Properties

Label 841.2.e.j.267.3
Level $841$
Weight $2$
Character 841.267
Analytic conductor $6.715$
Analytic rank $0$
Dimension $24$
Inner twists $12$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [841,2,Mod(63,841)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(841, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([11]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("841.63");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 841 = 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 841.e (of order \(14\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.71541880999\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(4\) over \(\Q(\zeta_{14})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{14}]$

Embedding invariants

Embedding label 267.3
Character \(\chi\) \(=\) 841.267
Dual form 841.2.e.j.63.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.483198 + 0.385338i) q^{2} +(0.602539 + 0.137526i) q^{3} +(-0.360046 - 1.57747i) q^{4} +(-2.40299 + 3.01326i) q^{5} +(0.238152 + 0.298633i) q^{6} +(0.497572 - 2.18001i) q^{7} +(0.970194 - 2.01463i) q^{8} +(-2.35877 - 1.13592i) q^{9} +O(q^{10})\) \(q+(0.483198 + 0.385338i) q^{2} +(0.602539 + 0.137526i) q^{3} +(-0.360046 - 1.57747i) q^{4} +(-2.40299 + 3.01326i) q^{5} +(0.238152 + 0.298633i) q^{6} +(0.497572 - 2.18001i) q^{7} +(0.970194 - 2.01463i) q^{8} +(-2.35877 - 1.13592i) q^{9} +(-2.32225 + 0.530037i) q^{10} +(0.599613 + 1.24511i) q^{11} -1.00000i q^{12} +(-0.212690 + 0.102426i) q^{13} +(1.08046 - 0.861642i) q^{14} +(-1.86230 + 1.48513i) q^{15} +(-1.67049 + 0.804465i) q^{16} -4.38197i q^{17} +(-0.702039 - 1.45780i) q^{18} +(-4.73240 + 1.08014i) q^{19} +(5.61850 + 2.70573i) q^{20} +(0.599613 - 1.24511i) q^{21} +(-0.190056 + 0.832688i) q^{22} +(-0.770676 - 0.966397i) q^{23} +(0.861642 - 1.08046i) q^{24} +(-2.19274 - 9.60704i) q^{25} +(-0.142240 - 0.0324654i) q^{26} +(-2.71463 - 2.16484i) q^{27} -3.61803 q^{28} -1.47214 q^{30} +(-7.88881 - 6.29112i) q^{31} +(-5.47718 - 1.25013i) q^{32} +(0.190056 + 0.832688i) q^{33} +(1.68854 - 2.11736i) q^{34} +(5.37326 + 6.73785i) q^{35} +(-0.942614 + 4.12986i) q^{36} +(-2.04281 + 4.24195i) q^{37} +(-2.70291 - 1.30165i) q^{38} +(-0.142240 + 0.0324654i) q^{39} +(3.73922 + 7.76458i) q^{40} -3.85410i q^{41} +(0.769519 - 0.370581i) q^{42} +(5.65739 - 4.51161i) q^{43} +(1.74823 - 1.39417i) q^{44} +(9.09093 - 4.37796i) q^{45} -0.763932i q^{46} +(-3.03719 - 6.30678i) q^{47} +(-1.11717 + 0.254986i) q^{48} +(1.80194 + 0.867767i) q^{49} +(2.64243 - 5.48705i) q^{50} +(0.602632 - 2.64030i) q^{51} +(0.238152 + 0.298633i) q^{52} +(-1.24698 + 1.56366i) q^{53} +(-0.477507 - 2.09210i) q^{54} +(-5.19270 - 1.18520i) q^{55} +(-3.90916 - 3.11745i) q^{56} -3.00000 q^{57} +6.09017 q^{59} +(3.01326 + 2.40299i) q^{60} +(0.602539 + 0.137526i) q^{61} +(-1.38766 - 6.07972i) q^{62} +(-3.64997 + 4.57692i) q^{63} +(0.147186 + 0.184565i) q^{64} +(0.202456 - 0.887019i) q^{65} +(-0.229032 + 0.475589i) q^{66} +(-1.37656 - 0.662915i) q^{67} +(-6.91240 + 1.57771i) q^{68} +(-0.331458 - 0.688279i) q^{69} +5.32624i q^{70} +(9.43507 - 4.54369i) q^{71} +(-4.57692 + 3.64997i) q^{72} +(-10.7175 + 8.54693i) q^{73} +(-2.62167 + 1.26253i) q^{74} -6.09017i q^{75} +(3.40777 + 7.07630i) q^{76} +(3.01269 - 0.687628i) q^{77} +(-0.0812403 - 0.0391233i) q^{78} +(-2.64243 + 5.48705i) q^{79} +(1.59011 - 6.96674i) q^{80} +(3.55901 + 4.46285i) q^{81} +(1.48513 - 1.86230i) q^{82} +(2.21281 + 9.69495i) q^{83} +(-2.18001 - 0.497572i) q^{84} +(13.2040 + 10.5298i) q^{85} +4.47214 q^{86} +3.09017 q^{88} +(3.68102 + 2.93552i) q^{89} +(6.07972 + 1.38766i) q^{90} +(0.117461 + 0.514629i) q^{91} +(-1.24698 + 1.56366i) q^{92} +(-3.88812 - 4.87555i) q^{93} +(0.962679 - 4.21777i) q^{94} +(8.11719 - 16.8555i) q^{95} +(-3.12829 - 1.50650i) q^{96} +(-3.47299 + 0.792688i) q^{97} +(0.536310 + 1.11366i) q^{98} -3.61803i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 2 q^{4} + 2 q^{5} - 6 q^{6} - 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 24 q - 2 q^{4} + 2 q^{5} - 6 q^{6} - 6 q^{9} + 8 q^{13} + 6 q^{16} + 16 q^{20} + 10 q^{22} - 4 q^{23} - 10 q^{24} - 26 q^{25} - 60 q^{28} + 72 q^{30} - 10 q^{33} + 16 q^{34} - 30 q^{35} - 8 q^{36} - 12 q^{38} - 10 q^{42} + 18 q^{45} + 8 q^{49} - 16 q^{51} - 6 q^{52} + 8 q^{53} - 22 q^{54} - 72 q^{57} + 12 q^{59} - 16 q^{62} + 10 q^{63} + 8 q^{64} + 26 q^{65} - 24 q^{67} + 24 q^{71} - 34 q^{74} + 22 q^{78} + 42 q^{80} + 4 q^{81} - 14 q^{82} + 4 q^{83} - 60 q^{88} + 20 q^{91} + 8 q^{92} + 16 q^{93} - 14 q^{94} + 4 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/841\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{3}{14}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.483198 + 0.385338i 0.341673 + 0.272475i 0.779260 0.626701i \(-0.215595\pi\)
−0.437587 + 0.899176i \(0.644167\pi\)
\(3\) 0.602539 + 0.137526i 0.347876 + 0.0794004i 0.392889 0.919586i \(-0.371476\pi\)
−0.0450129 + 0.998986i \(0.514333\pi\)
\(4\) −0.360046 1.57747i −0.180023 0.788733i
\(5\) −2.40299 + 3.01326i −1.07465 + 1.34757i −0.140748 + 0.990046i \(0.544951\pi\)
−0.933904 + 0.357525i \(0.883621\pi\)
\(6\) 0.238152 + 0.298633i 0.0972251 + 0.121916i
\(7\) 0.497572 2.18001i 0.188065 0.823964i −0.789571 0.613659i \(-0.789697\pi\)
0.977636 0.210306i \(-0.0674459\pi\)
\(8\) 0.970194 2.01463i 0.343015 0.712278i
\(9\) −2.35877 1.13592i −0.786256 0.378641i
\(10\) −2.32225 + 0.530037i −0.734358 + 0.167613i
\(11\) 0.599613 + 1.24511i 0.180790 + 0.375414i 0.971594 0.236656i \(-0.0760513\pi\)
−0.790804 + 0.612070i \(0.790337\pi\)
\(12\) 1.00000i 0.288675i
\(13\) −0.212690 + 0.102426i −0.0589896 + 0.0284079i −0.463146 0.886282i \(-0.653279\pi\)
0.404156 + 0.914690i \(0.367565\pi\)
\(14\) 1.08046 0.861642i 0.288766 0.230283i
\(15\) −1.86230 + 1.48513i −0.480843 + 0.383459i
\(16\) −1.67049 + 0.804465i −0.417622 + 0.201116i
\(17\) 4.38197i 1.06278i −0.847126 0.531391i \(-0.821669\pi\)
0.847126 0.531391i \(-0.178331\pi\)
\(18\) −0.702039 1.45780i −0.165472 0.343606i
\(19\) −4.73240 + 1.08014i −1.08569 + 0.247801i −0.727679 0.685918i \(-0.759401\pi\)
−0.358008 + 0.933719i \(0.616544\pi\)
\(20\) 5.61850 + 2.70573i 1.25634 + 0.605019i
\(21\) 0.599613 1.24511i 0.130846 0.271705i
\(22\) −0.190056 + 0.832688i −0.0405200 + 0.177530i
\(23\) −0.770676 0.966397i −0.160697 0.201508i 0.694964 0.719045i \(-0.255420\pi\)
−0.855661 + 0.517537i \(0.826849\pi\)
\(24\) 0.861642 1.08046i 0.175882 0.220549i
\(25\) −2.19274 9.60704i −0.438549 1.92141i
\(26\) −0.142240 0.0324654i −0.0278956 0.00636698i
\(27\) −2.71463 2.16484i −0.522430 0.416624i
\(28\) −3.61803 −0.683744
\(29\) 0 0
\(30\) −1.47214 −0.268774
\(31\) −7.88881 6.29112i −1.41687 1.12992i −0.972180 0.234235i \(-0.924742\pi\)
−0.444693 0.895683i \(-0.646687\pi\)
\(32\) −5.47718 1.25013i −0.968237 0.220994i
\(33\) 0.190056 + 0.832688i 0.0330844 + 0.144952i
\(34\) 1.68854 2.11736i 0.289582 0.363124i
\(35\) 5.37326 + 6.73785i 0.908246 + 1.13890i
\(36\) −0.942614 + 4.12986i −0.157102 + 0.688310i
\(37\) −2.04281 + 4.24195i −0.335836 + 0.697371i −0.998679 0.0513875i \(-0.983636\pi\)
0.662842 + 0.748759i \(0.269350\pi\)
\(38\) −2.70291 1.30165i −0.438469 0.211156i
\(39\) −0.142240 + 0.0324654i −0.0227766 + 0.00519862i
\(40\) 3.73922 + 7.76458i 0.591223 + 1.22769i
\(41\) 3.85410i 0.601910i −0.953638 0.300955i \(-0.902695\pi\)
0.953638 0.300955i \(-0.0973053\pi\)
\(42\) 0.769519 0.370581i 0.118739 0.0571819i
\(43\) 5.65739 4.51161i 0.862743 0.688015i −0.0886269 0.996065i \(-0.528248\pi\)
0.951370 + 0.308050i \(0.0996764\pi\)
\(44\) 1.74823 1.39417i 0.263555 0.210178i
\(45\) 9.09093 4.37796i 1.35520 0.652628i
\(46\) 0.763932i 0.112636i
\(47\) −3.03719 6.30678i −0.443019 0.919939i −0.996218 0.0868895i \(-0.972307\pi\)
0.553199 0.833049i \(-0.313407\pi\)
\(48\) −1.11717 + 0.254986i −0.161249 + 0.0368041i
\(49\) 1.80194 + 0.867767i 0.257420 + 0.123967i
\(50\) 2.64243 5.48705i 0.373695 0.775987i
\(51\) 0.602632 2.64030i 0.0843854 0.369716i
\(52\) 0.238152 + 0.298633i 0.0330257 + 0.0414130i
\(53\) −1.24698 + 1.56366i −0.171286 + 0.214786i −0.860064 0.510187i \(-0.829576\pi\)
0.688778 + 0.724973i \(0.258148\pi\)
\(54\) −0.477507 2.09210i −0.0649805 0.284698i
\(55\) −5.19270 1.18520i −0.700183 0.159812i
\(56\) −3.90916 3.11745i −0.522383 0.416587i
\(57\) −3.00000 −0.397360
\(58\) 0 0
\(59\) 6.09017 0.792873 0.396436 0.918062i \(-0.370247\pi\)
0.396436 + 0.918062i \(0.370247\pi\)
\(60\) 3.01326 + 2.40299i 0.389010 + 0.310225i
\(61\) 0.602539 + 0.137526i 0.0771472 + 0.0176083i 0.260920 0.965360i \(-0.415974\pi\)
−0.183773 + 0.982969i \(0.558831\pi\)
\(62\) −1.38766 6.07972i −0.176232 0.772125i
\(63\) −3.64997 + 4.57692i −0.459853 + 0.576638i
\(64\) 0.147186 + 0.184565i 0.0183982 + 0.0230707i
\(65\) 0.202456 0.887019i 0.0251116 0.110021i
\(66\) −0.229032 + 0.475589i −0.0281918 + 0.0585410i
\(67\) −1.37656 0.662915i −0.168173 0.0809880i 0.347903 0.937530i \(-0.386894\pi\)
−0.516077 + 0.856542i \(0.672608\pi\)
\(68\) −6.91240 + 1.57771i −0.838252 + 0.191326i
\(69\) −0.331458 0.688279i −0.0399028 0.0828591i
\(70\) 5.32624i 0.636607i
\(71\) 9.43507 4.54369i 1.11974 0.539237i 0.219926 0.975517i \(-0.429419\pi\)
0.899811 + 0.436280i \(0.143704\pi\)
\(72\) −4.57692 + 3.64997i −0.539395 + 0.430153i
\(73\) −10.7175 + 8.54693i −1.25439 + 1.00034i −0.254947 + 0.966955i \(0.582058\pi\)
−0.999443 + 0.0333868i \(0.989371\pi\)
\(74\) −2.62167 + 1.26253i −0.304763 + 0.146766i
\(75\) 6.09017i 0.703232i
\(76\) 3.40777 + 7.07630i 0.390898 + 0.811707i
\(77\) 3.01269 0.687628i 0.343328 0.0783624i
\(78\) −0.0812403 0.0391233i −0.00919865 0.00442984i
\(79\) −2.64243 + 5.48705i −0.297296 + 0.617342i −0.995092 0.0989550i \(-0.968450\pi\)
0.697796 + 0.716297i \(0.254164\pi\)
\(80\) 1.59011 6.96674i 0.177780 0.778905i
\(81\) 3.55901 + 4.46285i 0.395445 + 0.495873i
\(82\) 1.48513 1.86230i 0.164005 0.205656i
\(83\) 2.21281 + 9.69495i 0.242887 + 1.06416i 0.938374 + 0.345620i \(0.112331\pi\)
−0.695487 + 0.718539i \(0.744811\pi\)
\(84\) −2.18001 0.497572i −0.237858 0.0542895i
\(85\) 13.2040 + 10.5298i 1.43217 + 1.14212i
\(86\) 4.47214 0.482243
\(87\) 0 0
\(88\) 3.09017 0.329413
\(89\) 3.68102 + 2.93552i 0.390188 + 0.311164i 0.798860 0.601517i \(-0.205437\pi\)
−0.408673 + 0.912681i \(0.634008\pi\)
\(90\) 6.07972 + 1.38766i 0.640858 + 0.146272i
\(91\) 0.117461 + 0.514629i 0.0123132 + 0.0539478i
\(92\) −1.24698 + 1.56366i −0.130007 + 0.163023i
\(93\) −3.88812 4.87555i −0.403180 0.505571i
\(94\) 0.962679 4.21777i 0.0992927 0.435030i
\(95\) 8.11719 16.8555i 0.832806 1.72934i
\(96\) −3.12829 1.50650i −0.319279 0.153757i
\(97\) −3.47299 + 0.792688i −0.352629 + 0.0804852i −0.395166 0.918610i \(-0.629313\pi\)
0.0425373 + 0.999095i \(0.486456\pi\)
\(98\) 0.536310 + 1.11366i 0.0541755 + 0.112497i
\(99\) 3.61803i 0.363626i
\(100\) −14.3653 + 6.91796i −1.43653 + 0.691796i
\(101\) 0.483198 0.385338i 0.0480800 0.0383426i −0.599155 0.800633i \(-0.704497\pi\)
0.647235 + 0.762291i \(0.275925\pi\)
\(102\) 1.30860 1.04357i 0.129571 0.103329i
\(103\) −8.27120 + 3.98320i −0.814986 + 0.392476i −0.794463 0.607313i \(-0.792247\pi\)
−0.0205229 + 0.999789i \(0.506533\pi\)
\(104\) 0.527864i 0.0517613i
\(105\) 2.31097 + 4.79877i 0.225527 + 0.468312i
\(106\) −1.20508 + 0.275051i −0.117047 + 0.0267153i
\(107\) −6.09409 2.93476i −0.589138 0.283714i 0.115470 0.993311i \(-0.463163\pi\)
−0.704608 + 0.709597i \(0.748877\pi\)
\(108\) −2.43757 + 5.06167i −0.234556 + 0.487060i
\(109\) −3.20029 + 14.0214i −0.306532 + 1.34300i 0.553536 + 0.832825i \(0.313278\pi\)
−0.860068 + 0.510179i \(0.829579\pi\)
\(110\) −2.05240 2.57363i −0.195689 0.245386i
\(111\) −1.81425 + 2.27500i −0.172201 + 0.215933i
\(112\) 0.922549 + 4.04195i 0.0871727 + 0.381929i
\(113\) 7.74509 + 1.76777i 0.728597 + 0.166298i 0.570701 0.821158i \(-0.306672\pi\)
0.157896 + 0.987456i \(0.449529\pi\)
\(114\) −1.44960 1.15601i −0.135767 0.108271i
\(115\) 4.76393 0.444239
\(116\) 0 0
\(117\) 0.618034 0.0571373
\(118\) 2.94276 + 2.34677i 0.270903 + 0.216038i
\(119\) −9.55271 2.18034i −0.875695 0.199872i
\(120\) 1.18520 + 5.19270i 0.108193 + 0.474026i
\(121\) 5.66763 7.10698i 0.515239 0.646089i
\(122\) 0.238152 + 0.298633i 0.0215613 + 0.0270370i
\(123\) 0.530037 2.32225i 0.0477919 0.209390i
\(124\) −7.08369 + 14.7094i −0.636134 + 1.32095i
\(125\) 16.8555 + 8.11719i 1.50760 + 0.726023i
\(126\) −3.52732 + 0.805088i −0.314239 + 0.0717230i
\(127\) −6.91796 14.3653i −0.613870 1.27471i −0.943740 0.330687i \(-0.892719\pi\)
0.329871 0.944026i \(-0.392995\pi\)
\(128\) 11.3820i 1.00603i
\(129\) 4.02926 1.94039i 0.354756 0.170842i
\(130\) 0.439628 0.350592i 0.0385580 0.0307490i
\(131\) 11.2007 8.93226i 0.978610 0.780415i 0.00301554 0.999995i \(-0.499040\pi\)
0.975594 + 0.219580i \(0.0704687\pi\)
\(132\) 1.24511 0.599613i 0.108373 0.0521896i
\(133\) 10.8541i 0.941170i
\(134\) −0.409704 0.850760i −0.0353931 0.0734944i
\(135\) 13.0465 2.97777i 1.12286 0.256285i
\(136\) −8.82803 4.25136i −0.756997 0.364551i
\(137\) 3.10049 6.43823i 0.264893 0.550055i −0.725519 0.688202i \(-0.758400\pi\)
0.990412 + 0.138147i \(0.0441146\pi\)
\(138\) 0.105060 0.460299i 0.00894331 0.0391832i
\(139\) 0.805422 + 1.00997i 0.0683150 + 0.0856643i 0.814815 0.579721i \(-0.196839\pi\)
−0.746500 + 0.665386i \(0.768267\pi\)
\(140\) 8.69411 10.9021i 0.734787 0.921393i
\(141\) −0.962679 4.21777i −0.0810722 0.355200i
\(142\) 6.30987 + 1.44019i 0.529512 + 0.120858i
\(143\) −0.255063 0.203406i −0.0213294 0.0170097i
\(144\) 4.85410 0.404508
\(145\) 0 0
\(146\) −8.47214 −0.701159
\(147\) 0.966397 + 0.770676i 0.0797071 + 0.0635643i
\(148\) 7.42703 + 1.69517i 0.610498 + 0.139342i
\(149\) 2.14021 + 9.37689i 0.175333 + 0.768185i 0.983746 + 0.179568i \(0.0574701\pi\)
−0.808412 + 0.588617i \(0.799673\pi\)
\(150\) 2.34677 2.94276i 0.191613 0.240275i
\(151\) −1.66706 2.09043i −0.135664 0.170117i 0.709359 0.704847i \(-0.248985\pi\)
−0.845023 + 0.534731i \(0.820413\pi\)
\(152\) −2.41526 + 10.5820i −0.195904 + 0.858311i
\(153\) −4.97757 + 10.3360i −0.402413 + 0.835619i
\(154\) 1.72070 + 0.828644i 0.138658 + 0.0667741i
\(155\) 37.9135 8.65352i 3.04529 0.695067i
\(156\) 0.102426 + 0.212690i 0.00820065 + 0.0170288i
\(157\) 14.5623i 1.16220i −0.813833 0.581099i \(-0.802623\pi\)
0.813833 0.581099i \(-0.197377\pi\)
\(158\) −3.39119 + 1.63311i −0.269788 + 0.129923i
\(159\) −0.966397 + 0.770676i −0.0766403 + 0.0611186i
\(160\) 16.9286 13.5001i 1.33832 1.06728i
\(161\) −2.49022 + 1.19923i −0.196257 + 0.0945122i
\(162\) 3.52786i 0.277175i
\(163\) −2.61825 5.43684i −0.205077 0.425847i 0.772909 0.634517i \(-0.218801\pi\)
−0.977986 + 0.208670i \(0.933087\pi\)
\(164\) −6.07972 + 1.38766i −0.474746 + 0.108358i
\(165\) −2.96581 1.42826i −0.230888 0.111190i
\(166\) −2.66661 + 5.53726i −0.206969 + 0.429775i
\(167\) 2.34267 10.2639i 0.181281 0.794245i −0.799740 0.600346i \(-0.795029\pi\)
0.981022 0.193899i \(-0.0621134\pi\)
\(168\) −1.92669 2.41599i −0.148647 0.186398i
\(169\) −8.07062 + 10.1202i −0.620817 + 0.778480i
\(170\) 2.32261 + 10.1760i 0.178136 + 0.780464i
\(171\) 12.3896 + 2.82784i 0.947455 + 0.216250i
\(172\) −9.15384 7.29995i −0.697974 0.556616i
\(173\) −4.09017 −0.310970 −0.155485 0.987838i \(-0.549694\pi\)
−0.155485 + 0.987838i \(0.549694\pi\)
\(174\) 0 0
\(175\) −22.0344 −1.66565
\(176\) −2.00329 1.59757i −0.151004 0.120421i
\(177\) 3.66956 + 0.837554i 0.275821 + 0.0629544i
\(178\) 0.647498 + 2.83687i 0.0485320 + 0.212633i
\(179\) 9.97584 12.5093i 0.745629 0.934989i −0.253851 0.967243i \(-0.581697\pi\)
0.999480 + 0.0322542i \(0.0102686\pi\)
\(180\) −10.1792 12.7644i −0.758716 0.951400i
\(181\) −1.32272 + 5.79524i −0.0983174 + 0.430757i −0.999999 0.00164474i \(-0.999476\pi\)
0.901681 + 0.432401i \(0.142334\pi\)
\(182\) −0.141549 + 0.293930i −0.0104923 + 0.0217876i
\(183\) 0.344139 + 0.165729i 0.0254395 + 0.0122510i
\(184\) −2.69463 + 0.615033i −0.198651 + 0.0453408i
\(185\) −7.87321 16.3489i −0.578850 1.20199i
\(186\) 3.85410i 0.282596i
\(187\) 5.45602 2.62748i 0.398984 0.192141i
\(188\) −8.85521 + 7.06179i −0.645833 + 0.515034i
\(189\) −6.07009 + 4.84073i −0.441534 + 0.352111i
\(190\) 10.4173 5.01670i 0.755749 0.363949i
\(191\) 17.0344i 1.23257i 0.787524 + 0.616284i \(0.211363\pi\)
−0.787524 + 0.616284i \(0.788637\pi\)
\(192\) 0.0633028 + 0.131450i 0.00456848 + 0.00948656i
\(193\) 12.1594 2.77531i 0.875255 0.199771i 0.238785 0.971072i \(-0.423251\pi\)
0.636470 + 0.771301i \(0.280394\pi\)
\(194\) −1.98360 0.955250i −0.142414 0.0685829i
\(195\) 0.243975 0.506620i 0.0174714 0.0362798i
\(196\) 0.720093 3.15493i 0.0514352 0.225352i
\(197\) −3.92287 4.91912i −0.279493 0.350473i 0.622194 0.782863i \(-0.286242\pi\)
−0.901687 + 0.432390i \(0.857670\pi\)
\(198\) 1.39417 1.74823i 0.0990790 0.124241i
\(199\) 1.30266 + 5.70733i 0.0923431 + 0.404582i 0.999882 0.0153872i \(-0.00489810\pi\)
−0.907538 + 0.419969i \(0.862041\pi\)
\(200\) −21.4820 4.90312i −1.51901 0.346703i
\(201\) −0.738262 0.588744i −0.0520730 0.0415268i
\(202\) 0.381966 0.0268750
\(203\) 0 0
\(204\) −4.38197 −0.306799
\(205\) 11.6134 + 9.26138i 0.811115 + 0.646843i
\(206\) −5.53151 1.26253i −0.385398 0.0879647i
\(207\) 0.720093 + 3.15493i 0.0500499 + 0.219283i
\(208\) 0.272898 0.342203i 0.0189221 0.0237275i
\(209\) −4.18250 5.24469i −0.289309 0.362782i
\(210\) −0.732494 + 3.20926i −0.0505469 + 0.221460i
\(211\) 5.05582 10.4985i 0.348057 0.722748i −0.651292 0.758827i \(-0.725773\pi\)
0.999349 + 0.0360795i \(0.0114869\pi\)
\(212\) 2.91560 + 1.40408i 0.200244 + 0.0964324i
\(213\) 6.30987 1.44019i 0.432345 0.0986799i
\(214\) −1.81378 3.76636i −0.123988 0.257463i
\(215\) 27.8885i 1.90198i
\(216\) −6.99506 + 3.36864i −0.475954 + 0.229207i
\(217\) −17.6399 + 14.0674i −1.19748 + 0.954955i
\(218\) −6.94934 + 5.54192i −0.470669 + 0.375346i
\(219\) −7.63313 + 3.67592i −0.515799 + 0.248396i
\(220\) 8.61803i 0.581028i
\(221\) 0.448827 + 0.932000i 0.0301914 + 0.0626931i
\(222\) −1.75328 + 0.400176i −0.117673 + 0.0268580i
\(223\) −2.40898 1.16010i −0.161317 0.0776862i 0.351483 0.936194i \(-0.385677\pi\)
−0.512800 + 0.858508i \(0.671392\pi\)
\(224\) −5.45058 + 11.3182i −0.364182 + 0.756232i
\(225\) −5.74068 + 25.1516i −0.382712 + 1.67677i
\(226\) 3.06123 + 3.83866i 0.203630 + 0.255344i
\(227\) −13.0238 + 16.3313i −0.864420 + 1.08395i 0.131284 + 0.991345i \(0.458090\pi\)
−0.995703 + 0.0926030i \(0.970481\pi\)
\(228\) 1.08014 + 4.73240i 0.0715340 + 0.313411i
\(229\) 2.23434 + 0.509973i 0.147649 + 0.0336999i 0.295707 0.955279i \(-0.404445\pi\)
−0.148058 + 0.988979i \(0.547302\pi\)
\(230\) 2.30192 + 1.83572i 0.151784 + 0.121044i
\(231\) 1.90983 0.125658
\(232\) 0 0
\(233\) 15.2361 0.998148 0.499074 0.866559i \(-0.333674\pi\)
0.499074 + 0.866559i \(0.333674\pi\)
\(234\) 0.298633 + 0.238152i 0.0195223 + 0.0155685i
\(235\) 26.3023 + 6.00333i 1.71577 + 0.391614i
\(236\) −2.19274 9.60704i −0.142735 0.625365i
\(237\) −2.34677 + 2.94276i −0.152439 + 0.191153i
\(238\) −3.77568 4.73456i −0.244741 0.306896i
\(239\) 6.17332 27.0471i 0.399319 1.74953i −0.230771 0.973008i \(-0.574125\pi\)
0.630090 0.776522i \(-0.283018\pi\)
\(240\) 1.91621 3.97905i 0.123691 0.256846i
\(241\) −4.19174 2.01863i −0.270013 0.130032i 0.293978 0.955812i \(-0.405021\pi\)
−0.563992 + 0.825781i \(0.690735\pi\)
\(242\) 5.47718 1.25013i 0.352086 0.0803614i
\(243\) 6.05019 + 12.5634i 0.388120 + 0.805940i
\(244\) 1.00000i 0.0640184i
\(245\) −6.94485 + 3.34446i −0.443690 + 0.213670i
\(246\) 1.15096 0.917862i 0.0733827 0.0585207i
\(247\) 0.895899 0.714456i 0.0570047 0.0454597i
\(248\) −20.3279 + 9.78942i −1.29083 + 0.621629i
\(249\) 6.14590i 0.389480i
\(250\) 5.01670 + 10.4173i 0.317284 + 0.658846i
\(251\) −19.1597 + 4.37309i −1.20935 + 0.276027i −0.779227 0.626742i \(-0.784388\pi\)
−0.430126 + 0.902769i \(0.641531\pi\)
\(252\) 8.53410 + 4.10981i 0.537598 + 0.258893i
\(253\) 0.741162 1.53904i 0.0465965 0.0967585i
\(254\) 2.19274 9.60704i 0.137585 0.602799i
\(255\) 6.50780 + 8.16052i 0.407534 + 0.511031i
\(256\) −4.09153 + 5.13062i −0.255721 + 0.320664i
\(257\) 5.15811 + 22.5992i 0.321754 + 1.40970i 0.834430 + 0.551114i \(0.185797\pi\)
−0.512676 + 0.858582i \(0.671346\pi\)
\(258\) 2.69463 + 0.615033i 0.167761 + 0.0382903i
\(259\) 8.23102 + 6.56402i 0.511450 + 0.407868i
\(260\) −1.47214 −0.0912980
\(261\) 0 0
\(262\) 8.85410 0.547008
\(263\) −13.0630 10.4174i −0.805499 0.642364i 0.131649 0.991296i \(-0.457973\pi\)
−0.937148 + 0.348932i \(0.886544\pi\)
\(264\) 1.86195 + 0.424977i 0.114595 + 0.0261555i
\(265\) −1.71524 7.51494i −0.105366 0.461639i
\(266\) −4.18250 + 5.24469i −0.256445 + 0.321572i
\(267\) 1.81425 + 2.27500i 0.111030 + 0.139228i
\(268\) −0.550102 + 2.41015i −0.0336028 + 0.147224i
\(269\) 2.60330 5.40581i 0.158726 0.329598i −0.806406 0.591363i \(-0.798590\pi\)
0.965132 + 0.261765i \(0.0843044\pi\)
\(270\) 7.45147 + 3.58844i 0.453482 + 0.218385i
\(271\) −9.92510 + 2.26534i −0.602907 + 0.137610i −0.513070 0.858347i \(-0.671492\pi\)
−0.0898370 + 0.995956i \(0.528635\pi\)
\(272\) 3.52514 + 7.32002i 0.213743 + 0.443842i
\(273\) 0.326238i 0.0197448i
\(274\) 3.97905 1.91621i 0.240383 0.115762i
\(275\) 10.6470 8.49071i 0.642039 0.512009i
\(276\) −0.966397 + 0.770676i −0.0581703 + 0.0463892i
\(277\) 19.2645 9.27729i 1.15749 0.557418i 0.246215 0.969215i \(-0.420813\pi\)
0.911276 + 0.411797i \(0.135099\pi\)
\(278\) 0.798374i 0.0478833i
\(279\) 11.4616 + 23.8004i 0.686191 + 1.42489i
\(280\) 18.7874 4.28809i 1.12276 0.256263i
\(281\) −20.8346 10.0334i −1.24289 0.598542i −0.307290 0.951616i \(-0.599422\pi\)
−0.935595 + 0.353074i \(0.885136\pi\)
\(282\) 1.16010 2.40898i 0.0690831 0.143452i
\(283\) −1.16513 + 5.10479i −0.0692601 + 0.303448i −0.997679 0.0680857i \(-0.978311\pi\)
0.928419 + 0.371534i \(0.121168\pi\)
\(284\) −10.5646 13.2476i −0.626893 0.786098i
\(285\) 7.20898 9.03977i 0.427023 0.535470i
\(286\) −0.0448660 0.196571i −0.00265298 0.0116235i
\(287\) −8.40196 1.91769i −0.495952 0.113198i
\(288\) 11.4993 + 9.17042i 0.677605 + 0.540372i
\(289\) −2.20163 −0.129507
\(290\) 0 0
\(291\) −2.20163 −0.129062
\(292\) 17.3413 + 13.8292i 1.01482 + 0.809294i
\(293\) −8.31405 1.89763i −0.485712 0.110861i −0.0273496 0.999626i \(-0.508707\pi\)
−0.458363 + 0.888765i \(0.651564\pi\)
\(294\) 0.169991 + 0.744779i 0.00991407 + 0.0434364i
\(295\) −14.6346 + 18.3513i −0.852062 + 1.06845i
\(296\) 6.56402 + 8.23102i 0.381526 + 0.478418i
\(297\) 1.06774 4.67807i 0.0619565 0.271449i
\(298\) −2.57912 + 5.35560i −0.149405 + 0.310242i
\(299\) 0.262899 + 0.126606i 0.0152039 + 0.00732179i
\(300\) −9.60704 + 2.19274i −0.554663 + 0.126598i
\(301\) −7.02039 14.5780i −0.404648 0.840261i
\(302\) 1.65248i 0.0950893i
\(303\) 0.344139 0.165729i 0.0197703 0.00952087i
\(304\) 7.03648 5.61141i 0.403570 0.321836i
\(305\) −1.86230 + 1.48513i −0.106635 + 0.0850384i
\(306\) −6.38802 + 3.07631i −0.365179 + 0.175861i
\(307\) 19.1803i 1.09468i −0.836910 0.547340i \(-0.815640\pi\)
0.836910 0.547340i \(-0.184360\pi\)
\(308\) −2.16942 4.50484i −0.123614 0.256687i
\(309\) −5.53151 + 1.26253i −0.314677 + 0.0718229i
\(310\) 21.6543 + 10.4282i 1.22988 + 0.592279i
\(311\) 0.906891 1.88318i 0.0514251 0.106785i −0.873673 0.486514i \(-0.838268\pi\)
0.925098 + 0.379729i \(0.123983\pi\)
\(312\) −0.0725948 + 0.318058i −0.00410987 + 0.0180065i
\(313\) −8.04915 10.0933i −0.454965 0.570508i 0.500454 0.865763i \(-0.333167\pi\)
−0.955418 + 0.295256i \(0.904595\pi\)
\(314\) 5.61141 7.03648i 0.316670 0.397092i
\(315\) −5.02059 21.9966i −0.282878 1.23937i
\(316\) 9.60704 + 2.19274i 0.540438 + 0.123351i
\(317\) −21.6631 17.2758i −1.21672 0.970305i −0.216741 0.976229i \(-0.569543\pi\)
−0.999982 + 0.00592451i \(0.998114\pi\)
\(318\) −0.763932 −0.0428392
\(319\) 0 0
\(320\) −0.909830 −0.0508610
\(321\) −3.26832 2.60640i −0.182420 0.145475i
\(322\) −1.66538 0.380111i −0.0928078 0.0211828i
\(323\) 4.73313 + 20.7372i 0.263359 + 1.15385i
\(324\) 5.75859 7.22105i 0.319922 0.401169i
\(325\) 1.45039 + 1.81873i 0.0804529 + 0.100885i
\(326\) 0.829890 3.63598i 0.0459633 0.201379i
\(327\) −3.85659 + 8.00830i −0.213270 + 0.442860i
\(328\) −7.76458 3.73922i −0.428727 0.206464i
\(329\) −15.2600 + 3.48300i −0.841313 + 0.192024i
\(330\) −0.882711 1.83297i −0.0485917 0.100902i
\(331\) 21.1803i 1.16418i −0.813126 0.582088i \(-0.802236\pi\)
0.813126 0.582088i \(-0.197764\pi\)
\(332\) 14.4967 6.98126i 0.795612 0.383147i
\(333\) 9.63704 7.68528i 0.528107 0.421151i
\(334\) 5.08705 4.05678i 0.278351 0.221977i
\(335\) 5.30539 2.55494i 0.289865 0.139591i
\(336\) 2.56231i 0.139785i
\(337\) −14.7819 30.6950i −0.805223 1.67206i −0.738463 0.674294i \(-0.764448\pi\)
−0.0667606 0.997769i \(-0.521266\pi\)
\(338\) −7.79942 + 1.78017i −0.424233 + 0.0968283i
\(339\) 4.42360 + 2.13030i 0.240257 + 0.115702i
\(340\) 11.8564 24.6201i 0.643004 1.33521i
\(341\) 3.10289 13.5947i 0.168031 0.736192i
\(342\) 4.89695 + 6.14058i 0.264797 + 0.332045i
\(343\) 12.5475 15.7341i 0.677501 0.849559i
\(344\) −3.60046 15.7747i −0.194124 0.850513i
\(345\) 2.87045 + 0.655162i 0.154540 + 0.0352727i
\(346\) −1.97636 1.57610i −0.106250 0.0847315i
\(347\) 32.1246 1.72454 0.862270 0.506449i \(-0.169042\pi\)
0.862270 + 0.506449i \(0.169042\pi\)
\(348\) 0 0
\(349\) 4.52786 0.242371 0.121186 0.992630i \(-0.461330\pi\)
0.121186 + 0.992630i \(0.461330\pi\)
\(350\) −10.6470 8.49071i −0.569107 0.453847i
\(351\) 0.799110 + 0.182392i 0.0426533 + 0.00973534i
\(352\) −1.72764 7.56927i −0.0920834 0.403444i
\(353\) 11.9240 14.9522i 0.634651 0.795827i −0.355672 0.934611i \(-0.615748\pi\)
0.990323 + 0.138784i \(0.0443194\pi\)
\(354\) 1.45039 + 1.81873i 0.0770871 + 0.0966642i
\(355\) −8.98110 + 39.3488i −0.476667 + 2.08841i
\(356\) 3.30534 6.86361i 0.175183 0.363771i
\(357\) −5.45602 2.62748i −0.288763 0.139061i
\(358\) 9.64062 2.20041i 0.509522 0.116295i
\(359\) 10.3108 + 21.4106i 0.544182 + 1.13001i 0.973886 + 0.227036i \(0.0729037\pi\)
−0.429704 + 0.902970i \(0.641382\pi\)
\(360\) 22.5623i 1.18914i
\(361\) 4.11050 1.97951i 0.216342 0.104185i
\(362\) −2.87226 + 2.29055i −0.150963 + 0.120389i
\(363\) 4.39236 3.50279i 0.230539 0.183849i
\(364\) 0.769519 0.370581i 0.0403338 0.0194237i
\(365\) 52.8328i 2.76540i
\(366\) 0.102426 + 0.212690i 0.00535390 + 0.0111175i
\(367\) 26.5868 6.06826i 1.38782 0.316761i 0.537604 0.843197i \(-0.319329\pi\)
0.850214 + 0.526437i \(0.176472\pi\)
\(368\) 2.06484 + 0.994373i 0.107637 + 0.0518353i
\(369\) −4.37796 + 9.09093i −0.227908 + 0.473255i
\(370\) 2.49552 10.9336i 0.129736 0.568411i
\(371\) 2.78833 + 3.49646i 0.144763 + 0.181527i
\(372\) −6.29112 + 7.88881i −0.326179 + 0.409016i
\(373\) −4.58794 20.1011i −0.237555 1.04080i −0.943199 0.332229i \(-0.892199\pi\)
0.705644 0.708566i \(-0.250658\pi\)
\(374\) 3.64881 + 0.832817i 0.188675 + 0.0430639i
\(375\) 9.03977 + 7.20898i 0.466812 + 0.372270i
\(376\) −15.6525 −0.807215
\(377\) 0 0
\(378\) −4.79837 −0.246802
\(379\) −18.9921 15.1457i −0.975558 0.777982i −0.000515656 1.00000i \(-0.500164\pi\)
−0.975043 + 0.222018i \(0.928736\pi\)
\(380\) −29.5116 6.73582i −1.51391 0.345540i
\(381\) −2.19274 9.60704i −0.112338 0.492184i
\(382\) −6.56402 + 8.23102i −0.335844 + 0.421135i
\(383\) 17.9902 + 22.5590i 0.919258 + 1.15271i 0.987903 + 0.155072i \(0.0495610\pi\)
−0.0686449 + 0.997641i \(0.521868\pi\)
\(384\) −1.56531 + 6.85807i −0.0798794 + 0.349975i
\(385\) −5.16748 + 10.7304i −0.263359 + 0.546871i
\(386\) 6.94485 + 3.34446i 0.353484 + 0.170229i
\(387\) −18.4693 + 4.21550i −0.938847 + 0.214286i
\(388\) 2.50088 + 5.19312i 0.126963 + 0.263641i
\(389\) 19.1246i 0.969656i 0.874609 + 0.484828i \(0.161118\pi\)
−0.874609 + 0.484828i \(0.838882\pi\)
\(390\) 0.313108 0.150785i 0.0158549 0.00763530i
\(391\) −4.23472 + 3.37708i −0.214159 + 0.170786i
\(392\) 3.49646 2.78833i 0.176598 0.140832i
\(393\) 7.97727 3.84165i 0.402400 0.193786i
\(394\) 3.88854i 0.195902i
\(395\) −10.1842 21.1477i −0.512422 1.06405i
\(396\) −5.70733 + 1.30266i −0.286804 + 0.0654611i
\(397\) 12.6638 + 6.09855i 0.635577 + 0.306078i 0.723786 0.690024i \(-0.242400\pi\)
−0.0882095 + 0.996102i \(0.528115\pi\)
\(398\) −1.56981 + 3.25974i −0.0786873 + 0.163396i
\(399\) −1.49272 + 6.54002i −0.0747293 + 0.327410i
\(400\) 11.3915 + 14.2845i 0.569574 + 0.714223i
\(401\) 15.6302 19.5996i 0.780535 0.978759i −0.219460 0.975621i \(-0.570430\pi\)
0.999995 0.00313805i \(-0.000998873\pi\)
\(402\) −0.129861 0.568960i −0.00647690 0.0283772i
\(403\) 2.32225 + 0.530037i 0.115679 + 0.0264030i
\(404\) −0.781831 0.623490i −0.0388976 0.0310198i
\(405\) −22.0000 −1.09319
\(406\) 0 0
\(407\) −6.50658 −0.322519
\(408\) −4.73456 3.77568i −0.234396 0.186924i
\(409\) −26.7290 6.10072i −1.32167 0.301661i −0.497230 0.867619i \(-0.665650\pi\)
−0.824435 + 0.565957i \(0.808507\pi\)
\(410\) 2.04282 + 8.95017i 0.100888 + 0.442017i
\(411\) 2.75359 3.45289i 0.135824 0.170318i
\(412\) 9.26138 + 11.6134i 0.456275 + 0.572151i
\(413\) 3.03030 13.2766i 0.149111 0.653299i
\(414\) −0.867767 + 1.80194i −0.0426484 + 0.0885604i
\(415\) −34.5307 16.6291i −1.69505 0.816292i
\(416\) 1.29299 0.295116i 0.0633939 0.0144692i
\(417\) 0.346401 + 0.719310i 0.0169634 + 0.0352248i
\(418\) 4.14590i 0.202783i
\(419\) −15.8231 + 7.62000i −0.773009 + 0.372261i −0.778436 0.627724i \(-0.783987\pi\)
0.00542744 + 0.999985i \(0.498272\pi\)
\(420\) 6.73785 5.37326i 0.328773 0.262188i
\(421\) −24.2637 + 19.3497i −1.18254 + 0.943045i −0.999199 0.0400047i \(-0.987263\pi\)
−0.183341 + 0.983049i \(0.558691\pi\)
\(422\) 6.48844 3.12467i 0.315852 0.152106i
\(423\) 18.3262i 0.891052i
\(424\) 1.94039 + 4.02926i 0.0942335 + 0.195678i
\(425\) −42.0977 + 9.60853i −2.04204 + 0.466082i
\(426\) 3.60388 + 1.73553i 0.174608 + 0.0840869i
\(427\) 0.599613 1.24511i 0.0290173 0.0602550i
\(428\) −2.43533 + 10.6699i −0.117716 + 0.515748i
\(429\) −0.125712 0.157638i −0.00606942 0.00761082i
\(430\) −10.7465 + 13.4757i −0.518243 + 0.649856i
\(431\) −3.24808 14.2308i −0.156455 0.685472i −0.990925 0.134419i \(-0.957083\pi\)
0.834470 0.551053i \(-0.185774\pi\)
\(432\) 6.27629 + 1.43252i 0.301968 + 0.0689222i
\(433\) −8.11695 6.47305i −0.390076 0.311075i 0.408740 0.912651i \(-0.365968\pi\)
−0.798816 + 0.601576i \(0.794540\pi\)
\(434\) −13.9443 −0.669346
\(435\) 0 0
\(436\) 23.2705 1.11446
\(437\) 4.69099 + 3.74094i 0.224400 + 0.178953i
\(438\) −5.10479 1.16513i −0.243916 0.0556723i
\(439\) −4.66054 20.4192i −0.222435 0.974553i −0.955638 0.294543i \(-0.904833\pi\)
0.733203 0.680010i \(-0.238025\pi\)
\(440\) −7.42566 + 9.31148i −0.354004 + 0.443907i
\(441\) −3.26463 4.09372i −0.155459 0.194939i
\(442\) −0.142262 + 0.623291i −0.00676672 + 0.0296469i
\(443\) 0.828644 1.72070i 0.0393701 0.0817528i −0.880356 0.474313i \(-0.842696\pi\)
0.919726 + 0.392561i \(0.128411\pi\)
\(444\) 4.24195 + 2.04281i 0.201314 + 0.0969476i
\(445\) −17.6909 + 4.03784i −0.838631 + 0.191412i
\(446\) −0.716982 1.48883i −0.0339501 0.0704981i
\(447\) 5.94427i 0.281154i
\(448\) 0.475589 0.229032i 0.0224695 0.0108207i
\(449\) 20.4250 16.2884i 0.963917 0.768698i −0.00897427 0.999960i \(-0.502857\pi\)
0.972892 + 0.231261i \(0.0742852\pi\)
\(450\) −12.4657 + 9.94109i −0.587640 + 0.468628i
\(451\) 4.79877 2.31097i 0.225965 0.108819i
\(452\) 12.8541i 0.604606i
\(453\) −0.716982 1.48883i −0.0336868 0.0699513i
\(454\) −12.5862 + 2.87271i −0.590697 + 0.134823i
\(455\) −1.83297 0.882711i −0.0859309 0.0413821i
\(456\) −2.91058 + 6.04388i −0.136300 + 0.283031i
\(457\) 4.16297 18.2392i 0.194735 0.853191i −0.779274 0.626683i \(-0.784412\pi\)
0.974009 0.226508i \(-0.0727309\pi\)
\(458\) 0.883116 + 1.10739i 0.0412653 + 0.0517450i
\(459\) −9.48626 + 11.8954i −0.442781 + 0.555230i
\(460\) −1.71524 7.51494i −0.0799733 0.350386i
\(461\) −38.0014 8.67358i −1.76990 0.403969i −0.791582 0.611063i \(-0.790742\pi\)
−0.978321 + 0.207094i \(0.933599\pi\)
\(462\) 0.922827 + 0.735930i 0.0429338 + 0.0342386i
\(463\) −10.7082 −0.497652 −0.248826 0.968548i \(-0.580045\pi\)
−0.248826 + 0.968548i \(0.580045\pi\)
\(464\) 0 0
\(465\) 24.0344 1.11457
\(466\) 7.36204 + 5.87103i 0.341040 + 0.271970i
\(467\) 17.4944 + 3.99298i 0.809543 + 0.184773i 0.607207 0.794543i \(-0.292290\pi\)
0.202336 + 0.979316i \(0.435147\pi\)
\(468\) −0.222521 0.974928i −0.0102860 0.0450661i
\(469\) −2.13010 + 2.67106i −0.0983587 + 0.123338i
\(470\) 10.3959 + 13.0361i 0.479528 + 0.601309i
\(471\) 2.00269 8.77435i 0.0922790 0.404301i
\(472\) 5.90864 12.2694i 0.271967 0.564746i
\(473\) 9.00969 + 4.33884i 0.414266 + 0.199500i
\(474\) −2.26791 + 0.517637i −0.104169 + 0.0237758i
\(475\) 20.7539 + 43.0959i 0.952253 + 1.97737i
\(476\) 15.8541i 0.726672i
\(477\) 4.71753 2.27184i 0.216001 0.104021i
\(478\) 13.4052 10.6903i 0.613140 0.488963i
\(479\) −8.74114 + 6.97083i −0.399393 + 0.318505i −0.802505 0.596645i \(-0.796500\pi\)
0.403112 + 0.915151i \(0.367928\pi\)
\(480\) 12.0567 5.80622i 0.550312 0.265016i
\(481\) 1.11146i 0.0506780i
\(482\) −1.24758 2.59064i −0.0568259 0.118000i
\(483\) −1.66538 + 0.380111i −0.0757772 + 0.0172957i
\(484\) −13.2516 6.38165i −0.602347 0.290075i
\(485\) 5.95700 12.3698i 0.270494 0.561686i
\(486\) −1.91769 + 8.40196i −0.0869883 + 0.381121i
\(487\) 26.5372 + 33.2766i 1.20251 + 1.50790i 0.808178 + 0.588938i \(0.200454\pi\)
0.394335 + 0.918967i \(0.370975\pi\)
\(488\) 0.861642 1.08046i 0.0390047 0.0489103i
\(489\) −0.829890 3.63598i −0.0375289 0.164425i
\(490\) −4.64449 1.06007i −0.209817 0.0478893i
\(491\) 11.8249 + 9.43004i 0.533650 + 0.425572i 0.852881 0.522105i \(-0.174853\pi\)
−0.319231 + 0.947677i \(0.603425\pi\)
\(492\) −3.85410 −0.173756
\(493\) 0 0
\(494\) 0.708204 0.0318636
\(495\) 10.9021 + 8.69411i 0.490012 + 0.390771i
\(496\) 18.2392 + 4.16297i 0.818962 + 0.186923i
\(497\) −5.21064 22.8293i −0.233729 1.02403i
\(498\) −2.36825 + 2.96969i −0.106124 + 0.133075i
\(499\) −15.3920 19.3010i −0.689042 0.864032i 0.307110 0.951674i \(-0.400638\pi\)
−0.996152 + 0.0876423i \(0.972067\pi\)
\(500\) 6.73582 29.5116i 0.301235 1.31980i
\(501\) 2.82310 5.86222i 0.126127 0.261905i
\(502\) −10.9431 5.26991i −0.488413 0.235207i
\(503\) −13.9127 + 3.17549i −0.620337 + 0.141588i −0.521128 0.853479i \(-0.674489\pi\)
−0.0992095 + 0.995067i \(0.531631\pi\)
\(504\) 5.67961 + 11.7938i 0.252990 + 0.525339i
\(505\) 2.38197i 0.105996i
\(506\) 0.951178 0.458063i 0.0422850 0.0203634i
\(507\) −6.25465 + 4.98792i −0.277779 + 0.221521i
\(508\) −20.1700 + 16.0850i −0.894898 + 0.713657i
\(509\) −28.4367 + 13.6944i −1.26043 + 0.606992i −0.940289 0.340377i \(-0.889445\pi\)
−0.320143 + 0.947369i \(0.603731\pi\)
\(510\) 6.45085i 0.285648i
\(511\) 13.2996 + 27.6169i 0.588340 + 1.22170i
\(512\) 18.2392 4.16297i 0.806064 0.183979i
\(513\) 15.1850 + 7.31272i 0.670435 + 0.322865i
\(514\) −6.21592 + 12.9075i −0.274173 + 0.569325i
\(515\) 7.87323 34.4949i 0.346936 1.52003i
\(516\) −4.51161 5.65739i −0.198613 0.249053i
\(517\) 6.03149 7.56325i 0.265265 0.332631i
\(518\) 1.44785 + 6.34344i 0.0636149 + 0.278715i
\(519\) −2.46449 0.562503i −0.108179 0.0246911i
\(520\) −1.59059 1.26845i −0.0697520 0.0556254i
\(521\) −4.09017 −0.179194 −0.0895968 0.995978i \(-0.528558\pi\)
−0.0895968 + 0.995978i \(0.528558\pi\)
\(522\) 0 0
\(523\) −20.3820 −0.891241 −0.445621 0.895222i \(-0.647017\pi\)
−0.445621 + 0.895222i \(0.647017\pi\)
\(524\) −18.1231 14.4527i −0.791712 0.631369i
\(525\) −13.2766 3.03030i −0.579438 0.132253i
\(526\) −2.29780 10.0673i −0.100189 0.438957i
\(527\) −27.5675 + 34.5685i −1.20086 + 1.50583i
\(528\) −0.987354 1.23810i −0.0429690 0.0538815i
\(529\) 4.77800 20.9338i 0.207739 0.910165i
\(530\) 2.06699 4.29215i 0.0897844 0.186439i
\(531\) −14.3653 6.91796i −0.623401 0.300214i
\(532\) 17.1220 3.90798i 0.742332 0.169432i
\(533\) 0.394760 + 0.819729i 0.0170990 + 0.0355064i
\(534\) 1.79837i 0.0778232i
\(535\) 23.4873 11.3109i 1.01544 0.489011i
\(536\) −2.67106 + 2.13010i −0.115372 + 0.0920061i
\(537\) 7.73117 6.16541i 0.333625 0.266057i
\(538\) 3.34098 1.60893i 0.144040 0.0693659i
\(539\) 2.76393i 0.119051i
\(540\) −9.39466 19.5082i −0.404282 0.839500i
\(541\) −14.2308 + 3.24808i −0.611829 + 0.139646i −0.517197 0.855866i \(-0.673025\pi\)
−0.0946319 + 0.995512i \(0.530167\pi\)
\(542\) −5.66871 2.72991i −0.243492 0.117260i
\(543\) −1.59399 + 3.30995i −0.0684045 + 0.142043i
\(544\) −5.47803 + 24.0008i −0.234869 + 1.02903i
\(545\) −34.5598 43.3366i −1.48038 1.85634i
\(546\) −0.125712 + 0.157638i −0.00537997 + 0.00674627i
\(547\) −1.64264 7.19688i −0.0702343 0.307717i 0.927594 0.373591i \(-0.121874\pi\)
−0.997828 + 0.0658742i \(0.979016\pi\)
\(548\) −11.2724 2.57286i −0.481534 0.109907i
\(549\) −1.26503 1.00883i −0.0539902 0.0430557i
\(550\) 8.41641 0.358877
\(551\) 0 0
\(552\) −1.70820 −0.0727060
\(553\) 10.6470 + 8.49071i 0.452757 + 0.361062i
\(554\) 12.8835 + 2.94057i 0.547366 + 0.124933i
\(555\) −2.49552 10.9336i −0.105929 0.464106i
\(556\) 1.30320 1.63416i 0.0552680 0.0693038i
\(557\) 3.43330 + 4.30522i 0.145473 + 0.182418i 0.849230 0.528024i \(-0.177067\pi\)
−0.703756 + 0.710441i \(0.748495\pi\)
\(558\) −3.63293 + 15.9169i −0.153794 + 0.673816i
\(559\) −0.741162 + 1.53904i −0.0313478 + 0.0650944i
\(560\) −14.3963 6.93290i −0.608356 0.292969i
\(561\) 3.64881 0.832817i 0.154053 0.0351616i
\(562\) −6.20098 12.8765i −0.261572 0.543161i
\(563\) 28.3951i 1.19671i −0.801230 0.598356i \(-0.795821\pi\)
0.801230 0.598356i \(-0.204179\pi\)
\(564\) −6.30678 + 3.03719i −0.265563 + 0.127889i
\(565\) −23.9381 + 19.0900i −1.00709 + 0.803124i
\(566\) −2.53006 + 2.01766i −0.106346 + 0.0848084i
\(567\) 11.4999 5.53806i 0.482951 0.232577i
\(568\) 23.4164i 0.982531i
\(569\) −0.843588 1.75173i −0.0353650 0.0734363i 0.882538 0.470241i \(-0.155833\pi\)
−0.917903 + 0.396805i \(0.870119\pi\)
\(570\) 6.96674 1.59011i 0.291804 0.0666025i
\(571\) 31.0894 + 14.9718i 1.30105 + 0.626552i 0.950713 0.310072i \(-0.100353\pi\)
0.350336 + 0.936624i \(0.386067\pi\)
\(572\) −0.229032 + 0.475589i −0.00957629 + 0.0198854i
\(573\) −2.34267 + 10.2639i −0.0978664 + 0.428781i
\(574\) −3.32086 4.16422i −0.138610 0.173811i
\(575\) −7.59432 + 9.52297i −0.316705 + 0.397135i
\(576\) −0.137526 0.602539i −0.00573023 0.0251058i
\(577\) −2.69463 0.615033i −0.112179 0.0256041i 0.166063 0.986115i \(-0.446895\pi\)
−0.278242 + 0.960511i \(0.589752\pi\)
\(578\) −1.06382 0.848370i −0.0442492 0.0352875i
\(579\) 7.70820 0.320342
\(580\) 0 0
\(581\) 22.2361 0.922508
\(582\) −1.06382 0.848370i −0.0440969 0.0351661i
\(583\) −2.69463 0.615033i −0.111600 0.0254721i
\(584\) 6.82082 + 29.8840i 0.282247 + 1.23661i
\(585\) −1.48513 + 1.86230i −0.0614026 + 0.0769965i
\(586\) −3.28611 4.12065i −0.135748 0.170223i
\(587\) −10.3735 + 45.4492i −0.428160 + 1.87589i 0.0518966 + 0.998652i \(0.483473\pi\)
−0.480056 + 0.877238i \(0.659384\pi\)
\(588\) 0.867767 1.80194i 0.0357861 0.0743107i
\(589\) 44.1283 + 21.2511i 1.81827 + 0.875635i
\(590\) −14.1429 + 3.22802i −0.582253 + 0.132895i
\(591\) −1.68718 3.50346i −0.0694011 0.144113i
\(592\) 8.72949i 0.358780i
\(593\) −13.0079 + 6.26428i −0.534171 + 0.257243i −0.681466 0.731849i \(-0.738657\pi\)
0.147295 + 0.989093i \(0.452943\pi\)
\(594\) 2.31857 1.84900i 0.0951319 0.0758652i
\(595\) 29.5250 23.5454i 1.21041 0.965268i
\(596\) 14.0212 6.75223i 0.574329 0.276582i
\(597\) 3.61803i 0.148076i
\(598\) 0.0782465 + 0.162481i 0.00319974 + 0.00664433i
\(599\) 12.7412 2.90810i 0.520592 0.118822i 0.0458528 0.998948i \(-0.485399\pi\)
0.474739 + 0.880126i \(0.342542\pi\)
\(600\) −12.2694 5.90864i −0.500897 0.241219i
\(601\) 12.6516 26.2714i 0.516071 1.07163i −0.466289 0.884633i \(-0.654409\pi\)
0.982360 0.187000i \(-0.0598765\pi\)
\(602\) 2.22521 9.74928i 0.0906928 0.397351i
\(603\) 2.49396 + 3.12733i 0.101562 + 0.127355i
\(604\) −2.69737 + 3.38239i −0.109754 + 0.137627i
\(605\) 7.79590 + 34.1561i 0.316948 + 1.38864i
\(606\) 0.230149 + 0.0525301i 0.00934917 + 0.00213389i
\(607\) −8.58350 6.84512i −0.348394 0.277835i 0.433620 0.901096i \(-0.357236\pi\)
−0.782014 + 0.623261i \(0.785807\pi\)
\(608\) 27.2705 1.10597
\(609\) 0 0
\(610\) −1.47214 −0.0596050
\(611\) 1.29196 + 1.03030i 0.0522670 + 0.0416816i
\(612\) 18.0969 + 4.13050i 0.731524 + 0.166966i
\(613\) 6.12845 + 26.8505i 0.247526 + 1.08448i 0.933985 + 0.357313i \(0.116307\pi\)
−0.686459 + 0.727169i \(0.740836\pi\)
\(614\) 7.39091 9.26791i 0.298273 0.374022i
\(615\) 5.72385 + 7.17748i 0.230808 + 0.289424i
\(616\) 1.53758 6.73659i 0.0619509 0.271425i
\(617\) 6.15262 12.7760i 0.247695 0.514344i −0.739638 0.673005i \(-0.765003\pi\)
0.987333 + 0.158661i \(0.0507176\pi\)
\(618\) −3.15932 1.52145i −0.127086 0.0612016i
\(619\) −6.87883 + 1.57005i −0.276483 + 0.0631055i −0.358514 0.933524i \(-0.616717\pi\)
0.0820308 + 0.996630i \(0.473859\pi\)
\(620\) −27.3013 56.6917i −1.09644 2.27679i
\(621\) 4.29180i 0.172224i
\(622\) 1.16387 0.560489i 0.0466669 0.0224736i
\(623\) 8.23102 6.56402i 0.329769 0.262982i
\(624\) 0.211493 0.168660i 0.00846650 0.00675181i
\(625\) −20.5717 + 9.90679i −0.822866 + 0.396271i
\(626\) 7.97871i 0.318894i
\(627\) −1.79884 3.73533i −0.0718387 0.149175i
\(628\) −22.9715 + 5.24311i −0.916665 + 0.209223i
\(629\) 18.5881 + 8.95154i 0.741154 + 0.356921i
\(630\) 6.05019 12.5634i 0.241045 0.500536i
\(631\) −6.27838 + 27.5074i −0.249938 + 1.09505i 0.681691 + 0.731641i \(0.261245\pi\)
−0.931629 + 0.363411i \(0.881612\pi\)
\(632\) 8.49071 + 10.6470i 0.337742 + 0.423515i
\(633\) 4.49014 5.63046i 0.178467 0.223791i
\(634\) −3.81058 16.6953i −0.151338 0.663054i
\(635\) 59.9101 + 13.6741i 2.37746 + 0.542640i
\(636\) 1.56366 + 1.24698i 0.0620033 + 0.0494460i
\(637\) −0.472136 −0.0187067
\(638\) 0 0
\(639\) −27.4164 −1.08458
\(640\) −34.2968 27.3508i −1.35570 1.08113i
\(641\) −10.7785 2.46013i −0.425727 0.0971693i 0.00428892 0.999991i \(-0.498635\pi\)
−0.430016 + 0.902821i \(0.641492\pi\)
\(642\) −0.574903 2.51882i −0.0226896 0.0994097i
\(643\) 23.3287 29.2533i 0.919996 1.15364i −0.0677709 0.997701i \(-0.521589\pi\)
0.987767 0.155938i \(-0.0498399\pi\)
\(644\) 2.78833 + 3.49646i 0.109876 + 0.137780i
\(645\) −3.83539 + 16.8039i −0.151018 + 0.661654i
\(646\) −5.70379 + 11.8440i −0.224413 + 0.465998i
\(647\) −27.5047 13.2455i −1.08132 0.520736i −0.193581 0.981084i \(-0.562010\pi\)
−0.887738 + 0.460348i \(0.847725\pi\)
\(648\) 12.4439 2.84024i 0.488843 0.111575i
\(649\) 3.65174 + 7.58292i 0.143343 + 0.297656i
\(650\) 1.43769i 0.0563910i
\(651\) −12.5634 + 6.05019i −0.492397 + 0.237126i
\(652\) −7.63375 + 6.08771i −0.298961 + 0.238413i
\(653\) 37.5382 29.9357i 1.46898 1.17147i 0.520830 0.853660i \(-0.325622\pi\)
0.948153 0.317815i \(-0.102949\pi\)
\(654\) −4.94940 + 2.38351i −0.193537 + 0.0932025i
\(655\) 55.2148i 2.15742i
\(656\) 3.10049 + 6.43823i 0.121054 + 0.251371i
\(657\) 34.9887 7.98595i 1.36504 0.311562i
\(658\) −8.71576 4.19729i −0.339776 0.163627i
\(659\) −3.06137 + 6.35699i −0.119254 + 0.247633i −0.952047 0.305950i \(-0.901026\pi\)
0.832794 + 0.553584i \(0.186740\pi\)
\(660\) −1.18520 + 5.19270i −0.0461338 + 0.202125i
\(661\) −23.3502 29.2803i −0.908218 1.13887i −0.989837 0.142206i \(-0.954580\pi\)
0.0816186 0.996664i \(-0.473991\pi\)
\(662\) 8.16159 10.2343i 0.317209 0.397768i
\(663\) 0.142262 + 0.623291i 0.00552500 + 0.0242066i
\(664\) 21.6786 + 4.94799i 0.841291 + 0.192019i
\(665\) −32.7062 26.0823i −1.26829 1.01143i
\(666\) 7.61803 0.295193
\(667\) 0 0
\(668\) −17.0344 −0.659082
\(669\) −1.29196 1.03030i −0.0499500 0.0398338i
\(670\) 3.54807 + 0.809825i 0.137074 + 0.0312863i
\(671\) 0.190056 + 0.832688i 0.00733701 + 0.0321456i
\(672\) −4.84073 + 6.07009i −0.186735 + 0.234159i
\(673\) 4.03531 + 5.06012i 0.155550 + 0.195053i 0.853500 0.521093i \(-0.174476\pi\)
−0.697950 + 0.716147i \(0.745904\pi\)
\(674\) 4.68534 20.5278i 0.180473 0.790702i
\(675\) −14.8452 + 30.8265i −0.571393 + 1.18651i
\(676\) 18.8701 + 9.08738i 0.725774 + 0.349515i
\(677\) 39.8091 9.08616i 1.52999 0.349209i 0.627048 0.778980i \(-0.284263\pi\)
0.902938 + 0.429771i \(0.141406\pi\)
\(678\) 1.31659 + 2.73394i 0.0505635 + 0.104996i
\(679\) 7.96556i 0.305690i
\(680\) 34.0241 16.3852i 1.30477 0.628342i
\(681\) −10.0933 + 8.04915i −0.386777 + 0.308444i
\(682\) 6.73785 5.37326i 0.258006 0.205753i
\(683\) −18.7889 + 9.04826i −0.718937 + 0.346222i −0.757322 0.653041i \(-0.773493\pi\)
0.0383853 + 0.999263i \(0.487779\pi\)
\(684\) 20.5623i 0.786219i
\(685\) 11.9496 + 24.8136i 0.456571 + 0.948079i
\(686\) 12.1259 2.76765i 0.462967 0.105669i
\(687\) 1.27614 + 0.614556i 0.0486878 + 0.0234468i
\(688\) −5.82116 + 12.0878i −0.221930 + 0.460842i
\(689\) 0.105060 0.460299i 0.00400247 0.0175360i
\(690\) 1.13454 + 1.42267i 0.0431912 + 0.0541600i
\(691\) 7.37764 9.25127i 0.280659 0.351935i −0.621442 0.783460i \(-0.713453\pi\)
0.902101 + 0.431525i \(0.142024\pi\)
\(692\) 1.47265 + 6.45211i 0.0559818 + 0.245272i
\(693\) −7.88733 1.80023i −0.299615 0.0683852i
\(694\) 15.5226 + 12.3788i 0.589228 + 0.469894i
\(695\) −4.97871 −0.188853
\(696\) 0 0
\(697\) −16.8885 −0.639699
\(698\) 2.18786 + 1.74476i 0.0828116 + 0.0660400i
\(699\) 9.18032 + 2.09535i 0.347232 + 0.0792533i
\(700\) 7.93342 + 34.7586i 0.299855 + 1.31375i
\(701\) 13.1280 16.4620i 0.495839 0.621762i −0.469446 0.882961i \(-0.655546\pi\)
0.965285 + 0.261199i \(0.0841178\pi\)
\(702\) 0.315846 + 0.396058i 0.0119208 + 0.0149483i
\(703\) 5.08552 22.2811i 0.191804 0.840348i
\(704\) −0.141549 + 0.293930i −0.00533484 + 0.0110779i
\(705\) 15.0225 + 7.23447i 0.565782 + 0.272466i
\(706\) 11.5233 2.63012i 0.433686 0.0989859i
\(707\) −0.599613 1.24511i −0.0225508 0.0468271i
\(708\) 6.09017i 0.228883i
\(709\) −37.3961 + 18.0090i −1.40444 + 0.676343i −0.974057 0.226302i \(-0.927336\pi\)
−0.430384 + 0.902646i \(0.641622\pi\)
\(710\) −19.5022 + 15.5525i −0.731905 + 0.583675i
\(711\) 12.4657 9.94109i 0.467502 0.372820i
\(712\) 9.48528 4.56787i 0.355476 0.171188i
\(713\) 12.4721i 0.467085i
\(714\) −1.62387 3.37201i −0.0607719 0.126194i
\(715\) 1.22583 0.279788i 0.0458434 0.0104635i
\(716\) −23.3248 11.2326i −0.871688 0.419783i
\(717\) 7.43933 15.4479i 0.277827 0.576913i
\(718\) −3.26815 + 14.3187i −0.121966 + 0.534369i
\(719\) 5.30376 + 6.65071i 0.197797 + 0.248030i 0.870832 0.491581i \(-0.163581\pi\)
−0.673035 + 0.739611i \(0.735010\pi\)
\(720\) −11.6644 + 14.6267i −0.434706 + 0.545104i
\(721\) 4.56788 + 20.0132i 0.170117 + 0.745330i
\(722\) 2.74897 + 0.627433i 0.102306 + 0.0233507i
\(723\) −2.24807 1.79278i −0.0836066 0.0666740i
\(724\) 9.61803 0.357451
\(725\) 0 0
\(726\) 3.47214 0.128863
\(727\) 21.9349 + 17.4925i 0.813519 + 0.648759i 0.939223 0.343308i \(-0.111548\pi\)
−0.125704 + 0.992068i \(0.540119\pi\)
\(728\) 1.15075 + 0.262650i 0.0426495 + 0.00973447i
\(729\) −1.89289 8.29330i −0.0701071 0.307159i
\(730\) 20.3585 25.5287i 0.753501 0.944861i
\(731\) −19.7697 24.7905i −0.731210 0.916909i
\(732\) 0.137526 0.602539i 0.00508309 0.0222705i
\(733\) −6.43001 + 13.3521i −0.237498 + 0.493169i −0.985317 0.170733i \(-0.945387\pi\)
0.747820 + 0.663902i \(0.231101\pi\)
\(734\) 15.1850 + 7.31272i 0.560489 + 0.269917i
\(735\) −4.64449 + 1.06007i −0.171315 + 0.0391014i
\(736\) 3.01301 + 6.25657i 0.111061 + 0.230620i
\(737\) 2.11146i 0.0777765i
\(738\) −5.61850 + 2.70573i −0.206820 + 0.0995992i
\(739\) 39.1454 31.2174i 1.43999 1.14835i 0.476968 0.878920i \(-0.341736\pi\)
0.963020 0.269432i \(-0.0868358\pi\)
\(740\) −22.9551 + 18.3061i −0.843846 + 0.672945i
\(741\) 0.638070 0.307278i 0.0234401 0.0112881i
\(742\) 2.76393i 0.101467i
\(743\) 15.2884 + 31.7466i 0.560875 + 1.16467i 0.967919 + 0.251261i \(0.0808453\pi\)
−0.407044 + 0.913409i \(0.633440\pi\)
\(744\) −13.5947 + 3.10289i −0.498404 + 0.113758i
\(745\) −33.3979 16.0836i −1.22360 0.589257i
\(746\) 5.52883 11.4807i 0.202425 0.420339i
\(747\) 5.79321 25.3817i 0.211962 0.928668i
\(748\) −6.10919 7.66068i −0.223374 0.280102i
\(749\) −9.43004 + 11.8249i −0.344566 + 0.432072i
\(750\) 1.59011 + 6.96674i 0.0580627 + 0.254389i
\(751\) −18.0633 4.12284i −0.659140 0.150444i −0.120149 0.992756i \(-0.538337\pi\)
−0.538991 + 0.842311i \(0.681194\pi\)
\(752\) 10.1472 + 8.09210i 0.370029 + 0.295088i
\(753\) −12.1459 −0.442621
\(754\) 0 0
\(755\) 10.3050 0.375036
\(756\) 9.82161 + 7.83247i 0.357208 + 0.284864i
\(757\) 0.0207525 + 0.00473663i 0.000754264 + 0.000172156i 0.222898 0.974842i \(-0.428448\pi\)
−0.222144 + 0.975014i \(0.571305\pi\)
\(758\) −3.34074 14.6367i −0.121341 0.531630i
\(759\) 0.658236 0.825401i 0.0238924 0.0299602i
\(760\) −26.0823 32.7062i −0.946106 1.18638i
\(761\) −5.60789 + 24.5698i −0.203286 + 0.890653i 0.765634 + 0.643277i \(0.222426\pi\)
−0.968919 + 0.247377i \(0.920432\pi\)
\(762\) 2.64243 5.48705i 0.0957250 0.198775i
\(763\) 28.9743 + 13.9533i 1.04894 + 0.505143i
\(764\) 26.8713 6.13319i 0.972168 0.221891i
\(765\) −19.1841 39.8361i −0.693602 1.44028i
\(766\) 17.8328i 0.644326i
\(767\) −1.29532 + 0.623792i −0.0467712 + 0.0225238i
\(768\) −3.17090 + 2.52871i −0.114420 + 0.0912468i
\(769\) −15.1368 + 12.0712i −0.545847 + 0.435298i −0.857191 0.514999i \(-0.827792\pi\)
0.311344 + 0.950297i \(0.399221\pi\)
\(770\) −6.63174 + 3.19368i −0.238991