Properties

Label 841.2.e.j.236.2
Level $841$
Weight $2$
Character 841.236
Analytic conductor $6.715$
Analytic rank $0$
Dimension $24$
Inner twists $12$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [841,2,Mod(63,841)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(841, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([11]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("841.63");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 841 = 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 841.e (of order \(14\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.71541880999\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(4\) over \(\Q(\zeta_{14})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{14}]$

Embedding invariants

Embedding label 236.2
Character \(\chi\) \(=\) 841.236
Dual form 841.2.e.j.196.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.602539 - 0.137526i) q^{2} +(0.268155 + 0.556829i) q^{3} +(-1.45780 - 0.702039i) q^{4} +(0.857618 - 3.75747i) q^{5} +(-0.0849954 - 0.372389i) q^{6} +(2.01463 - 0.970194i) q^{7} +(1.74823 + 1.39417i) q^{8} +(1.63232 - 2.04686i) q^{9} +O(q^{10})\) \(q+(-0.602539 - 0.137526i) q^{2} +(0.268155 + 0.556829i) q^{3} +(-1.45780 - 0.702039i) q^{4} +(0.857618 - 3.75747i) q^{5} +(-0.0849954 - 0.372389i) q^{6} +(2.01463 - 0.970194i) q^{7} +(1.74823 + 1.39417i) q^{8} +(1.63232 - 2.04686i) q^{9} +(-1.03350 + 2.14608i) q^{10} +(1.08046 - 0.861642i) q^{11} -1.00000i q^{12} +(0.147186 + 0.184565i) q^{13} +(-1.34732 + 0.307516i) q^{14} +(2.32225 - 0.530037i) q^{15} +(1.15601 + 1.44960i) q^{16} -4.38197i q^{17} +(-1.26503 + 1.00883i) q^{18} +(-2.10612 + 4.37339i) q^{19} +(-3.88812 + 4.87555i) q^{20} +(1.08046 + 0.861642i) q^{21} +(-0.769519 + 0.370581i) q^{22} +(0.275051 + 1.20508i) q^{23} +(-0.307516 + 1.34732i) q^{24} +(-8.87824 - 4.27553i) q^{25} +(-0.0633028 - 0.131450i) q^{26} +(3.38508 + 0.772623i) q^{27} -3.61803 q^{28} -1.47214 q^{30} +(9.83719 + 2.24527i) q^{31} +(-2.43757 - 5.06167i) q^{32} +(0.769519 + 0.370581i) q^{33} +(-0.602632 + 2.64030i) q^{34} +(-1.91769 - 8.40196i) q^{35} +(-3.81657 + 1.83796i) q^{36} +(-3.68102 - 2.93552i) q^{37} +(1.87047 - 2.34549i) q^{38} +(-0.0633028 + 0.131450i) q^{39} +(6.73785 - 5.37326i) q^{40} -3.85410i q^{41} +(-0.532524 - 0.667764i) q^{42} +(-7.05464 + 1.61018i) q^{43} +(-2.18001 + 0.497572i) q^{44} +(-6.29112 - 7.88881i) q^{45} -0.763932i q^{46} +(-5.47282 + 4.36443i) q^{47} +(-0.497187 + 1.03242i) q^{48} +(-1.24698 + 1.56366i) q^{49} +(4.76149 + 3.79716i) q^{50} +(2.44001 - 1.17505i) q^{51} +(-0.0849954 - 0.372389i) q^{52} +(0.445042 - 1.94986i) q^{53} +(-1.93339 - 0.931070i) q^{54} +(-2.31097 - 4.79877i) q^{55} +(4.87464 + 1.11260i) q^{56} -3.00000 q^{57} +6.09017 q^{59} +(-3.75747 - 0.857618i) q^{60} +(0.268155 + 0.556829i) q^{61} +(-5.61850 - 2.70573i) q^{62} +(1.30266 - 5.70733i) q^{63} +(-0.0525301 - 0.230149i) q^{64} +(0.819729 - 0.394760i) q^{65} +(-0.412701 - 0.329118i) q^{66} +(0.952608 - 1.19453i) q^{67} +(-3.07631 + 6.38802i) q^{68} +(-0.597266 + 0.476304i) q^{69} +5.32624i q^{70} +(-6.52927 - 8.18745i) q^{71} +(5.70733 - 1.30266i) q^{72} +(13.3645 - 3.05036i) q^{73} +(1.81425 + 2.27500i) q^{74} -6.09017i q^{75} +(6.14058 - 4.89695i) q^{76} +(1.34077 - 2.78415i) q^{77} +(0.0562200 - 0.0704977i) q^{78} +(-4.76149 - 3.79716i) q^{79} +(6.43823 - 3.10049i) q^{80} +(-1.27019 - 5.56509i) q^{81} +(-0.530037 + 2.32225i) q^{82} +(8.95948 + 4.31466i) q^{83} +(-0.970194 - 2.01463i) q^{84} +(-16.4651 - 3.75805i) q^{85} +4.47214 q^{86} +3.09017 q^{88} +(-4.59016 - 1.04767i) q^{89} +(2.70573 + 5.61850i) q^{90} +(0.475589 + 0.229032i) q^{91} +(0.445042 - 1.94986i) q^{92} +(1.38766 + 6.07972i) q^{93} +(3.89781 - 1.87708i) q^{94} +(14.6267 + 11.6644i) q^{95} +(2.16484 - 2.71463i) q^{96} +(-1.54563 + 3.20953i) q^{97} +(0.966397 - 0.770676i) q^{98} -3.61803i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 2 q^{4} + 2 q^{5} - 6 q^{6} - 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 24 q - 2 q^{4} + 2 q^{5} - 6 q^{6} - 6 q^{9} + 8 q^{13} + 6 q^{16} + 16 q^{20} + 10 q^{22} - 4 q^{23} - 10 q^{24} - 26 q^{25} - 60 q^{28} + 72 q^{30} - 10 q^{33} + 16 q^{34} - 30 q^{35} - 8 q^{36} - 12 q^{38} - 10 q^{42} + 18 q^{45} + 8 q^{49} - 16 q^{51} - 6 q^{52} + 8 q^{53} - 22 q^{54} - 72 q^{57} + 12 q^{59} - 16 q^{62} + 10 q^{63} + 8 q^{64} + 26 q^{65} - 24 q^{67} + 24 q^{71} - 34 q^{74} + 22 q^{78} + 42 q^{80} + 4 q^{81} - 14 q^{82} + 4 q^{83} - 60 q^{88} + 20 q^{91} + 8 q^{92} + 16 q^{93} - 14 q^{94} + 4 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/841\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{14}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.602539 0.137526i −0.426059 0.0972452i 0.00411419 0.999992i \(-0.498690\pi\)
−0.430173 + 0.902746i \(0.641548\pi\)
\(3\) 0.268155 + 0.556829i 0.154819 + 0.321486i 0.963923 0.266180i \(-0.0857615\pi\)
−0.809104 + 0.587665i \(0.800047\pi\)
\(4\) −1.45780 0.702039i −0.728899 0.351019i
\(5\) 0.857618 3.75747i 0.383539 1.68039i −0.302756 0.953068i \(-0.597907\pi\)
0.686294 0.727324i \(-0.259236\pi\)
\(6\) −0.0849954 0.372389i −0.0346992 0.152027i
\(7\) 2.01463 0.970194i 0.761458 0.366699i −0.0125117 0.999922i \(-0.503983\pi\)
0.773969 + 0.633223i \(0.218268\pi\)
\(8\) 1.74823 + 1.39417i 0.618092 + 0.492912i
\(9\) 1.63232 2.04686i 0.544106 0.682287i
\(10\) −1.03350 + 2.14608i −0.326820 + 0.678649i
\(11\) 1.08046 0.861642i 0.325772 0.259795i −0.446922 0.894573i \(-0.647480\pi\)
0.772694 + 0.634778i \(0.218908\pi\)
\(12\) 1.00000i 0.288675i
\(13\) 0.147186 + 0.184565i 0.0408220 + 0.0511892i 0.801823 0.597561i \(-0.203863\pi\)
−0.761001 + 0.648750i \(0.775292\pi\)
\(14\) −1.34732 + 0.307516i −0.360086 + 0.0821872i
\(15\) 2.32225 0.530037i 0.599601 0.136855i
\(16\) 1.15601 + 1.44960i 0.289003 + 0.362399i
\(17\) 4.38197i 1.06278i −0.847126 0.531391i \(-0.821669\pi\)
0.847126 0.531391i \(-0.178331\pi\)
\(18\) −1.26503 + 1.00883i −0.298170 + 0.237783i
\(19\) −2.10612 + 4.37339i −0.483176 + 1.00333i 0.506796 + 0.862066i \(0.330830\pi\)
−0.989973 + 0.141260i \(0.954885\pi\)
\(20\) −3.88812 + 4.87555i −0.869411 + 1.09021i
\(21\) 1.08046 + 0.861642i 0.235777 + 0.188026i
\(22\) −0.769519 + 0.370581i −0.164062 + 0.0790081i
\(23\) 0.275051 + 1.20508i 0.0573521 + 0.251276i 0.995475 0.0950275i \(-0.0302939\pi\)
−0.938123 + 0.346303i \(0.887437\pi\)
\(24\) −0.307516 + 1.34732i −0.0627715 + 0.275020i
\(25\) −8.87824 4.27553i −1.77565 0.855107i
\(26\) −0.0633028 0.131450i −0.0124147 0.0257794i
\(27\) 3.38508 + 0.772623i 0.651459 + 0.148691i
\(28\) −3.61803 −0.683744
\(29\) 0 0
\(30\) −1.47214 −0.268774
\(31\) 9.83719 + 2.24527i 1.76681 + 0.403263i 0.977535 0.210775i \(-0.0675987\pi\)
0.789277 + 0.614038i \(0.210456\pi\)
\(32\) −2.43757 5.06167i −0.430906 0.894786i
\(33\) 0.769519 + 0.370581i 0.133956 + 0.0645099i
\(34\) −0.602632 + 2.64030i −0.103351 + 0.452808i
\(35\) −1.91769 8.40196i −0.324149 1.42019i
\(36\) −3.81657 + 1.83796i −0.636094 + 0.306327i
\(37\) −3.68102 2.93552i −0.605156 0.482596i 0.272326 0.962205i \(-0.412207\pi\)
−0.877482 + 0.479609i \(0.840779\pi\)
\(38\) 1.87047 2.34549i 0.303430 0.380489i
\(39\) −0.0633028 + 0.131450i −0.0101366 + 0.0210488i
\(40\) 6.73785 5.37326i 1.06535 0.849586i
\(41\) 3.85410i 0.601910i −0.953638 0.300955i \(-0.902695\pi\)
0.953638 0.300955i \(-0.0973053\pi\)
\(42\) −0.532524 0.667764i −0.0821702 0.103038i
\(43\) −7.05464 + 1.61018i −1.07582 + 0.245550i −0.723497 0.690328i \(-0.757466\pi\)
−0.352326 + 0.935877i \(0.614609\pi\)
\(44\) −2.18001 + 0.497572i −0.328648 + 0.0750118i
\(45\) −6.29112 7.88881i −0.937825 1.17599i
\(46\) 0.763932i 0.112636i
\(47\) −5.47282 + 4.36443i −0.798293 + 0.636617i −0.935261 0.353958i \(-0.884836\pi\)
0.136968 + 0.990575i \(0.456264\pi\)
\(48\) −0.497187 + 1.03242i −0.0717627 + 0.149017i
\(49\) −1.24698 + 1.56366i −0.178140 + 0.223380i
\(50\) 4.76149 + 3.79716i 0.673376 + 0.536999i
\(51\) 2.44001 1.17505i 0.341669 0.164539i
\(52\) −0.0849954 0.372389i −0.0117867 0.0516411i
\(53\) 0.445042 1.94986i 0.0611312 0.267833i −0.935121 0.354328i \(-0.884710\pi\)
0.996252 + 0.0864950i \(0.0275667\pi\)
\(54\) −1.93339 0.931070i −0.263101 0.126703i
\(55\) −2.31097 4.79877i −0.311611 0.647067i
\(56\) 4.87464 + 1.11260i 0.651401 + 0.148678i
\(57\) −3.00000 −0.397360
\(58\) 0 0
\(59\) 6.09017 0.792873 0.396436 0.918062i \(-0.370247\pi\)
0.396436 + 0.918062i \(0.370247\pi\)
\(60\) −3.75747 0.857618i −0.485087 0.110718i
\(61\) 0.268155 + 0.556829i 0.0343337 + 0.0712947i 0.917430 0.397897i \(-0.130260\pi\)
−0.883097 + 0.469191i \(0.844545\pi\)
\(62\) −5.61850 2.70573i −0.713551 0.343628i
\(63\) 1.30266 5.70733i 0.164120 0.719056i
\(64\) −0.0525301 0.230149i −0.00656626 0.0287687i
\(65\) 0.819729 0.394760i 0.101675 0.0489640i
\(66\) −0.412701 0.329118i −0.0507999 0.0405116i
\(67\) 0.952608 1.19453i 0.116380 0.145935i −0.720229 0.693736i \(-0.755963\pi\)
0.836609 + 0.547801i \(0.184535\pi\)
\(68\) −3.07631 + 6.38802i −0.373057 + 0.774662i
\(69\) −0.597266 + 0.476304i −0.0719024 + 0.0573402i
\(70\) 5.32624i 0.636607i
\(71\) −6.52927 8.18745i −0.774882 0.971671i 0.225115 0.974332i \(-0.427724\pi\)
−0.999996 + 0.00266125i \(0.999153\pi\)
\(72\) 5.70733 1.30266i 0.672615 0.153520i
\(73\) 13.3645 3.05036i 1.56420 0.357018i 0.649245 0.760579i \(-0.275085\pi\)
0.914953 + 0.403561i \(0.132228\pi\)
\(74\) 1.81425 + 2.27500i 0.210902 + 0.264463i
\(75\) 6.09017i 0.703232i
\(76\) 6.14058 4.89695i 0.704373 0.561719i
\(77\) 1.34077 2.78415i 0.152795 0.317283i
\(78\) 0.0562200 0.0704977i 0.00636567 0.00798229i
\(79\) −4.76149 3.79716i −0.535709 0.427214i 0.317903 0.948123i \(-0.397021\pi\)
−0.853612 + 0.520910i \(0.825593\pi\)
\(80\) 6.43823 3.10049i 0.719816 0.346645i
\(81\) −1.27019 5.56509i −0.141133 0.618343i
\(82\) −0.530037 + 2.32225i −0.0585328 + 0.256449i
\(83\) 8.95948 + 4.31466i 0.983431 + 0.473595i 0.855284 0.518160i \(-0.173383\pi\)
0.128147 + 0.991755i \(0.459097\pi\)
\(84\) −0.970194 2.01463i −0.105857 0.219814i
\(85\) −16.4651 3.75805i −1.78589 0.407618i
\(86\) 4.47214 0.482243
\(87\) 0 0
\(88\) 3.09017 0.329413
\(89\) −4.59016 1.04767i −0.486556 0.111053i −0.0277963 0.999614i \(-0.508849\pi\)
−0.458760 + 0.888560i \(0.651706\pi\)
\(90\) 2.70573 + 5.61850i 0.285209 + 0.592242i
\(91\) 0.475589 + 0.229032i 0.0498553 + 0.0240090i
\(92\) 0.445042 1.94986i 0.0463988 0.203287i
\(93\) 1.38766 + 6.07972i 0.143893 + 0.630437i
\(94\) 3.89781 1.87708i 0.402028 0.193606i
\(95\) 14.6267 + 11.6644i 1.50066 + 1.19674i
\(96\) 2.16484 2.71463i 0.220948 0.277060i
\(97\) −1.54563 + 3.20953i −0.156935 + 0.325878i −0.964580 0.263790i \(-0.915027\pi\)
0.807645 + 0.589668i \(0.200742\pi\)
\(98\) 0.966397 0.770676i 0.0976208 0.0778500i
\(99\) 3.61803i 0.363626i
\(100\) 9.94109 + 12.4657i 0.994109 + 1.24657i
\(101\) −0.602539 + 0.137526i −0.0599548 + 0.0136843i −0.252393 0.967625i \(-0.581218\pi\)
0.192438 + 0.981309i \(0.438360\pi\)
\(102\) −1.63180 + 0.372447i −0.161572 + 0.0368778i
\(103\) 5.72385 + 7.17748i 0.563988 + 0.707218i 0.979289 0.202466i \(-0.0648955\pi\)
−0.415302 + 0.909684i \(0.636324\pi\)
\(104\) 0.527864i 0.0517613i
\(105\) 4.16422 3.32086i 0.406386 0.324082i
\(106\) −0.536310 + 1.11366i −0.0520910 + 0.108168i
\(107\) 4.21724 5.28826i 0.407696 0.511235i −0.535016 0.844842i \(-0.679694\pi\)
0.942712 + 0.333607i \(0.108266\pi\)
\(108\) −4.39236 3.50279i −0.422655 0.337056i
\(109\) −12.9577 + 6.24010i −1.24112 + 0.597693i −0.935118 0.354337i \(-0.884707\pi\)
−0.306005 + 0.952030i \(0.598992\pi\)
\(110\) 0.732494 + 3.20926i 0.0698405 + 0.305991i
\(111\) 0.647498 2.83687i 0.0614578 0.269264i
\(112\) 3.73533 + 1.79884i 0.352955 + 0.169974i
\(113\) 3.44689 + 7.15754i 0.324256 + 0.673325i 0.997833 0.0657920i \(-0.0209574\pi\)
−0.673577 + 0.739117i \(0.735243\pi\)
\(114\) 1.80762 + 0.412577i 0.169299 + 0.0386413i
\(115\) 4.76393 0.444239
\(116\) 0 0
\(117\) 0.618034 0.0571373
\(118\) −3.66956 0.837554i −0.337811 0.0771031i
\(119\) −4.25136 8.82803i −0.389721 0.809264i
\(120\) 4.79877 + 2.31097i 0.438066 + 0.210962i
\(121\) −2.02275 + 8.86226i −0.183887 + 0.805660i
\(122\) −0.0849954 0.372389i −0.00769512 0.0337145i
\(123\) 2.14608 1.03350i 0.193505 0.0931872i
\(124\) −12.7644 10.1792i −1.14627 0.914123i
\(125\) −11.6644 + 14.6267i −1.04329 + 1.30825i
\(126\) −1.56981 + 3.25974i −0.139849 + 0.290400i
\(127\) −12.4657 + 9.94109i −1.10615 + 0.882129i −0.993761 0.111534i \(-0.964423\pi\)
−0.112394 + 0.993664i \(0.535852\pi\)
\(128\) 11.3820i 1.00603i
\(129\) −2.78833 3.49646i −0.245499 0.307846i
\(130\) −0.548208 + 0.125125i −0.0480810 + 0.0109742i
\(131\) −13.9670 + 3.18789i −1.22031 + 0.278527i −0.783708 0.621129i \(-0.786674\pi\)
−0.436599 + 0.899656i \(0.643817\pi\)
\(132\) −0.861642 1.08046i −0.0749963 0.0940424i
\(133\) 10.8541i 0.941170i
\(134\) −0.738262 + 0.588744i −0.0637761 + 0.0508597i
\(135\) 5.80622 12.0567i 0.499720 1.03768i
\(136\) 6.10919 7.66068i 0.523858 0.656898i
\(137\) 5.58689 + 4.45539i 0.477320 + 0.380650i 0.832391 0.554189i \(-0.186972\pi\)
−0.355070 + 0.934840i \(0.615543\pi\)
\(138\) 0.425380 0.204852i 0.0362107 0.0174382i
\(139\) −0.287452 1.25941i −0.0243813 0.106822i 0.961273 0.275598i \(-0.0888757\pi\)
−0.985654 + 0.168776i \(0.946019\pi\)
\(140\) −3.10289 + 13.5947i −0.262242 + 1.14896i
\(141\) −3.89781 1.87708i −0.328254 0.158079i
\(142\) 2.80815 + 5.83119i 0.235655 + 0.489343i
\(143\) 0.318058 + 0.0725948i 0.0265974 + 0.00607068i
\(144\) 4.85410 0.404508
\(145\) 0 0
\(146\) −8.47214 −0.701159
\(147\) −1.20508 0.275051i −0.0993931 0.0226858i
\(148\) 3.30534 + 6.86361i 0.271697 + 0.564185i
\(149\) 8.66555 + 4.17311i 0.709909 + 0.341874i 0.753747 0.657164i \(-0.228244\pi\)
−0.0438379 + 0.999039i \(0.513959\pi\)
\(150\) −0.837554 + 3.66956i −0.0683860 + 0.299619i
\(151\) 0.594968 + 2.60673i 0.0484178 + 0.212132i 0.993350 0.115134i \(-0.0367297\pi\)
−0.944932 + 0.327266i \(0.893873\pi\)
\(152\) −9.77921 + 4.70942i −0.793199 + 0.381984i
\(153\) −8.96928 7.15276i −0.725123 0.578266i
\(154\) −1.19076 + 1.49317i −0.0959541 + 0.120323i
\(155\) 16.8731 35.0374i 1.35528 2.81427i
\(156\) 0.184565 0.147186i 0.0147771 0.0117843i
\(157\) 14.5623i 1.16220i −0.813833 0.581099i \(-0.802623\pi\)
0.813833 0.581099i \(-0.197377\pi\)
\(158\) 2.34677 + 2.94276i 0.186699 + 0.234113i
\(159\) 1.20508 0.275051i 0.0955688 0.0218130i
\(160\) −21.1096 + 4.81813i −1.66886 + 0.380907i
\(161\) 1.72328 + 2.16093i 0.135814 + 0.170305i
\(162\) 3.52786i 0.277175i
\(163\) −4.71792 + 3.76241i −0.369536 + 0.294695i −0.790596 0.612338i \(-0.790229\pi\)
0.421061 + 0.907032i \(0.361658\pi\)
\(164\) −2.70573 + 5.61850i −0.211282 + 0.438731i
\(165\) 2.05240 2.57363i 0.159779 0.200357i
\(166\) −4.80506 3.83190i −0.372945 0.297413i
\(167\) 9.48528 4.56787i 0.733993 0.353472i −0.0292604 0.999572i \(-0.509315\pi\)
0.763253 + 0.646100i \(0.223601\pi\)
\(168\) 0.687628 + 3.01269i 0.0530516 + 0.232434i
\(169\) 2.88037 12.6197i 0.221567 0.970749i
\(170\) 9.40404 + 4.52875i 0.721257 + 0.347339i
\(171\) 5.51388 + 11.4497i 0.421657 + 0.875580i
\(172\) 11.4147 + 2.60532i 0.870359 + 0.198654i
\(173\) −4.09017 −0.310970 −0.155485 0.987838i \(-0.549694\pi\)
−0.155485 + 0.987838i \(0.549694\pi\)
\(174\) 0 0
\(175\) −22.0344 −1.66565
\(176\) 2.49806 + 0.570167i 0.188299 + 0.0429779i
\(177\) 1.63311 + 3.39119i 0.122752 + 0.254897i
\(178\) 2.62167 + 1.26253i 0.196502 + 0.0946305i
\(179\) −3.56033 + 15.5988i −0.266112 + 1.16591i 0.648383 + 0.761315i \(0.275446\pi\)
−0.914495 + 0.404598i \(0.867411\pi\)
\(180\) 3.63293 + 15.9169i 0.270783 + 1.18638i
\(181\) −5.35560 + 2.57912i −0.398079 + 0.191705i −0.622203 0.782856i \(-0.713762\pi\)
0.224124 + 0.974561i \(0.428048\pi\)
\(182\) −0.255063 0.203406i −0.0189065 0.0150775i
\(183\) −0.238152 + 0.298633i −0.0176047 + 0.0220756i
\(184\) −1.19923 + 2.49022i −0.0884081 + 0.183581i
\(185\) −14.1870 + 11.3138i −1.04305 + 0.831806i
\(186\) 3.85410i 0.282596i
\(187\) −3.77568 4.73456i −0.276105 0.346225i
\(188\) 11.0423 2.52033i 0.805340 0.183814i
\(189\) 7.56927 1.72764i 0.550584 0.125667i
\(190\) −7.20898 9.03977i −0.522994 0.655814i
\(191\) 17.0344i 1.23257i 0.787524 + 0.616284i \(0.211363\pi\)
−0.787524 + 0.616284i \(0.788637\pi\)
\(192\) 0.114068 0.0909659i 0.00823213 0.00656490i
\(193\) 5.41146 11.2370i 0.389525 0.808857i −0.610335 0.792143i \(-0.708965\pi\)
0.999860 0.0167141i \(-0.00532050\pi\)
\(194\) 1.37269 1.72130i 0.0985535 0.123582i
\(195\) 0.439628 + 0.350592i 0.0314824 + 0.0251064i
\(196\) 2.91560 1.40408i 0.208257 0.100291i
\(197\) 1.40006 + 6.13405i 0.0997499 + 0.437033i 0.999999 + 0.00165687i \(0.000527397\pi\)
−0.900249 + 0.435376i \(0.856615\pi\)
\(198\) −0.497572 + 2.18001i −0.0353609 + 0.154926i
\(199\) 5.27436 + 2.54000i 0.373890 + 0.180056i 0.611386 0.791333i \(-0.290612\pi\)
−0.237496 + 0.971389i \(0.576327\pi\)
\(200\) −9.56039 19.8523i −0.676021 1.40377i
\(201\) 0.920597 + 0.210120i 0.0649339 + 0.0148207i
\(202\) 0.381966 0.0268750
\(203\) 0 0
\(204\) −4.38197 −0.306799
\(205\) −14.4817 3.30535i −1.01144 0.230856i
\(206\) −2.46175 5.11188i −0.171518 0.356162i
\(207\) 2.91560 + 1.40408i 0.202648 + 0.0975901i
\(208\) −0.0973961 + 0.426720i −0.00675320 + 0.0295877i
\(209\) 1.49272 + 6.54002i 0.103253 + 0.452382i
\(210\) −2.96581 + 1.42826i −0.204660 + 0.0985591i
\(211\) 9.11027 + 7.26520i 0.627177 + 0.500157i 0.884728 0.466108i \(-0.154344\pi\)
−0.257551 + 0.966265i \(0.582916\pi\)
\(212\) −2.01766 + 2.53006i −0.138573 + 0.173765i
\(213\) 2.80815 5.83119i 0.192412 0.399547i
\(214\) −3.26832 + 2.60640i −0.223418 + 0.178170i
\(215\) 27.8885i 1.90198i
\(216\) 4.84073 + 6.07009i 0.329370 + 0.413017i
\(217\) 21.9966 5.02059i 1.49323 0.340820i
\(218\) 8.66569 1.97789i 0.586915 0.133959i
\(219\) 5.28229 + 6.62378i 0.356944 + 0.447594i
\(220\) 8.61803i 0.581028i
\(221\) 0.808759 0.644964i 0.0544030 0.0433850i
\(222\) −0.780285 + 1.62028i −0.0523693 + 0.108746i
\(223\) 1.66706 2.09043i 0.111635 0.139986i −0.722875 0.690979i \(-0.757180\pi\)
0.834510 + 0.550993i \(0.185751\pi\)
\(224\) −9.82161 7.83247i −0.656234 0.523329i
\(225\) −23.2435 + 11.1935i −1.54957 + 0.746233i
\(226\) −1.09254 4.78673i −0.0726747 0.318409i
\(227\) 4.64814 20.3648i 0.308508 1.35166i −0.548411 0.836209i \(-0.684767\pi\)
0.856919 0.515452i \(-0.172376\pi\)
\(228\) 4.37339 + 2.10612i 0.289635 + 0.139481i
\(229\) 0.994373 + 2.06484i 0.0657100 + 0.136448i 0.931237 0.364414i \(-0.118731\pi\)
−0.865527 + 0.500862i \(0.833016\pi\)
\(230\) −2.87045 0.655162i −0.189272 0.0432001i
\(231\) 1.90983 0.125658
\(232\) 0 0
\(233\) 15.2361 0.998148 0.499074 0.866559i \(-0.333674\pi\)
0.499074 + 0.866559i \(0.333674\pi\)
\(234\) −0.372389 0.0849954i −0.0243439 0.00555633i
\(235\) 11.7056 + 24.3070i 0.763591 + 1.58561i
\(236\) −8.87824 4.27553i −0.577924 0.278314i
\(237\) 0.837554 3.66956i 0.0544050 0.238364i
\(238\) 1.34753 + 5.90390i 0.0873472 + 0.382693i
\(239\) 24.9953 12.0371i 1.61681 0.778614i 0.616845 0.787085i \(-0.288411\pi\)
0.999964 + 0.00847060i \(0.00269631\pi\)
\(240\) 3.45289 + 2.75359i 0.222883 + 0.177743i
\(241\) 2.90077 3.63745i 0.186855 0.234309i −0.679577 0.733605i \(-0.737836\pi\)
0.866432 + 0.499296i \(0.166408\pi\)
\(242\) 2.43757 5.06167i 0.156693 0.325377i
\(243\) 10.9021 8.69411i 0.699368 0.557728i
\(244\) 1.00000i 0.0640184i
\(245\) 4.80599 + 6.02652i 0.307043 + 0.385020i
\(246\) −1.43523 + 0.327581i −0.0915067 + 0.0208858i
\(247\) −1.11717 + 0.254986i −0.0710837 + 0.0162244i
\(248\) 14.0674 + 17.6399i 0.893279 + 1.12014i
\(249\) 6.14590i 0.389480i
\(250\) 9.03977 7.20898i 0.571726 0.455936i
\(251\) −8.52689 + 17.7063i −0.538213 + 1.11761i 0.437634 + 0.899153i \(0.355817\pi\)
−0.975847 + 0.218457i \(0.929898\pi\)
\(252\) −5.90578 + 7.40561i −0.372029 + 0.466510i
\(253\) 1.33553 + 1.06505i 0.0839639 + 0.0669590i
\(254\) 8.87824 4.27553i 0.557070 0.268271i
\(255\) −2.32261 10.1760i −0.145447 0.637246i
\(256\) 1.46025 6.39778i 0.0912657 0.399861i
\(257\) 20.8848 + 10.0576i 1.30276 + 0.627374i 0.951137 0.308769i \(-0.0999170\pi\)
0.351619 + 0.936143i \(0.385631\pi\)
\(258\) 1.19923 + 2.49022i 0.0746605 + 0.155034i
\(259\) −10.2639 2.34267i −0.637768 0.145566i
\(260\) −1.47214 −0.0912980
\(261\) 0 0
\(262\) 8.85410 0.547008
\(263\) 16.2893 + 3.71793i 1.00444 + 0.229257i 0.692945 0.720990i \(-0.256313\pi\)
0.311496 + 0.950248i \(0.399170\pi\)
\(264\) 0.828644 + 1.72070i 0.0509995 + 0.105902i
\(265\) −6.94485 3.34446i −0.426619 0.205449i
\(266\) 1.49272 6.54002i 0.0915243 0.400994i
\(267\) −0.647498 2.83687i −0.0396262 0.173614i
\(268\) −2.22732 + 1.07262i −0.136055 + 0.0655207i
\(269\) 4.69099 + 3.74094i 0.286015 + 0.228089i 0.755978 0.654597i \(-0.227162\pi\)
−0.469964 + 0.882686i \(0.655733\pi\)
\(270\) −5.15658 + 6.46614i −0.313819 + 0.393517i
\(271\) −4.41708 + 9.17217i −0.268319 + 0.557170i −0.990976 0.134037i \(-0.957206\pi\)
0.722658 + 0.691206i \(0.242920\pi\)
\(272\) 6.35208 5.06561i 0.385151 0.307148i
\(273\) 0.326238i 0.0197448i
\(274\) −2.75359 3.45289i −0.166350 0.208597i
\(275\) −13.2766 + 3.03030i −0.800609 + 0.182734i
\(276\) 1.20508 0.275051i 0.0725371 0.0165561i
\(277\) −13.3314 16.7171i −0.801008 1.00443i −0.999703 0.0243714i \(-0.992242\pi\)
0.198695 0.980061i \(-0.436330\pi\)
\(278\) 0.798374i 0.0478833i
\(279\) 20.6532 16.4704i 1.23647 0.986055i
\(280\) 8.36116 17.3621i 0.499675 1.03759i
\(281\) 14.4180 18.0795i 0.860103 1.07854i −0.136032 0.990704i \(-0.543435\pi\)
0.996135 0.0878311i \(-0.0279936\pi\)
\(282\) 2.09043 + 1.66706i 0.124483 + 0.0992722i
\(283\) −4.71753 + 2.27184i −0.280428 + 0.135047i −0.568811 0.822468i \(-0.692597\pi\)
0.288383 + 0.957515i \(0.406882\pi\)
\(284\) 3.77046 + 16.5194i 0.223735 + 0.980249i
\(285\) −2.57286 + 11.2724i −0.152403 + 0.667720i
\(286\) −0.181659 0.0874823i −0.0107417 0.00517294i
\(287\) −3.73922 7.76458i −0.220719 0.458329i
\(288\) −14.3394 3.27288i −0.844960 0.192856i
\(289\) −2.20163 −0.129507
\(290\) 0 0
\(291\) −2.20163 −0.129062
\(292\) −21.6242 4.93559i −1.26546 0.288834i
\(293\) −3.70010 7.68334i −0.216162 0.448866i 0.764487 0.644639i \(-0.222992\pi\)
−0.980649 + 0.195774i \(0.937278\pi\)
\(294\) 0.688279 + 0.331458i 0.0401412 + 0.0193310i
\(295\) 5.22304 22.8836i 0.304097 1.33234i
\(296\) −2.34267 10.2639i −0.136165 0.596578i
\(297\) 4.32319 2.08194i 0.250857 0.120806i
\(298\) −4.64742 3.70619i −0.269218 0.214694i
\(299\) −0.181932 + 0.228135i −0.0105214 + 0.0131934i
\(300\) −4.27553 + 8.87824i −0.246848 + 0.512585i
\(301\) −12.6503 + 10.0883i −0.729151 + 0.581479i
\(302\) 1.65248i 0.0950893i
\(303\) −0.238152 0.298633i −0.0136815 0.0171560i
\(304\) −8.77435 + 2.00269i −0.503244 + 0.114862i
\(305\) 2.32225 0.530037i 0.132971 0.0303498i
\(306\) 4.42065 + 5.54332i 0.252712 + 0.316890i
\(307\) 19.1803i 1.09468i −0.836910 0.547340i \(-0.815640\pi\)
0.836910 0.547340i \(-0.184360\pi\)
\(308\) −3.90916 + 3.11745i −0.222745 + 0.177633i
\(309\) −2.46175 + 5.11188i −0.140044 + 0.290805i
\(310\) −14.9852 + 18.7909i −0.851104 + 1.06725i
\(311\) 1.63416 + 1.30320i 0.0926647 + 0.0738977i 0.668726 0.743509i \(-0.266840\pi\)
−0.576062 + 0.817406i \(0.695411\pi\)
\(312\) −0.293930 + 0.141549i −0.0166405 + 0.00801365i
\(313\) 2.87271 + 12.5862i 0.162375 + 0.711411i 0.988909 + 0.148524i \(0.0474523\pi\)
−0.826534 + 0.562887i \(0.809691\pi\)
\(314\) −2.00269 + 8.77435i −0.113018 + 0.495165i
\(315\) −20.3279 9.78942i −1.14535 0.551571i
\(316\) 4.27553 + 8.87824i 0.240518 + 0.499440i
\(317\) 27.0135 + 6.16566i 1.51723 + 0.346298i 0.898383 0.439214i \(-0.144743\pi\)
0.618847 + 0.785512i \(0.287600\pi\)
\(318\) −0.763932 −0.0428392
\(319\) 0 0
\(320\) −0.909830 −0.0508610
\(321\) 4.07553 + 0.930213i 0.227474 + 0.0519194i
\(322\) −0.741162 1.53904i −0.0413033 0.0857673i
\(323\) 19.1641 + 9.22893i 1.06632 + 0.513511i
\(324\) −2.05522 + 9.00450i −0.114179 + 0.500250i
\(325\) −0.517637 2.26791i −0.0287133 0.125801i
\(326\) 3.36015 1.61817i 0.186102 0.0896219i
\(327\) −6.94934 5.54192i −0.384300 0.306469i
\(328\) 5.37326 6.73785i 0.296688 0.372036i
\(329\) −6.79135 + 14.1024i −0.374420 + 0.777490i
\(330\) −1.59059 + 1.26845i −0.0875591 + 0.0698261i
\(331\) 21.1803i 1.16418i −0.813126 0.582088i \(-0.802236\pi\)
0.813126 0.582088i \(-0.197764\pi\)
\(332\) −10.0321 12.5798i −0.550581 0.690406i
\(333\) −12.0172 + 2.74285i −0.658538 + 0.150307i
\(334\) −6.34344 + 1.44785i −0.347098 + 0.0792228i
\(335\) −3.67145 4.60385i −0.200593 0.251535i
\(336\) 2.56231i 0.139785i
\(337\) −26.6361 + 21.2416i −1.45096 + 1.15710i −0.493065 + 0.869992i \(0.664124\pi\)
−0.957897 + 0.287111i \(0.907305\pi\)
\(338\) −3.47107 + 7.20775i −0.188801 + 0.392050i
\(339\) −3.06123 + 3.83866i −0.166263 + 0.208487i
\(340\) 21.3645 + 17.0376i 1.15865 + 0.923995i
\(341\) 12.5634 6.05019i 0.680344 0.327636i
\(342\) −1.74770 7.65718i −0.0945049 0.414053i
\(343\) −4.47815 + 19.6200i −0.241797 + 1.05938i
\(344\) −14.5780 7.02039i −0.785992 0.378514i
\(345\) 1.27747 + 2.65270i 0.0687768 + 0.142816i
\(346\) 2.46449 + 0.562503i 0.132492 + 0.0302403i
\(347\) 32.1246 1.72454 0.862270 0.506449i \(-0.169042\pi\)
0.862270 + 0.506449i \(0.169042\pi\)
\(348\) 0 0
\(349\) 4.52786 0.242371 0.121186 0.992630i \(-0.461330\pi\)
0.121186 + 0.992630i \(0.461330\pi\)
\(350\) 13.2766 + 3.03030i 0.709664 + 0.161976i
\(351\) 0.355637 + 0.738488i 0.0189825 + 0.0394176i
\(352\) −6.99506 3.36864i −0.372838 0.179549i
\(353\) −4.25563 + 18.6451i −0.226504 + 0.992379i 0.725962 + 0.687735i \(0.241395\pi\)
−0.952466 + 0.304645i \(0.901462\pi\)
\(354\) −0.517637 2.26791i −0.0275121 0.120538i
\(355\) −36.3637 + 17.5118i −1.92999 + 0.929432i
\(356\) 5.95602 + 4.74977i 0.315668 + 0.251737i
\(357\) 3.77568 4.73456i 0.199830 0.250579i
\(358\) 4.29048 8.90927i 0.226759 0.470870i
\(359\) 18.5794 14.8166i 0.980583 0.781989i 0.00463409 0.999989i \(-0.498525\pi\)
0.975949 + 0.218001i \(0.0699535\pi\)
\(360\) 22.5623i 1.18914i
\(361\) −2.84455 3.56695i −0.149713 0.187734i
\(362\) 3.58165 0.817489i 0.188248 0.0429663i
\(363\) −5.47718 + 1.25013i −0.287477 + 0.0656148i
\(364\) −0.532524 0.667764i −0.0279118 0.0350003i
\(365\) 52.8328i 2.76540i
\(366\) 0.184565 0.147186i 0.00964739 0.00769353i
\(367\) 11.8322 24.5699i 0.617637 1.28254i −0.324047 0.946041i \(-0.605044\pi\)
0.941685 0.336496i \(-0.109242\pi\)
\(368\) −1.42891 + 1.79180i −0.0744872 + 0.0934039i
\(369\) −7.88881 6.29112i −0.410675 0.327503i
\(370\) 10.1042 4.86591i 0.525291 0.252967i
\(371\) −0.995144 4.36001i −0.0516653 0.226360i
\(372\) 2.24527 9.83719i 0.116412 0.510034i
\(373\) −18.5762 8.94583i −0.961840 0.463198i −0.114018 0.993479i \(-0.536372\pi\)
−0.847822 + 0.530281i \(0.822086\pi\)
\(374\) 1.62387 + 3.37201i 0.0839685 + 0.174362i
\(375\) −11.2724 2.57286i −0.582105 0.132862i
\(376\) −15.6525 −0.807215
\(377\) 0 0
\(378\) −4.79837 −0.246802
\(379\) 23.6828 + 5.40543i 1.21650 + 0.277658i 0.782153 0.623087i \(-0.214122\pi\)
0.434348 + 0.900745i \(0.356979\pi\)
\(380\) −13.1339 27.2728i −0.673754 1.39906i
\(381\) −8.87824 4.27553i −0.454846 0.219042i
\(382\) 2.34267 10.2639i 0.119861 0.525147i
\(383\) −6.42064 28.1307i −0.328079 1.43741i −0.822787 0.568350i \(-0.807582\pi\)
0.494707 0.869060i \(-0.335275\pi\)
\(384\) −6.33781 + 3.05213i −0.323425 + 0.155753i
\(385\) −9.31148 7.42566i −0.474557 0.378447i
\(386\) −4.80599 + 6.02652i −0.244618 + 0.306742i
\(387\) −8.21961 + 17.0682i −0.417826 + 0.867625i
\(388\) 4.50642 3.59375i 0.228779 0.182445i
\(389\) 19.1246i 0.969656i 0.874609 + 0.484828i \(0.161118\pi\)
−0.874609 + 0.484828i \(0.838882\pi\)
\(390\) −0.216678 0.271705i −0.0109719 0.0137583i
\(391\) 5.28061 1.20526i 0.267052 0.0609528i
\(392\) −4.36001 + 0.995144i −0.220214 + 0.0502624i
\(393\) −5.52044 6.92242i −0.278469 0.349190i
\(394\) 3.88854i 0.195902i
\(395\) −18.3513 + 14.6346i −0.923352 + 0.736349i
\(396\) −2.54000 + 5.27436i −0.127640 + 0.265047i
\(397\) −8.76360 + 10.9892i −0.439833 + 0.551533i −0.951499 0.307651i \(-0.900457\pi\)
0.511666 + 0.859184i \(0.329028\pi\)
\(398\) −2.82869 2.25581i −0.141790 0.113073i
\(399\) −6.04388 + 2.91058i −0.302573 + 0.145711i
\(400\) −4.06557 17.8124i −0.203279 0.890622i
\(401\) −5.57835 + 24.4404i −0.278570 + 1.22049i 0.621033 + 0.783784i \(0.286713\pi\)
−0.899603 + 0.436709i \(0.856144\pi\)
\(402\) −0.525798 0.253211i −0.0262244 0.0126290i
\(403\) 1.03350 + 2.14608i 0.0514821 + 0.106904i
\(404\) 0.974928 + 0.222521i 0.0485045 + 0.0110708i
\(405\) −22.0000 −1.09319
\(406\) 0 0
\(407\) −6.50658 −0.322519
\(408\) 5.90390 + 1.34753i 0.292287 + 0.0667125i
\(409\) −11.8955 24.7013i −0.588196 1.22140i −0.956510 0.291700i \(-0.905779\pi\)
0.368313 0.929702i \(-0.379935\pi\)
\(410\) 8.27120 + 3.98320i 0.408485 + 0.196716i
\(411\) −0.982743 + 4.30568i −0.0484751 + 0.212383i
\(412\) −3.30535 14.4817i −0.162843 0.713461i
\(413\) 12.2694 5.90864i 0.603739 0.290745i
\(414\) −1.56366 1.24698i −0.0768498 0.0612857i
\(415\) 23.8960 29.9647i 1.17301 1.47091i
\(416\) 0.575433 1.19490i 0.0282129 0.0585847i
\(417\) 0.624194 0.497778i 0.0305669 0.0243763i
\(418\) 4.14590i 0.202783i
\(419\) 10.9499 + 13.7308i 0.534939 + 0.670792i 0.973706 0.227809i \(-0.0731562\pi\)
−0.438767 + 0.898601i \(0.644585\pi\)
\(420\) −8.40196 + 1.91769i −0.409974 + 0.0935738i
\(421\) 30.2563 6.90581i 1.47460 0.336569i 0.591714 0.806148i \(-0.298452\pi\)
0.882890 + 0.469579i \(0.155594\pi\)
\(422\) −4.49014 5.63046i −0.218577 0.274086i
\(423\) 18.3262i 0.891052i
\(424\) 3.49646 2.78833i 0.169803 0.135413i
\(425\) −18.7352 + 38.9041i −0.908793 + 1.88713i
\(426\) −2.49396 + 3.12733i −0.120833 + 0.151519i
\(427\) 1.08046 + 0.861642i 0.0522873 + 0.0416978i
\(428\) −9.86045 + 4.74854i −0.476623 + 0.229529i
\(429\) 0.0448660 + 0.196571i 0.00216615 + 0.00949053i
\(430\) 3.83539 16.8039i 0.184959 0.810357i
\(431\) −13.1512 6.33329i −0.633472 0.305064i 0.0894526 0.995991i \(-0.471488\pi\)
−0.722924 + 0.690927i \(0.757203\pi\)
\(432\) 2.79321 + 5.80016i 0.134388 + 0.279060i
\(433\) 10.1217 + 2.31020i 0.486416 + 0.111021i 0.458694 0.888594i \(-0.348317\pi\)
0.0277224 + 0.999616i \(0.491175\pi\)
\(434\) −13.9443 −0.669346
\(435\) 0 0
\(436\) 23.2705 1.11446
\(437\) −5.84957 1.33513i −0.279823 0.0638677i
\(438\) −2.27184 4.71753i −0.108553 0.225413i
\(439\) −18.8701 9.08738i −0.900622 0.433717i −0.0745088 0.997220i \(-0.523739\pi\)
−0.826114 + 0.563503i \(0.809453\pi\)
\(440\) 2.65019 11.6112i 0.126343 0.553543i
\(441\) 1.16513 + 5.10479i 0.0554826 + 0.243085i
\(442\) −0.576008 + 0.277391i −0.0273979 + 0.0131941i
\(443\) 1.49317 + 1.19076i 0.0709424 + 0.0565747i 0.658319 0.752739i \(-0.271268\pi\)
−0.587377 + 0.809314i \(0.699839\pi\)
\(444\) −2.93552 + 3.68102i −0.139313 + 0.174694i
\(445\) −7.87321 + 16.3489i −0.373226 + 0.775012i
\(446\) −1.29196 + 1.03030i −0.0611760 + 0.0487862i
\(447\) 5.94427i 0.281154i
\(448\) −0.329118 0.412701i −0.0155494 0.0194983i
\(449\) −25.4696 + 5.81327i −1.20199 + 0.274345i −0.776205 0.630481i \(-0.782858\pi\)
−0.425781 + 0.904826i \(0.640001\pi\)
\(450\) 15.5445 3.54793i 0.732775 0.167251i
\(451\) −3.32086 4.16422i −0.156373 0.196085i
\(452\) 12.8541i 0.604606i
\(453\) −1.29196 + 1.03030i −0.0607015 + 0.0484078i
\(454\) −5.60137 + 11.6314i −0.262885 + 0.545887i
\(455\) 1.26845 1.59059i 0.0594660 0.0745680i
\(456\) −5.24469 4.18250i −0.245605 0.195863i
\(457\) 16.8555 8.11719i 0.788467 0.379706i 0.00409151 0.999992i \(-0.498698\pi\)
0.784376 + 0.620286i \(0.212983\pi\)
\(458\) −0.315180 1.38090i −0.0147274 0.0645250i
\(459\) 3.38561 14.8333i 0.158027 0.692360i
\(460\) −6.94485 3.34446i −0.323805 0.155936i
\(461\) −16.9122 35.1186i −0.787681 1.63564i −0.771886 0.635761i \(-0.780686\pi\)
−0.0157954 0.999875i \(-0.505028\pi\)
\(462\) −1.15075 0.262650i −0.0535376 0.0122196i
\(463\) −10.7082 −0.497652 −0.248826 0.968548i \(-0.580045\pi\)
−0.248826 + 0.968548i \(0.580045\pi\)
\(464\) 0 0
\(465\) 24.0344 1.11457
\(466\) −9.18032 2.09535i −0.425270 0.0970651i
\(467\) 7.78573 + 16.1672i 0.360281 + 0.748130i 0.999787 0.0206558i \(-0.00657541\pi\)
−0.639506 + 0.768786i \(0.720861\pi\)
\(468\) −0.900969 0.433884i −0.0416473 0.0200563i
\(469\) 0.760222 3.33075i 0.0351038 0.153800i
\(470\) −3.71026 16.2557i −0.171142 0.749820i
\(471\) 8.10872 3.90495i 0.373630 0.179931i
\(472\) 10.6470 + 8.49071i 0.490068 + 0.390816i
\(473\) −6.23490 + 7.81831i −0.286681 + 0.359486i
\(474\) −1.00932 + 2.09587i −0.0463595 + 0.0962664i
\(475\) 37.3972 29.8233i 1.71590 1.36839i
\(476\) 15.8541i 0.726672i
\(477\) −3.26463 4.09372i −0.149477 0.187439i
\(478\) −16.7160 + 3.81532i −0.764573 + 0.174509i
\(479\) 10.9000 2.48786i 0.498035 0.113673i 0.0338776 0.999426i \(-0.489214\pi\)
0.464157 + 0.885753i \(0.346357\pi\)
\(480\) −8.34352 10.4624i −0.380828 0.477543i
\(481\) 1.11146i 0.0506780i
\(482\) −2.24807 + 1.79278i −0.102397 + 0.0816587i
\(483\) −0.741162 + 1.53904i −0.0337240 + 0.0700287i
\(484\) 9.17042 11.4993i 0.416837 0.522697i
\(485\) 10.7341 + 8.56020i 0.487413 + 0.388699i
\(486\) −7.76458 + 3.73922i −0.352209 + 0.169615i
\(487\) −9.47100 41.4952i −0.429172 1.88033i −0.472613 0.881270i \(-0.656689\pi\)
0.0434408 0.999056i \(-0.486168\pi\)
\(488\) −0.307516 + 1.34732i −0.0139206 + 0.0609902i
\(489\) −3.36015 1.61817i −0.151951 0.0731760i
\(490\) −2.06699 4.29215i −0.0933772 0.193900i
\(491\) −14.7454 3.36554i −0.665451 0.151885i −0.123564 0.992337i \(-0.539433\pi\)
−0.541886 + 0.840452i \(0.682290\pi\)
\(492\) −3.85410 −0.173756
\(493\) 0 0
\(494\) 0.708204 0.0318636
\(495\) −13.5947 3.10289i −0.611035 0.139465i
\(496\) 8.11719 + 16.8555i 0.364472 + 0.756835i
\(497\) −21.0975 10.1600i −0.946350 0.455738i
\(498\) 0.845218 3.70314i 0.0378751 0.165942i
\(499\) 5.49336 + 24.0680i 0.245916 + 1.07743i 0.935529 + 0.353251i \(0.114924\pi\)
−0.689612 + 0.724179i \(0.742219\pi\)
\(500\) 27.2728 13.1339i 1.21968 0.587365i
\(501\) 5.08705 + 4.05678i 0.227273 + 0.181244i
\(502\) 7.57284 9.49605i 0.337993 0.423829i
\(503\) −6.19174 + 12.8573i −0.276076 + 0.573278i −0.992194 0.124701i \(-0.960203\pi\)
0.716118 + 0.697979i \(0.245917\pi\)
\(504\) 10.2343 8.16159i 0.455872 0.363546i
\(505\) 2.38197i 0.105996i
\(506\) −0.658236 0.825401i −0.0292621 0.0366936i
\(507\) 7.79942 1.78017i 0.346385 0.0790600i
\(508\) 25.1516 5.74068i 1.11592 0.254701i
\(509\) 19.6788 + 24.6764i 0.872246 + 1.09376i 0.994855 + 0.101307i \(0.0323025\pi\)
−0.122609 + 0.992455i \(0.539126\pi\)
\(510\) 6.45085i 0.285648i
\(511\) 23.9651 19.1115i 1.06015 0.845443i
\(512\) 8.11719 16.8555i 0.358732 0.744915i
\(513\) −10.5084 + 13.1771i −0.463955 + 0.581782i
\(514\) −11.2007 8.93226i −0.494042 0.393985i
\(515\) 31.8780 15.3517i 1.40471 0.676475i
\(516\) 1.61018 + 7.05464i 0.0708841 + 0.310563i
\(517\) −2.15261 + 9.43122i −0.0946719 + 0.414785i
\(518\) 5.86222 + 2.82310i 0.257571 + 0.124040i
\(519\) −1.09680 2.27753i −0.0481441 0.0999723i
\(520\) 1.98343 + 0.452706i 0.0869793 + 0.0198525i
\(521\) −4.09017 −0.179194 −0.0895968 0.995978i \(-0.528558\pi\)
−0.0895968 + 0.995978i \(0.528558\pi\)
\(522\) 0 0
\(523\) −20.3820 −0.891241 −0.445621 0.895222i \(-0.647017\pi\)
−0.445621 + 0.895222i \(0.647017\pi\)
\(524\) 22.5992 + 5.15811i 0.987249 + 0.225333i
\(525\) −5.90864 12.2694i −0.257874 0.535482i
\(526\) −9.30362 4.48039i −0.405657 0.195354i
\(527\) 9.83871 43.1062i 0.428581 1.87774i
\(528\) 0.352382 + 1.54389i 0.0153355 + 0.0671891i
\(529\) 19.3457 9.31641i 0.841119 0.405061i
\(530\) 3.72459 + 2.97026i 0.161786 + 0.129020i
\(531\) 9.94109 12.4657i 0.431407 0.540967i
\(532\) 7.62000 15.8231i 0.330369 0.686018i
\(533\) 0.711334 0.567270i 0.0308113 0.0245712i
\(534\) 1.79837i 0.0778232i
\(535\) −16.2537 20.3815i −0.702708 0.881168i
\(536\) 3.33075 0.760222i 0.143867 0.0328366i
\(537\) −9.64062 + 2.20041i −0.416023 + 0.0949546i
\(538\) −2.31203 2.89919i −0.0996786 0.124993i
\(539\) 2.76393i 0.119051i
\(540\) −16.9286 + 13.5001i −0.728490 + 0.580952i
\(541\) −6.33329 + 13.1512i −0.272289 + 0.565415i −0.991610 0.129263i \(-0.958739\pi\)
0.719321 + 0.694678i \(0.244453\pi\)
\(542\) 3.92287 4.91912i 0.168502 0.211294i
\(543\) −2.87226 2.29055i −0.123261 0.0982970i
\(544\) −22.1801 + 10.6814i −0.950963 + 0.457960i
\(545\) 12.3342 + 54.0398i 0.528341 + 2.31481i
\(546\) 0.0448660 0.196571i 0.00192009 0.00841246i
\(547\) −6.65092 3.20292i −0.284373 0.136947i 0.286260 0.958152i \(-0.407588\pi\)
−0.570633 + 0.821205i \(0.693302\pi\)
\(548\) −5.01670 10.4173i −0.214303 0.445004i
\(549\) 1.57747 + 0.360046i 0.0673246 + 0.0153664i
\(550\) 8.41641 0.358877
\(551\) 0 0
\(552\) −1.70820 −0.0727060
\(553\) −13.2766 3.03030i −0.564579 0.128861i
\(554\) 5.73368 + 11.9061i 0.243601 + 0.505842i
\(555\) −10.1042 4.86591i −0.428898 0.206546i
\(556\) −0.465107 + 2.03777i −0.0197249 + 0.0864205i
\(557\) −1.22533 5.36852i −0.0519188 0.227471i 0.942312 0.334737i \(-0.108648\pi\)
−0.994230 + 0.107266i \(0.965790\pi\)
\(558\) −14.7094 + 7.08369i −0.622700 + 0.299876i
\(559\) −1.33553 1.06505i −0.0564868 0.0450467i
\(560\) 9.96257 12.4927i 0.420995 0.527911i
\(561\) 1.62387 3.37201i 0.0685600 0.142366i
\(562\) −11.1738 + 8.91079i −0.471337 + 0.375879i
\(563\) 28.3951i 1.19671i −0.801230 0.598356i \(-0.795821\pi\)
0.801230 0.598356i \(-0.204179\pi\)
\(564\) 4.36443 + 5.47282i 0.183776 + 0.230447i
\(565\) 29.8504 6.81315i 1.25581 0.286632i
\(566\) 3.15493 0.720093i 0.132612 0.0302678i
\(567\) −7.95818 9.97924i −0.334212 0.419089i
\(568\) 23.4164i 0.982531i
\(569\) −1.52009 + 1.21223i −0.0637256 + 0.0508195i −0.654835 0.755772i \(-0.727262\pi\)
0.591109 + 0.806592i \(0.298690\pi\)
\(570\) 3.10049 6.43823i 0.129865 0.269668i
\(571\) −21.5145 + 26.9783i −0.900354 + 1.12901i 0.0907443 + 0.995874i \(0.471075\pi\)
−0.991098 + 0.133134i \(0.957496\pi\)
\(572\) −0.412701 0.329118i −0.0172559 0.0137611i
\(573\) −9.48528 + 4.56787i −0.396253 + 0.190825i
\(574\) 1.18520 + 5.19270i 0.0494693 + 0.216739i
\(575\) 2.71038 11.8750i 0.113031 0.495220i
\(576\) −0.556829 0.268155i −0.0232012 0.0111731i
\(577\) −1.19923 2.49022i −0.0499244 0.103669i 0.874514 0.485000i \(-0.161180\pi\)
−0.924439 + 0.381331i \(0.875466\pi\)
\(578\) 1.32656 + 0.302780i 0.0551778 + 0.0125940i
\(579\) 7.70820 0.320342
\(580\) 0 0
\(581\) 22.2361 0.922508
\(582\) 1.32656 + 0.302780i 0.0549879 + 0.0125506i
\(583\) −1.19923 2.49022i −0.0496668 0.103134i
\(584\) 27.6169 + 13.2996i 1.14280 + 0.550342i
\(585\) 0.530037 2.32225i 0.0219143 0.0960130i
\(586\) 1.17280 + 5.13837i 0.0484479 + 0.212264i
\(587\) −42.0014 + 20.2268i −1.73358 + 0.834850i −0.748421 + 0.663224i \(0.769188\pi\)
−0.985162 + 0.171626i \(0.945098\pi\)
\(588\) 1.56366 + 1.24698i 0.0644844 + 0.0514246i
\(589\) −30.5377 + 38.2931i −1.25829 + 1.57784i
\(590\) −6.29417 + 13.0700i −0.259127 + 0.538082i
\(591\) −3.04019 + 2.42447i −0.125057 + 0.0997293i
\(592\) 8.72949i 0.358780i
\(593\) 9.00176 + 11.2878i 0.369658 + 0.463536i 0.931518 0.363696i \(-0.118485\pi\)
−0.561860 + 0.827232i \(0.689914\pi\)
\(594\) −2.89121 + 0.659899i −0.118628 + 0.0270760i
\(595\) −36.8171 + 8.40327i −1.50935 + 0.344500i
\(596\) −9.70294 12.1671i −0.397448 0.498384i
\(597\) 3.61803i 0.148076i
\(598\) 0.140995 0.112440i 0.00576573 0.00459802i
\(599\) 5.67038 11.7747i 0.231685 0.481099i −0.752420 0.658683i \(-0.771114\pi\)
0.984106 + 0.177584i \(0.0568281\pi\)
\(600\) 8.49071 10.6470i 0.346632 0.434662i
\(601\) 22.7975 + 18.1804i 0.929928 + 0.741593i 0.966212 0.257749i \(-0.0829807\pi\)
−0.0362840 + 0.999342i \(0.511552\pi\)
\(602\) 9.00969 4.33884i 0.367207 0.176838i
\(603\) −0.890084 3.89971i −0.0362470 0.158809i
\(604\) 0.962679 4.21777i 0.0391708 0.171619i
\(605\) 31.5649 + 15.2009i 1.28330 + 0.618003i
\(606\) 0.102426 + 0.212690i 0.00416077 + 0.00863994i
\(607\) 10.7035 + 2.44299i 0.434440 + 0.0991581i 0.434147 0.900842i \(-0.357050\pi\)
0.000292533 1.00000i \(0.499907\pi\)
\(608\) 27.2705 1.10597
\(609\) 0 0
\(610\) −1.47214 −0.0596050
\(611\) −1.61104 0.367710i −0.0651759 0.0148760i
\(612\) 8.05388 + 16.7241i 0.325559 + 0.676030i
\(613\) 24.8136 + 11.9496i 1.00221 + 0.482640i 0.861689 0.507438i \(-0.169407\pi\)
0.140523 + 0.990077i \(0.455121\pi\)
\(614\) −2.63779 + 11.5569i −0.106452 + 0.466398i
\(615\) −2.04282 8.95017i −0.0823744 0.360906i
\(616\) 6.22554 2.99806i 0.250834 0.120795i
\(617\) 11.0866 + 8.84130i 0.446331 + 0.355937i 0.820716 0.571336i \(-0.193575\pi\)
−0.374385 + 0.927273i \(0.622146\pi\)
\(618\) 2.18632 2.74155i 0.0879465 0.110281i
\(619\) −3.06137 + 6.35699i −0.123047 + 0.255509i −0.953389 0.301745i \(-0.902431\pi\)
0.830342 + 0.557254i \(0.188145\pi\)
\(620\) −49.1952 + 39.2318i −1.97573 + 1.57559i
\(621\) 4.29180i 0.172224i
\(622\) −0.805422 1.00997i −0.0322945 0.0404960i
\(623\) −10.2639 + 2.34267i −0.411215 + 0.0938571i
\(624\) −0.263728 + 0.0601941i −0.0105576 + 0.00240969i
\(625\) 14.2360 + 17.8514i 0.569441 + 0.714057i
\(626\) 7.97871i 0.318894i
\(627\) −3.24139 + 2.58493i −0.129449 + 0.103232i
\(628\) −10.2233 + 21.2289i −0.407954 + 0.847125i
\(629\) −12.8633 + 16.1301i −0.512895 + 0.643150i
\(630\) 10.9021 + 8.69411i 0.434349 + 0.346382i
\(631\) −25.4206 + 12.2419i −1.01198 + 0.487344i −0.864987 0.501794i \(-0.832674\pi\)
−0.146992 + 0.989138i \(0.546959\pi\)
\(632\) −3.03030 13.2766i −0.120539 0.528115i
\(633\) −1.60251 + 7.02107i −0.0636942 + 0.279062i
\(634\) −15.4287 7.43009i −0.612754 0.295087i
\(635\) 26.6625 + 55.3653i 1.05807 + 2.19711i
\(636\) −1.94986 0.445042i −0.0773168 0.0176471i
\(637\) −0.472136 −0.0187067
\(638\) 0 0
\(639\) −27.4164 −1.08458
\(640\) 42.7674 + 9.76138i 1.69053 + 0.385853i
\(641\) −4.79690 9.96087i −0.189466 0.393431i 0.784498 0.620131i \(-0.212921\pi\)
−0.973965 + 0.226700i \(0.927206\pi\)
\(642\) −2.32774 1.12098i −0.0918684 0.0442415i
\(643\) −8.32593 + 36.4783i −0.328343 + 1.43856i 0.493946 + 0.869493i \(0.335554\pi\)
−0.822288 + 0.569071i \(0.807303\pi\)
\(644\) −0.995144 4.36001i −0.0392142 0.171808i
\(645\) −15.5292 + 7.47845i −0.611460 + 0.294464i
\(646\) −10.2779 8.19633i −0.404378 0.322480i
\(647\) 19.0338 23.8676i 0.748296 0.938334i −0.251266 0.967918i \(-0.580847\pi\)
0.999562 + 0.0295841i \(0.00941830\pi\)
\(648\) 5.53806 11.4999i 0.217556 0.451759i
\(649\) 6.58021 5.24754i 0.258296 0.205984i
\(650\) 1.43769i 0.0563910i
\(651\) 8.69411 + 10.9021i 0.340749 + 0.427286i
\(652\) 9.51913 2.17268i 0.372798 0.0850887i
\(653\) −46.8094 + 10.6839i −1.83179 + 0.418095i −0.992151 0.125047i \(-0.960092\pi\)
−0.839641 + 0.543141i \(0.817235\pi\)
\(654\) 3.42509 + 4.29493i 0.133932 + 0.167945i
\(655\) 55.2148i 2.15742i
\(656\) 5.58689 4.45539i 0.218131 0.173954i
\(657\) 15.5715 32.3345i 0.607500 1.26149i
\(658\) 6.03149 7.56325i 0.235132 0.294846i
\(659\) −5.51639 4.39917i −0.214888 0.171368i 0.510130 0.860097i \(-0.329597\pi\)
−0.725018 + 0.688730i \(0.758169\pi\)
\(660\) −4.79877 + 2.31097i −0.186792 + 0.0899543i
\(661\) 8.33360 + 36.5119i 0.324139 + 1.42015i 0.830111 + 0.557598i \(0.188277\pi\)
−0.505972 + 0.862550i \(0.668866\pi\)
\(662\) −2.91284 + 12.7620i −0.113211 + 0.496008i
\(663\) 0.576008 + 0.277391i 0.0223703 + 0.0107730i
\(664\) 9.64787 + 20.0340i 0.374410 + 0.777470i
\(665\) 40.7840 + 9.30868i 1.58153 + 0.360975i
\(666\) 7.61803 0.295193
\(667\) 0 0
\(668\) −17.0344 −0.659082
\(669\) 1.61104 + 0.367710i 0.0622866 + 0.0142165i
\(670\) 1.57904 + 3.27891i 0.0610037 + 0.126676i
\(671\) 0.769519 + 0.370581i 0.0297070 + 0.0143061i
\(672\) 1.72764 7.56927i 0.0666451 0.291991i
\(673\) −1.44019 6.30987i −0.0555151 0.243227i 0.939556 0.342397i \(-0.111239\pi\)
−0.995071 + 0.0991692i \(0.968382\pi\)
\(674\) 18.9706 9.13574i 0.730718 0.351895i
\(675\) −26.7502 21.3326i −1.02962 0.821091i
\(676\) −13.0585 + 16.3749i −0.502252 + 0.629804i
\(677\) 17.7167 36.7891i 0.680908 1.41392i −0.218073 0.975932i \(-0.569977\pi\)
0.898981 0.437987i \(-0.144309\pi\)
\(678\) 2.37242 1.89194i 0.0911123 0.0726597i
\(679\) 7.96556i 0.305690i
\(680\) −23.5454 29.5250i −0.902926 1.13223i
\(681\) 12.5862 2.87271i 0.482302 0.110082i
\(682\) −8.40196 + 1.91769i −0.321728 + 0.0734323i
\(683\) 13.0023 + 16.3044i 0.497520 + 0.623870i 0.965668 0.259780i \(-0.0836500\pi\)
−0.468148 + 0.883650i \(0.655079\pi\)
\(684\) 20.5623i 0.786219i
\(685\) 21.5324 17.1715i 0.822712 0.656091i
\(686\) 5.39651 11.2060i 0.206040 0.427846i
\(687\) −0.883116 + 1.10739i −0.0336930 + 0.0422496i
\(688\) −10.4894 8.36499i −0.399903 0.318912i
\(689\) 0.425380 0.204852i 0.0162057 0.00780424i
\(690\) −0.404912 1.77404i −0.0154148 0.0675365i
\(691\) −2.63305 + 11.5361i −0.100166 + 0.438856i 0.899831 + 0.436239i \(0.143690\pi\)
−0.999997 + 0.00261618i \(0.999167\pi\)
\(692\) 5.96264 + 2.87146i 0.226666 + 0.109156i
\(693\) −3.51019 7.28899i −0.133341 0.276886i
\(694\) −19.3563 4.41795i −0.734756 0.167703i
\(695\) −4.97871 −0.188853
\(696\) 0 0
\(697\) −16.8885 −0.639699
\(698\) −2.72821 0.622697i −0.103264 0.0235694i
\(699\) 4.08563 + 8.48389i 0.154533 + 0.320890i
\(700\) 32.1218 + 15.4690i 1.21409 + 0.584674i
\(701\) −4.68534 + 20.5278i −0.176963 + 0.775325i 0.806059 + 0.591835i \(0.201596\pi\)
−0.983022 + 0.183490i \(0.941261\pi\)
\(702\) −0.112724 0.493877i −0.00425450 0.0186402i
\(703\) 20.5908 9.91602i 0.776598 0.373990i
\(704\) −0.255063 0.203406i −0.00961305 0.00766615i
\(705\) −10.3959 + 13.0361i −0.391533 + 0.490967i
\(706\) 5.12836 10.6491i 0.193008 0.400786i
\(707\) −1.08046 + 0.861642i −0.0406351 + 0.0324054i
\(708\) 6.09017i 0.228883i
\(709\) 25.8789 + 32.4511i 0.971904 + 1.21873i 0.975784 + 0.218736i \(0.0701934\pi\)
−0.00388053 + 0.999992i \(0.501235\pi\)
\(710\) 24.3189 5.55062i 0.912671 0.208311i
\(711\) −15.5445 + 3.54793i −0.582965 + 0.133058i
\(712\) −6.56402 8.23102i −0.245997 0.308470i
\(713\) 12.4721i 0.467085i
\(714\) −2.92612 + 2.33350i −0.109507 + 0.0873291i
\(715\) 0.545546 1.13284i 0.0204022 0.0423657i
\(716\) 16.1412 20.2405i 0.603227 0.756422i
\(717\) 13.4052 + 10.6903i 0.500626 + 0.399236i
\(718\) −13.2325 + 6.37241i −0.493831 + 0.237816i
\(719\) −1.89289 8.29330i −0.0705929 0.309288i 0.927288 0.374348i \(-0.122133\pi\)
−0.997881 + 0.0650598i \(0.979276\pi\)
\(720\) 4.16297 18.2392i 0.155145 0.679733i
\(721\) 18.4950 + 8.90671i 0.688789 + 0.331703i
\(722\) 1.22340 + 2.54043i 0.0455304 + 0.0945449i
\(723\) 2.80330 + 0.639834i 0.104256 + 0.0237957i
\(724\) 9.61803 0.357451
\(725\) 0 0
\(726\) 3.47214 0.128863
\(727\) −27.3523 6.24299i −1.01444 0.231540i −0.317187 0.948363i \(-0.602738\pi\)
−0.697255 + 0.716824i \(0.745595\pi\)
\(728\) 0.512130 + 1.06345i 0.0189808 + 0.0394141i
\(729\) −7.66416 3.69087i −0.283858 0.136699i
\(730\) −7.26586 + 31.8338i −0.268922 + 1.17822i
\(731\) 7.05574 + 30.9132i 0.260966 + 1.14337i
\(732\) 0.556829 0.268155i 0.0205810 0.00991129i
\(733\) −11.5865 9.23991i −0.427956 0.341284i 0.385706 0.922622i \(-0.373958\pi\)
−0.813662 + 0.581338i \(0.802529\pi\)
\(734\) −10.5084 + 13.1771i −0.387871 + 0.486374i
\(735\) −2.06699 + 4.29215i −0.0762422 + 0.158319i
\(736\) 5.42925 4.32968i 0.200125 0.159594i
\(737\) 2.11146i 0.0777765i
\(738\) 3.88812 + 4.87555i 0.143124 + 0.179472i
\(739\) −48.8136 + 11.1414i −1.79564 + 0.409842i −0.984553 0.175089i \(-0.943979\pi\)
−0.811083 + 0.584931i \(0.801122\pi\)
\(740\) 28.6245 6.53337i 1.05226 0.240171i
\(741\) −0.441558 0.553696i −0.0162210 0.0203405i
\(742\) 2.76393i 0.101467i
\(743\) 27.5487 21.9693i 1.01066 0.805977i 0.0295793 0.999562i \(-0.490583\pi\)
0.981083 + 0.193586i \(0.0620118\pi\)
\(744\) −6.05019 + 12.5634i −0.221811 + 0.460595i
\(745\) 23.1121 28.9816i 0.846761 1.06180i
\(746\) 9.96260 + 7.94491i 0.364757 + 0.290884i
\(747\) 23.4562 11.2959i 0.858218 0.413296i
\(748\) 2.18034 + 9.55271i 0.0797212 + 0.349282i
\(749\) 3.36554 14.7454i 0.122974 0.538785i
\(750\) 6.43823 + 3.10049i 0.235091 + 0.113214i
\(751\) −8.03894 16.6930i −0.293345 0.609137i 0.701256 0.712910i \(-0.252623\pi\)
−0.994601 + 0.103772i \(0.966909\pi\)
\(752\) −12.6533 2.88804i −0.461419 0.105316i
\(753\) −12.1459 −0.442621
\(754\) 0 0
\(755\) 10.3050 0.375036
\(756\) −12.2473 2.79538i −0.445432 0.101667i
\(757\) 0.00923575 + 0.0191782i 0.000335679 + 0.000697045i 0.901137 0.433535i \(-0.142734\pi\)
−0.900801 + 0.434232i \(0.857020\pi\)
\(758\) −13.5264 6.51396i −0.491300 0.236598i
\(759\) −0.234922 + 1.02926i −0.00852711 + 0.0373597i
\(760\) 9.30868 + 40.7840i 0.337661 + 1.47939i
\(761\) −22.7059 + 10.9346i −0.823088 + 0.396378i −0.797518 0.603295i \(-0.793854\pi\)
−0.0255694 + 0.999673i \(0.508140\pi\)
\(762\) 4.76149 + 3.79716i 0.172490 + 0.137557i
\(763\) −20.0508 + 25.1430i −0.725889 + 0.910236i
\(764\) 11.9588 24.8328i 0.432656 0.898418i
\(765\) −34.5685 + 27.5675i −1.24983 + 0.996704i
\(766\) 17.8328i 0.644326i
\(767\) 0.896388 + 1.12403i 0.0323667 + 0.0405865i
\(768\) 3.95404 0.902484i 0.142679 0.0325656i
\(769\) 18.8753 4.30816i 0.680660 0.155356i 0.131807 0.991275i \(-0.457922\pi\)
0.548852 + 0.835919i \(0.315065\pi\)
\(770\) 4.58931 + 5.75481i