547340i \(0.184360\pi\)
−0.836910 + 0.547340i \(0.815640\pi\)
\(308\) −4.87464 + 1.11260i −0.277758 + 0.0633965i
\(309\) 4.43593 + 3.53753i 0.252351 + 0.201243i
\(310\) 5.34817 23.4318i 0.303755 1.33084i
\(311\) 2.03777 + 0.465107i 0.115551 + 0.0263738i 0.279905 0.960028i \(-0.409697\pi\)
−0.164354 + 0.986401i \(0.552554\pi\)
\(312\) 0.203406 + 0.255063i 0.0115156 + 0.0144401i
\(313\) 11.6314 + 5.60137i 0.657443 + 0.316608i 0.732695 0.680557i \(-0.238262\pi\)
−0.0752524 + 0.997165i \(0.523976\pi\)
\(314\) −8.10872 + 3.90495i −0.457602 + 0.220369i
\(315\) 14.0674 17.6399i 0.792606 0.993897i
\(316\) −7.70425 + 6.14393i −0.433398 + 0.345623i
\(317\) −12.0221 24.9642i −0.675231 1.40213i −0.903524 0.428538i \(-0.859029\pi\)
0.228293 0.973592i \(-0.426686\pi\)
\(318\) −0.763932 −0.0428392
\(319\) 0 0
\(320\) −0.909830 −0.0508610
\(321\) −1.81378 3.76636i −0.101235 0.210217i
\(322\) 1.33553 1.06505i 0.0744260 0.0593528i
\(323\) −13.2619 + 16.6300i −0.737914 + 0.925315i
\(324\) −8.32141 + 4.00738i −0.462301 + 0.222632i
\(325\) −2.09587 1.00932i −0.116258 0.0559868i
\(326\) −2.32530 2.91583i −0.128786 0.161493i
\(327\) −8.66569 1.97789i −0.479214 0.109377i
\(328\) −1.91769 + 8.40196i −0.105887 + 0.463921i
\(329\) 12.2376 + 9.75916i 0.674681 + 0.538040i
\(330\) −1.98343 + 0.452706i −0.109184 + 0.0249206i
\(331\) 21.1803i 1.16418i 0.813126 + 0.582088i \(0.197764\pi\)
−0.813126 + 0.582088i \(0.802236\pi\)
\(332\) 3.58040 + 15.6868i 0.196500 + 0.860923i
\(333\) 5.34815 11.1056i 0.293077 0.608581i
\(334\) 2.82310 5.86222i 0.154473 0.320767i
\(335\) 1.31032 + 5.74091i 0.0715907 + 0.313659i
\(336\) 2.56231i 0.139785i
\(337\) −33.2147 + 7.58104i −1.80932 + 0.412966i −0.987609 0.156938i \(-0.949838\pi\)
−0.821712 + 0.569903i \(0.806981\pi\)
\(338\) 6.25465 + 4.98792i 0.340208 + 0.271307i
\(339\) 1.09254 4.78673i 0.0593386 0.259980i
\(340\) 26.6411 + 6.08066i 1.44482 + 0.329770i
\(341\) −8.69411 10.9021i −0.470813 0.590380i
\(342\) −7.07630 3.40777i −0.382643 0.184271i
\(343\) −18.1316 + 8.73174i −0.979017 + 0.471470i
\(344\) 10.0883 12.6503i 0.543923 0.682058i
\(345\) −2.30192 + 1.83572i −0.123931 + 0.0988320i
\(346\) −1.09680 2.27753i −0.0589643 0.122441i
\(347\) 32.1246 1.72454 0.862270 0.506449i \(-0.169042\pi\)
0.862270 + 0.506449i \(0.169042\pi\)
\(348\) 0 0
\(349\) 4.52786 0.242371 0.121186 0.992630i \(-0.461330\pi\)
0.121186 + 0.992630i \(0.461330\pi\)
\(350\) −5.90864 12.2694i −0.315830 0.655828i
\(351\) −0.640836 + 0.511050i −0.0342053 + 0.0272778i
\(352\) 4.84073 6.07009i 0.258012 0.323537i
\(353\) −17.2307 + 8.29786i −0.917097 + 0.441650i −0.832034 0.554725i \(-0.812823\pi\)
−0.0850629 + 0.996376i \(0.527109\pi\)
\(354\) −2.09587 1.00932i −0.111394 0.0536446i
\(355\) 25.1645 + 31.5553i 1.33559 + 1.67478i
\(356\) 7.42703 + 1.69517i 0.393632 + 0.0898439i
\(357\) −1.34753 + 5.90390i −0.0713187 + 0.312467i
\(358\) −7.73117 6.16541i −0.408605 0.325852i
\(359\) 23.1681 5.28797i 1.22277 0.279089i 0.438054 0.898949i \(-0.355668\pi\)
0.784712 + 0.619860i \(0.212811\pi\)
\(360\) 22.5623i 1.18914i
\(361\) 1.01521 + 4.44792i 0.0534320 + 0.234101i
\(362\) −1.59399 + 3.30995i −0.0837780 + 0.173967i
\(363\) 2.43757 5.06167i 0.127939 0.265669i
\(364\) 0.190056 + 0.832688i 0.00996162 + 0.0436447i
\(365\) 52.8328i 2.76540i
\(366\) 0.230149 0.0525301i 0.0120301 0.00274579i
\(367\) −21.3209 17.0029i −1.11294 0.887543i −0.118515 0.992952i \(-0.537813\pi\)
−0.994429 + 0.105409i \(0.966385\pi\)
\(368\) 0.509973 2.23434i 0.0265842 0.116473i
\(369\) −9.83719 2.24527i −0.512104 0.116884i
\(370\) −6.99230 8.76807i −0.363512 0.455830i
\(371\) −4.02926 1.94039i −0.209189 0.100740i
\(372\) 9.09093 4.37796i 0.471343 0.226987i
\(373\) 12.8551 16.1198i 0.665614 0.834653i −0.328328 0.944564i \(-0.606485\pi\)
0.993941 + 0.109911i \(0.0350565\pi\)
\(374\) −2.92612 + 2.33350i −0.151306 + 0.120662i
\(375\) 5.01670 + 10.4173i 0.259061 + 0.537946i
\(376\) −15.6525 −0.807215
\(377\) 0 0
\(378\) −4.79837 −0.246802
\(379\) −10.5398 21.8862i −0.541394 1.12422i −0.974813 0.223024i \(-0.928407\pi\)
0.433419 0.901192i \(-0.357307\pi\)
\(380\) 23.6664 18.8734i 1.21406 0.968183i
\(381\) 6.14393 7.70425i 0.314763 0.394701i
\(382\) 9.48528 4.56787i 0.485309 0.233713i
\(383\) −25.9966 12.5193i −1.32837 0.639708i −0.371013 0.928628i \(-0.620990\pi\)
−0.957353 + 0.288920i \(0.906704\pi\)
\(384\) 4.38590 + 5.49975i 0.223817 + 0.280658i
\(385\) −11.6112 2.65019i −0.591763 0.135066i
\(386\) 1.71524 7.51494i 0.0873033 0.382501i
\(387\) 14.8112 + 11.8116i 0.752897 + 0.600415i
\(388\) 5.61942 1.28260i 0.285283 0.0651139i
\(389\) 19.1246i 0.969656i −0.874609 0.484828i \(-0.838882\pi\)
0.874609 0.484828i \(-0.161118\pi\)
\(390\) 0.0773314 + 0.338811i 0.00391583 + 0.0171564i
\(391\) −2.35009 + 4.88001i −0.118849 + 0.246793i
\(392\) 1.94039 4.02926i 0.0980043 0.203508i
\(393\) 1.97022 + 8.63211i 0.0993846 + 0.435432i
\(394\) 3.88854i 0.195902i
\(395\) −22.8836 + 5.22304i −1.15140 + 0.262800i
\(396\) 4.57692 + 3.64997i 0.229999 + 0.183418i
\(397\) 3.12769 13.7033i 0.156974 0.687750i −0.833782 0.552094i \(-0.813829\pi\)
0.990756 0.135656i \(-0.0433141\pi\)
\(398\) −3.52732 0.805088i −0.176809 0.0403554i
\(399\) 4.18250 + 5.24469i 0.209387 + 0.262563i
\(400\) −16.4612 7.92728i −0.823058 0.396364i
\(401\) −22.5863 + 10.8770i −1.12791 + 0.543171i −0.902326 0.431054i \(-0.858142\pi\)
−0.225579 + 0.974225i \(0.572427\pi\)
\(402\) 0.363864 0.456271i 0.0181479 0.0227567i
\(403\) −1.86230 + 1.48513i −0.0927676 + 0.0739797i
\(404\) −0.433884 0.900969i −0.0215865 0.0448249i
\(405\) −22.0000 −1.09319
\(406\) 0 0
\(407\) −6.50658 −0.322519
\(408\) −2.62748 5.45602i −0.130080 0.270113i
\(409\) 21.4350 17.0939i 1.05989 0.845237i 0.0715435 0.997437i \(-0.477208\pi\)
0.988350 + 0.152201i \(0.0486361\pi\)
\(410\) −5.72385 + 7.17748i −0.282681 + 0.354470i
\(411\) −3.97905 + 1.91621i −0.196272 + 0.0945195i
\(412\) −13.3831 6.44495i −0.659337 0.317520i
\(413\) −8.49071 10.6470i −0.417800 0.523905i
\(414\) −1.94986 0.445042i −0.0958302 0.0218726i
\(415\) −8.52839 + 37.3653i −0.418642 + 1.83419i
\(416\) −1.03689 0.826896i −0.0508379 0.0405419i
\(417\) 0.778357 0.177655i 0.0381163 0.00869980i
\(418\) 4.14590i 0.202783i
\(419\) −3.90798 17.1220i −0.190917 0.836464i −0.976121 0.217226i \(-0.930299\pi\)
0.785204 0.619237i \(-0.212558\pi\)
\(420\) 3.73922 7.76458i 0.182455 0.378873i
\(421\) −13.4653 + 27.9611i −0.656261 + 1.36274i 0.261345 + 0.965246i \(0.415834\pi\)
−0.917605 + 0.397493i \(0.869880\pi\)
\(422\) 1.60251 + 7.02107i 0.0780091 + 0.341780i
\(423\) 18.3262i 0.891052i
\(424\) 4.36001 0.995144i 0.211741 0.0483285i
\(425\) 33.7597 + 26.9225i 1.63759 + 1.30593i
\(426\) 0.890084 3.89971i 0.0431247 0.188942i
\(427\) 1.34732 + 0.307516i 0.0652013 + 0.0148818i
\(428\) 6.82364 + 8.55658i 0.329833 + 0.413598i
\(429\) 0.181659 + 0.0874823i 0.00877057 + 0.00422369i
\(430\) 15.5292 7.47845i 0.748883 0.360643i
\(431\) 9.10092 11.4122i 0.438376 0.549706i −0.512738 0.858545i \(-0.671369\pi\)
0.951114 + 0.308839i \(0.0999403\pi\)
\(432\) −5.03319 + 4.01384i −0.242160 + 0.193116i
\(433\) −4.50457 9.35383i −0.216476 0.449516i 0.764246 0.644924i \(-0.223111\pi\)
−0.980722 + 0.195408i \(0.937397\pi\)
\(434\) −13.9443 −0.669346
\(435\) 0 0
\(436\) 23.2705 1.11446
\(437\) 2.60330 + 5.40581i 0.124533 + 0.258595i
\(438\) 4.09372 3.26463i 0.195606 0.155990i
\(439\) 13.0585 16.3749i 0.623250 0.781531i −0.365548 0.930793i \(-0.619118\pi\)
0.988798 + 0.149262i \(0.0476897\pi\)
\(440\) 10.7304 5.16748i 0.511551 0.246350i
\(441\) 4.71753 + 2.27184i 0.224644 + 0.108183i
\(442\) 0.398610 + 0.499841i 0.0189599 + 0.0237750i
\(443\) 1.86195 + 0.424977i 0.0884638 + 0.0201913i 0.266524 0.963828i \(-0.414125\pi\)
−0.178060 + 0.984020i \(0.556982\pi\)
\(444\) 1.04767 4.59016i 0.0497204 0.217839i
\(445\) 14.1870 + 11.3138i 0.672530 + 0.536325i
\(446\) −1.61104 + 0.367710i −0.0762852 + 0.0174116i
\(447\) 5.94427i 0.281154i
\(448\) 0.117461 + 0.514629i 0.00554950 + 0.0243140i
\(449\) 11.3350 23.5375i 0.534934 1.11080i −0.441952 0.897039i \(-0.645714\pi\)
0.976886 0.213763i \(-0.0685719\pi\)
\(450\) −6.91796 + 14.3653i −0.326116 + 0.677186i
\(451\) 1.18520 + 5.19270i 0.0558089 + 0.244515i
\(452\) 12.8541i 0.604606i
\(453\) −1.61104 + 0.367710i −0.0756935 + 0.0172765i
\(454\) 10.0933 + 8.04915i 0.473703 + 0.377765i
\(455\) −0.452706 + 1.98343i −0.0212232 + 0.0929848i
\(456\) −6.54002 1.49272i −0.306264 0.0699028i
\(457\) −11.6644 14.6267i −0.545636 0.684206i 0.430194 0.902737i \(-0.358445\pi\)
−0.975830 + 0.218530i \(0.929874\pi\)
\(458\) −1.27614 0.614556i −0.0596301 0.0287163i
\(459\) 13.7080 6.60145i 0.639837 0.308129i
\(460\) 4.80599 6.02652i 0.224080 0.280988i
\(461\) 30.4748 24.3028i 1.41935 1.13190i 0.448061 0.894003i \(-0.352115\pi\)
0.971291 0.237893i \(-0.0764566\pi\)
\(462\) 0.512130 + 1.06345i 0.0238265 + 0.0494761i
\(463\) −10.7082 −0.497652 −0.248826 0.968548i \(-0.580045\pi\)
−0.248826 + 0.968548i \(0.580045\pi\)
\(464\) 0 0
\(465\) 24.0344 1.11457
\(466\) 4.08563 + 8.48389i 0.189263 + 0.393009i
\(467\) −14.0294 + 11.1881i −0.649203 + 0.517722i −0.891814 0.452401i \(-0.850567\pi\)
0.242611 + 0.970124i \(0.421996\pi\)
\(468\) 0.623490 0.781831i 0.0288208 0.0361402i
\(469\) 3.07808 1.48232i 0.142132 0.0684474i
\(470\) −15.0225 7.23447i −0.692938 0.333701i
\(471\) −5.61141 7.03648i −0.258560 0.324224i
\(472\) 13.2766 + 3.03030i 0.611105 + 0.139481i
\(473\) 2.22521 9.74928i 0.102315 0.448272i
\(474\) 1.81873 + 1.45039i 0.0835369 + 0.0666184i
\(475\) 46.6335 10.6438i 2.13969 0.488371i
\(476\) 15.8541i 0.726672i
\(477\) 1.16513 + 5.10479i 0.0533479 + 0.233732i
\(478\) 7.43933 15.4479i 0.340267 0.706571i
\(479\) −4.85097 + 10.0731i −0.221646 + 0.460253i −0.981907 0.189365i \(-0.939357\pi\)
0.760260 + 0.649618i \(0.225071\pi\)
\(480\) 2.97777 + 13.0465i 0.135916 + 0.595486i
\(481\) 1.11146i 0.0506780i
\(482\) −2.80330 + 0.639834i −0.127687 + 0.0291436i
\(483\) 1.33553 + 1.06505i 0.0607686 + 0.0484613i
\(484\) −3.27288 + 14.3394i −0.148767 + 0.651793i
\(485\) 13.3853 + 3.05510i 0.607793 + 0.138725i
\(486\) 5.37326 + 6.73785i 0.243736 + 0.305635i
\(487\) −38.3473 18.4671i −1.73768 0.836824i −0.983674 0.179959i \(-0.942403\pi\)
−0.754009 0.656865i \(-0.771882\pi\)
\(488\) −1.24511 + 0.599613i −0.0563634 + 0.0271432i
\(489\) 2.32530 2.91583i 0.105154 0.131859i
\(490\) 3.72459 2.97026i 0.168260 0.134183i
\(491\) 6.56232 + 13.6268i 0.296153 + 0.614969i 0.994952 0.100349i \(-0.0319960\pi\)
−0.698799 + 0.715318i \(0.746282\pi\)
\(492\) −3.85410 −0.173756
\(493\) 0 0
\(494\) 0.708204 0.0318636
\(495\) 6.05019 + 12.5634i 0.271936 + 0.564681i
\(496\) −14.6267 + 11.6644i −0.656757 + 0.523746i
\(497\) 14.5999 18.3077i 0.654895 0.821212i
\(498\) 3.42222 1.64805i 0.153353 0.0738510i
\(499\) 22.2421 + 10.7113i 0.995695 + 0.479502i 0.859475 0.511177i \(-0.170790\pi\)
0.136220 + 0.990679i \(0.456505\pi\)
\(500\) −18.8734 23.6664i −0.844042 1.05840i
\(501\) 6.34344 + 1.44785i 0.283404 + 0.0646852i
\(502\) −2.70272 + 11.8414i −0.120628 + 0.528506i
\(503\) 11.1571 + 8.89752i 0.497472 + 0.396721i 0.839831 0.542849i \(-0.182654\pi\)
−0.342358 + 0.939569i \(0.611226\pi\)
\(504\) 12.7620 2.91284i 0.568463 0.129748i
\(505\) 2.38197i 0.105996i
\(506\) 0.234922 + 1.02926i 0.0104435 + 0.0457561i
\(507\) −3.47107 + 7.20775i −0.154156 + 0.320107i
\(508\) −11.1935 + 23.2435i −0.496631 + 1.03126i
\(509\) −7.02327 30.7710i −0.311301 1.36390i −0.852378 0.522926i \(-0.824840\pi\)
0.541077 0.840973i \(-0.318017\pi\)
\(510\) 6.45085i 0.285648i
\(511\) 29.8840 6.82082i 1.32199 0.301735i
\(512\) −14.6267 11.6644i −0.646413 0.515497i
\(513\) 3.75039 16.4315i 0.165584 0.725470i
\(514\) −13.9670 3.18789i −0.616060 0.140612i
\(515\) −22.0603 27.6627i −0.972093 1.21897i
\(516\) 6.51947 + 3.13961i 0.287004 + 0.138214i
\(517\) −8.71576 + 4.19729i −0.383319 + 0.184597i
\(518\) −4.05678 + 5.08705i −0.178245 + 0.223512i
\(519\) 1.97636 1.57610i 0.0867527 0.0691830i
\(520\) −0.882711 1.83297i −0.0387094 0.0803810i
\(521\) −4.09017 −0.179194 −0.0895968 0.995978i \(-0.528558\pi\)
−0.0895968 + 0.995978i \(0.528558\pi\)
\(522\) 0 0
\(523\) −20.3820 −0.891241 −0.445621 0.895222i \(-0.647017\pi\)
−0.445621 + 0.895222i \(0.647017\pi\)
\(524\) −10.0576 20.8848i −0.439367 0.912355i
\(525\) 10.6470 8.49071i 0.464674 0.370565i
\(526\) 6.43830 8.07338i 0.280723 0.352016i
\(527\) 39.8361 19.1841i 1.73529 0.835671i
\(528\) 1.42677 + 0.687095i 0.0620921 + 0.0299020i
\(529\) −13.3877 16.7876i −0.582072 0.729895i
\(530\) 4.64449 + 1.06007i 0.201744 + 0.0460467i
\(531\) −3.54793 + 15.5445i −0.153967 + 0.674575i
\(532\) −13.7308 10.9499i −0.595304 0.474739i
\(533\) 0.887019 0.202456i 0.0384210 0.00876935i
\(534\) 1.79837i 0.0778232i
\(535\) 5.80087 + 25.4153i 0.250794 + 1.09880i
\(536\) −1.48232 + 3.07808i −0.0640266 + 0.132953i
\(537\) 4.29048 8.90927i 0.185148 0.384463i
\(538\) 0.825153 + 3.61523i 0.0355749 + 0.155864i
\(539\) 2.76393i 0.119051i
\(540\) −21.1096 + 4.81813i −0.908413 + 0.207339i
\(541\) 11.4122 + 9.10092i 0.490649 + 0.391279i 0.837325 0.546706i \(-0.184118\pi\)
−0.346676 + 0.937985i \(0.612690\pi\)
\(542\) −1.40006 + 6.13405i −0.0601376 + 0.263480i
\(543\) −3.58165 0.817489i −0.153703 0.0350818i
\(544\) 15.3491 + 19.2472i 0.658087 + 0.825215i
\(545\) 49.9403 + 24.0500i 2.13921 + 1.03019i
\(546\) 0.181659 0.0874823i 0.00777428 0.00374390i
\(547\) 4.60258 5.77145i 0.196792 0.246770i −0.673638 0.739061i \(-0.735269\pi\)
0.870430 + 0.492292i \(0.163841\pi\)
\(548\) 9.03977 7.20898i 0.386160 0.307952i
\(549\) −0.702039 1.45780i −0.0299623 0.0622173i
\(550\) 8.41641 0.358877
\(551\) 0 0
\(552\) −1.70820 −0.0727060
\(553\) 5.90864 + 12.2694i 0.251261 + 0.521749i
\(554\) −10.3317 + 8.23928i −0.438953 + 0.350054i
\(555\) 6.99230 8.76807i 0.296807 0.372184i
\(556\) −1.88318 + 0.906891i −0.0798645 + 0.0384607i
\(557\) −4.96126 2.38921i −0.210215 0.101234i 0.325814 0.945434i \(-0.394362\pi\)
−0.536029 + 0.844200i \(0.680076\pi\)
\(558\) 10.1792 + 12.7644i 0.430922 + 0.540359i
\(559\) −1.66538 0.380111i −0.0704379 0.0160770i
\(560\) −3.55560 + 15.5781i −0.150251 + 0.658295i
\(561\) −2.92612 2.33350i −0.123541 0.0985205i
\(562\) −13.9335 + 3.18022i −0.587748 + 0.134150i
\(563\) 28.3951i 1.19671i 0.801230 + 0.598356i \(0.204179\pi\)
−0.801230 + 0.598356i \(0.795821\pi\)
\(564\) −1.55765 6.82450i −0.0655888 0.287363i
\(565\) −13.2847 + 27.5859i −0.558890 + 1.16055i
\(566\) −1.40408 + 2.91560i −0.0590178 + 0.122552i
\(567\) 2.84024 + 12.4439i 0.119279 + 0.522595i
\(568\) 23.4164i 0.982531i
\(569\) −1.89552 + 0.432641i −0.0794645 + 0.0181373i −0.262068 0.965049i \(-0.584405\pi\)
0.182604 + 0.983187i \(0.441547\pi\)
\(570\) −5.58689 4.45539i −0.234009 0.186616i
\(571\) 7.67844 33.6414i 0.321333 1.40785i −0.513851 0.857879i \(-0.671782\pi\)
0.835184 0.549971i \(-0.185361\pi\)
\(572\) −0.514629 0.117461i −0.0215177 0.00491128i
\(573\) 6.56402 + 8.23102i 0.274216 + 0.343856i
\(574\) 4.79877 + 2.31097i 0.200297 + 0.0964579i
\(575\) 10.9741 5.28485i 0.457652 0.220394i
\(576\) 0.385338 0.483198i 0.0160557 0.0201333i
\(577\) 2.16093 1.72328i 0.0899607 0.0717412i −0.577477 0.816407i \(-0.695963\pi\)
0.667437 + 0.744666i \(0.267391\pi\)
\(578\) −0.590377 1.22593i −0.0245564 0.0509920i
\(579\) 7.70820 0.320342
\(580\) 0 0
\(581\) 22.2361 0.922508
\(582\) −0.590377 1.22593i −0.0244719 0.0508164i
\(583\) 2.16093 1.72328i 0.0894965 0.0713711i
\(584\) −19.1115 + 23.9651i −0.790840 + 0.991682i
\(585\) 2.14608 1.03350i 0.0887294 0.0427298i
\(586\) 4.74857 + 2.28679i 0.196161 + 0.0944664i
\(587\) 29.0659 + 36.4474i 1.19968 + 1.50435i 0.813135 + 0.582075i \(0.197759\pi\)
0.386542 + 0.922272i \(0.373669\pi\)
\(588\) 1.94986 + 0.445042i 0.0804107 + 0.0183532i
\(589\) 10.8988 47.7507i 0.449077 1.96753i
\(590\) 11.3417 + 9.04470i 0.466930 + 0.372365i
\(591\) −3.79105 + 0.865282i −0.155943 + 0.0355930i
\(592\) 8.72949i 0.358780i
\(593\) −3.21269 14.0757i −0.131929 0.578020i −0.997070 0.0764913i \(-0.975628\pi\)
0.865141 0.501529i \(-0.167229\pi\)
\(594\) 1.28671 2.67188i 0.0527942 0.109628i
\(595\) 16.3852 34.0241i 0.671726 1.39485i
\(596\) 3.46294 + 15.1721i 0.141848 + 0.621475i
\(597\) 3.61803i 0.148076i
\(598\) 0.175818 0.0401294i 0.00718975 0.00164101i
\(599\) −10.2177 8.14832i −0.417482 0.332931i 0.392115 0.919916i \(-0.371743\pi\)
−0.809598 + 0.586985i \(0.800315\pi\)
\(600\) −3.03030 + 13.2766i −0.123711 + 0.542015i
\(601\) 28.4280 + 6.48850i 1.15960 + 0.264671i 0.758694 0.651447i \(-0.225838\pi\)
0.400907 + 0.916119i \(0.368695\pi\)
\(602\) −6.23490 7.81831i −0.254115 0.318651i
\(603\) −3.60388 1.73553i −0.146761 0.0706764i
\(604\) 3.89781 1.87708i 0.158599 0.0763775i
\(605\) −21.8436 + 27.3910i −0.888069 + 1.11360i
\(606\) −0.184565 + 0.147186i −0.00749746 + 0.00597902i
\(607\) −4.76349 9.89148i −0.193344 0.401483i 0.781649 0.623718i \(-0.214379\pi\)
−0.974993 + 0.222236i \(0.928665\pi\)
\(608\) 27.2705 1.10597
\(609\) 0 0
\(610\) −1.47214 −0.0596050
\(611\) 0.716982 + 1.48883i 0.0290060 + 0.0602316i
\(612\) −14.5126 + 11.5734i −0.586637 + 0.467827i
\(613\) −17.1715 + 21.5324i −0.693552 + 0.869687i −0.996523 0.0833128i \(-0.973450\pi\)
0.302971 + 0.953000i \(0.402021\pi\)
\(614\) −10.6802 + 5.14330i −0.431017 + 0.207567i
\(615\) −8.27120 3.98320i −0.333527 0.160618i
\(616\) −4.30821 5.40232i −0.173583 0.217666i
\(617\) 13.8248 + 3.15542i 0.556566 + 0.127033i 0.491546 0.870851i \(-0.336432\pi\)
0.0650196 + 0.997884i \(0.479289\pi\)
\(618\) −0.780287 + 3.41866i −0.0313877 + 0.137519i
\(619\) 5.51639 + 4.39917i 0.221722 + 0.176818i 0.728051 0.685523i \(-0.240426\pi\)
−0.506329 + 0.862341i \(0.668998\pi\)
\(620\) −61.3454 + 14.0017i −2.46369 + 0.562321i
\(621\) 4.29180i 0.172224i
\(622\) 0.287452 + 1.25941i 0.0115258 + 0.0504977i
\(623\) 4.56787 9.48528i 0.183008 0.380020i
\(624\) 0.117370 0.243721i 0.00469855 0.00975665i
\(625\) −5.08078 22.2603i −0.203231 0.890414i
\(626\) 7.97871i 0.318894i
\(627\) −4.04195 + 0.922549i −0.161420 + 0.0368431i
\(628\) 18.4218 + 14.6909i 0.735108 + 0.586229i
\(629\) 4.59087 20.1139i 0.183050 0.801995i
\(630\) 13.5947 + 3.10289i 0.541624 + 0.123622i
\(631\) 17.5916 + 22.0592i 0.700312 + 0.878163i 0.997047 0.0767968i \(-0.0244693\pi\)
−0.296735 + 0.954960i \(0.595898\pi\)
\(632\) −12.2694 5.90864i −0.488052 0.235033i
\(633\) −6.48844 + 3.12467i −0.257892 + 0.124194i
\(634\) 10.6770 13.3886i 0.424039 0.531728i
\(635\) −48.0442 + 38.3140i −1.90658 + 1.52044i
\(636\) 0.867767 + 1.80194i 0.0344092 + 0.0714515i
\(637\) −0.472136 −0.0187067
\(638\) 0 0
\(639\) −27.4164 −1.08458
\(640\) −19.0333 39.5230i −0.752357 1.56229i
\(641\) 8.64372 6.89313i 0.341406 0.272262i −0.437744 0.899100i \(-0.644222\pi\)
0.779150 + 0.626837i \(0.215651\pi\)
\(642\) 1.61084 2.01993i 0.0635749 0.0797204i
\(643\) −33.7110 + 16.2344i −1.32943 + 0.640221i −0.957606 0.288081i \(-0.906983\pi\)
−0.371827 + 0.928302i \(0.621268\pi\)
\(644\) −4.02926 1.94039i −0.158775 0.0764620i
\(645\) 10.7465 + 13.4757i 0.423144 + 0.530605i
\(646\) −12.8163 2.92524i −0.504251 0.115092i
\(647\) −6.79309 + 29.7625i −0.267064 + 1.17008i 0.646347 + 0.763044i \(0.276296\pi\)
−0.913411 + 0.407039i \(0.866561\pi\)
\(648\) −9.97924 7.95818i −0.392022 0.312627i
\(649\) 8.20539 1.87283i 0.322090 0.0735149i
\(650\) 1.43769i 0.0563910i
\(651\) −3.10289 13.5947i −0.121612 0.532817i
\(652\) −4.23641 + 8.79700i −0.165911 + 0.344517i
\(653\) 20.8321 43.2584i 0.815224 1.69283i 0.0988626 0.995101i \(-0.468480\pi\)
0.716362 0.697729i \(-0.245806\pi\)
\(654\) −1.22240 5.35569i −0.0477997 0.209424i
\(655\) 55.2148i 2.15742i
\(656\) 6.96674 1.59011i 0.272005 0.0620834i
\(657\) −28.0588 22.3761i −1.09468 0.872976i
\(658\) −2.15261 + 9.43122i −0.0839177 + 0.367667i
\(659\) −6.87883 1.57005i −0.267961 0.0611604i 0.0864291 0.996258i \(-0.472454\pi\)
−0.354390 + 0.935098i \(0.615312\pi\)
\(660\) 3.32086 + 4.16422i 0.129264 + 0.162092i
\(661\) 33.7420 + 16.2493i 1.31241 + 0.632025i 0.953513 0.301351i \(-0.0974375\pi\)
0.358900 + 0.933376i \(0.383152\pi\)
\(662\) −11.7938 + 5.67961i −0.458380 + 0.220744i
\(663\) −0.398610 + 0.499841i −0.0154807 + 0.0194122i
\(664\) −17.3849 + 13.8640i −0.674663 + 0.538026i
\(665\) −18.1506 37.6901i −0.703849 1.46156i
\(666\) 7.61803 0.295193
\(667\) 0 0
\(668\) −17.0344 −0.659082
\(669\) −0.716982 1.48883i −0.0277201 0.0575615i
\(670\) −2.84534 + 2.26908i −0.109925 + 0.0876622i
\(671\) −0.532524 + 0.667764i −0.0205579 + 0.0257787i
\(672\) 6.99506 3.36864i 0.269840 0.129948i
\(673\) −5.83119 2.80815i −0.224776 0.108246i 0.318107 0.948055i \(-0.396953\pi\)
−0.542883 + 0.839808i \(0.682667\pi\)
\(674\) −13.1280 16.4620i −0.505673 0.634094i
\(675\) −33.3569 7.61351i −1.28391 0.293044i
\(676\) 4.66054 20.4192i 0.179251 0.785352i
\(677\) −31.9244 25.4588i −1.22695 0.978463i −0.999990 0.00455972i \(-0.998549\pi\)
−0.226964 0.973903i \(-0.572880\pi\)
\(678\) 2.95836 0.675227i 0.113615 0.0259319i
\(679\) 7.96556i 0.305690i
\(680\) 8.40327 + 36.8171i 0.322251 + 1.41187i
\(681\) −5.60137 + 11.6314i −0.214645 + 0.445714i
\(682\) 3.73922 7.76458i 0.143182 0.297321i
\(683\) −4.64047 20.3312i −0.177563 0.777954i −0.982751 0.184934i \(-0.940793\pi\)
0.805188 0.593019i \(-0.202064\pi\)
\(684\) 20.5623i 0.786219i
\(685\) 26.8505 6.12845i 1.02591 0.234156i
\(686\) −9.72418 7.75478i −0.371271 0.296079i
\(687\) 0.315180 1.38090i 0.0120249 0.0526845i
\(688\) −13.0800 2.98543i −0.498671 0.113819i
\(689\) −0.294372 0.369131i −0.0112147 0.0140628i
\(690\) −1.63946 0.789521i −0.0624131 0.0300565i
\(691\) −10.6610 + 5.13407i −0.405563 + 0.195309i −0.625533 0.780198i \(-0.715118\pi\)
0.219970 + 0.975507i \(0.429404\pi\)
\(692\) −4.12628 + 5.17419i −0.156858 + 0.196693i
\(693\) 6.32515 5.04414i 0.240273 0.191611i
\(694\) 8.61437 + 17.8879i 0.326997 + 0.679016i
\(695\) −4.97871 −0.188853
\(696\) 0 0
\(697\) −16.8885 −0.639699
\(698\) 1.21417 + 2.52125i 0.0459570 + 0.0954306i
\(699\) −7.36204 + 5.87103i −0.278458 + 0.222063i
\(700\) −22.2290 + 27.8742i −0.840176 + 1.05355i
\(701\) −18.9706 + 9.13574i −0.716508 + 0.345052i −0.756362 0.654153i \(-0.773025\pi\)
0.0398539 + 0.999206i \(0.487311\pi\)
\(702\) −0.456411 0.219796i −0.0172261 0.00829566i
\(703\) −14.2493 17.8681i −0.537423 0.673907i
\(704\) −0.318058 0.0725948i −0.0119873 0.00273602i
\(705\) 3.71026 16.2557i 0.139737 0.612226i
\(706\) −9.24098 7.36944i −0.347789 0.277352i
\(707\) −1.34732 + 0.307516i −0.0506711 + 0.0115653i
\(708\) 6.09017i 0.228883i
\(709\) −9.23608 40.4659i −0.346868 1.51973i −0.784245 0.620451i \(-0.786949\pi\)
0.437377 0.899278i \(-0.355908\pi\)
\(710\) −10.8229 + 22.4740i −0.406177 + 0.843435i
\(711\) 6.91796 14.3653i 0.259444 0.538741i
\(712\) 2.34267 + 10.2639i 0.0877953 + 0.384656i
\(713\) 12.4721i 0.467085i
\(714\) −3.64881 + 0.832817i −0.136553 + 0.0311674i
\(715\) −0.983039 0.783948i −0.0367636 0.0293180i
\(716\) −5.76074 + 25.2395i −0.215289 + 0.943243i
\(717\) 16.7160 + 3.81532i 0.624271 + 0.142486i
\(718\) 9.15714 + 11.4827i 0.341742 + 0.428530i
\(719\) −7.66416 3.69087i −0.285825 0.137646i 0.285478 0.958385i \(-0.407848\pi\)
−0.571303 + 0.820739i \(0.693562\pi\)
\(720\) 16.8555 8.11719i 0.628168 0.302510i
\(721\) −12.7989 + 16.0493i −0.476656 + 0.597708i
\(722\) −2.20450 + 1.75803i −0.0820430 + 0.0654271i
\(723\) −1.24758 2.59064i −0.0463982 0.0963468i
\(724\) 9.61803 0.357451
\(725\) 0 0
\(726\) 3.47214 0.128863
\(727\) 12.1729 + 25.2773i 0.451469 + 0.937485i 0.995166 + 0.0982034i \(0.0313096\pi\)
−0.543698 + 0.839281i \(0.682976\pi\)
\(728\) −0.922827 + 0.735930i −0.0342022 + 0.0272754i
\(729\) 5.30376 6.65071i 0.196436 0.246323i
\(730\) −29.4189 + 14.1674i −1.08884 + 0.524358i
\(731\) 28.5681 + 13.7577i 1.05663 + 0.508846i
\(732\) −0.385338 0.483198i −0.0142425 0.0178595i
\(733\) −14.4481 3.29768i −0.533653 0.121803i −0.0528016 0.998605i \(-0.516815\pi\)
−0.480851 + 0.876802i \(0.659672\pi\)
\(734\) 3.75039 16.4315i 0.138429 0.606499i
\(735\) 3.72459 + 2.97026i 0.137384 + 0.109560i
\(736\) 6.77016 1.54525i 0.249552 0.0569585i
\(737\) 2.11146i 0.0777765i
\(738\) −1.38766 6.07972i −0.0510803 0.223797i
\(739\) 21.7241 45.1105i 0.799133 1.65942i 0.0483844 0.998829i \(-0.484593\pi\)
0.750749 0.660588i \(-0.229693\pi\)
\(740\) −12.7391 + 26.4531i −0.468299 + 0.972434i
\(741\) 0.157590 + 0.690448i 0.00578922 + 0.0253642i
\(742\) 2.76393i 0.101467i
\(743\) 34.3526 7.84076i 1.26028 0.287650i 0.460344 0.887741i \(-0.347726\pi\)
0.799932 + 0.600091i \(0.204869\pi\)
\(744\) 10.9021 + 8.69411i 0.399689 + 0.318742i
\(745\) −8.24860 + 36.1395i −0.302205 + 1.32405i
\(746\) 12.4232 + 2.83551i 0.454844 + 0.103815i
\(747\) −16.2322 20.3545i −0.593905 0.744734i
\(748\) 8.82803 + 4.25136i 0.322785 + 0.155445i
\(749\) 13.6268 6.56232i 0.497913 0.239782i
\(750\) −4.45539 + 5.58689i −0.162688 + 0.204004i
\(751\) 14.4857 11.5519i 0.528590 0.421536i −0.322490 0.946573i \(-0.604520\pi\)
0.851080 + 0.525037i \(0.175948\pi\)
\(752\) 5.63125 + 11.6934i 0.205351 + 0.426415i
\(753\) −12.1459 −0.442621
\(754\) 0 0
\(755\) 10.3050 0.375036
\(756\) 5.45058 + 11.3182i 0.198236 + 0.411641i
\(757\) −0.0166422 + 0.0132718i −0.000604873 + 0.000482370i −0.623792 0.781590i \(-0.714409\pi\)
0.623187 + 0.782073i \(0.285837\pi\)
\(758\) 9.36055 11.7378i 0.339990 0.426335i
\(759\) −0.951178 + 0.458063i −0.0345256 + 0.0166266i
\(760\) 37.6901 + 18.1506i 1.36716 + 0.658391i
\(761\) 15.7130 + 19.7034i 0.569594 + 0.714249i 0.980299 0.197520i \(-0.0632887\pi\)
−0.410705 + 0.911768i \(0.634717\pi\)
\(762\) 5.93748 + 1.35519i 0.215092 + 0.0490934i
\(763\) 7.15606 31.3528i 0.259067 1.13505i
\(764\) −21.5491 17.1848i −0.779618 0.621725i
\(765\) −43.1062 + 9.83871i −1.55851 + 0.355719i
\(766\) 17.8328i 0.644326i
\(767\) −0.319917 1.40165i −0.0115515 0.0506106i
\(768\) −1.75971 + 3.65408i −0.0634982 + 0.131855i
\(769\) −8.40028 + 17.4434i −0.302922 + 0.629024i −0.995752 0.0920771i \(-0.970649\pi\)
0.692830 + 0.721101i \(0.256364\pi\)
\(770\) −1.63791 7.17613i