Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [841,2,Mod(63,841)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(841, base_ring=CyclotomicField(14))
chi = DirichletCharacter(H, H._module([11]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("841.63");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 841 = 29^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 841.e (of order \(14\), degree \(6\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(6.71541880999\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(4\) over \(\Q(\zeta_{14})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{14}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
63.1 | −1.26503 | + | 1.00883i | −1.57747 | + | 0.360046i | 0.137526 | − | 0.602539i | 1.77950 | + | 2.23143i | 1.63232 | − | 2.04686i | −0.497572 | − | 2.18001i | −0.970194 | − | 2.01463i | −0.344139 | + | 0.165729i | −4.50225 | − | 1.02761i |
63.2 | −0.483198 | + | 0.385338i | −0.602539 | + | 0.137526i | −0.360046 | + | 1.57747i | −2.40299 | − | 3.01326i | 0.238152 | − | 0.298633i | 0.497572 | + | 2.18001i | −0.970194 | − | 2.01463i | −2.35877 | + | 1.13592i | 2.32225 | + | 0.530037i |
63.3 | 0.483198 | − | 0.385338i | 0.602539 | − | 0.137526i | −0.360046 | + | 1.57747i | −2.40299 | − | 3.01326i | 0.238152 | − | 0.298633i | 0.497572 | + | 2.18001i | 0.970194 | + | 2.01463i | −2.35877 | + | 1.13592i | −2.32225 | − | 0.530037i |
63.4 | 1.26503 | − | 1.00883i | 1.57747 | − | 0.360046i | 0.137526 | − | 0.602539i | 1.77950 | + | 2.23143i | 1.63232 | − | 2.04686i | −0.497572 | − | 2.18001i | 0.970194 | + | 2.01463i | −0.344139 | + | 0.165729i | 4.50225 | + | 1.02761i |
196.1 | −1.57747 | + | 0.360046i | 0.702039 | − | 1.45780i | 0.556829 | − | 0.268155i | −0.635097 | − | 2.78254i | −0.582567 | + | 2.55239i | −2.01463 | − | 0.970194i | 1.74823 | − | 1.39417i | 0.238152 | + | 0.298633i | 2.00369 | + | 4.16070i |
196.2 | −0.602539 | + | 0.137526i | 0.268155 | − | 0.556829i | −1.45780 | + | 0.702039i | 0.857618 | + | 3.75747i | −0.0849954 | + | 0.372389i | 2.01463 | + | 0.970194i | 1.74823 | − | 1.39417i | 1.63232 | + | 2.04686i | −1.03350 | − | 2.14608i |
196.3 | 0.602539 | − | 0.137526i | −0.268155 | + | 0.556829i | −1.45780 | + | 0.702039i | 0.857618 | + | 3.75747i | −0.0849954 | + | 0.372389i | 2.01463 | + | 0.970194i | −1.74823 | + | 1.39417i | 1.63232 | + | 2.04686i | 1.03350 | + | 2.14608i |
196.4 | 1.57747 | − | 0.360046i | −0.702039 | + | 1.45780i | 0.556829 | − | 0.268155i | −0.635097 | − | 2.78254i | −0.582567 | + | 2.55239i | −2.01463 | − | 0.970194i | −1.74823 | + | 1.39417i | 0.238152 | + | 0.298633i | −2.00369 | − | 4.16070i |
236.1 | −1.57747 | − | 0.360046i | 0.702039 | + | 1.45780i | 0.556829 | + | 0.268155i | −0.635097 | + | 2.78254i | −0.582567 | − | 2.55239i | −2.01463 | + | 0.970194i | 1.74823 | + | 1.39417i | 0.238152 | − | 0.298633i | 2.00369 | − | 4.16070i |
236.2 | −0.602539 | − | 0.137526i | 0.268155 | + | 0.556829i | −1.45780 | − | 0.702039i | 0.857618 | − | 3.75747i | −0.0849954 | − | 0.372389i | 2.01463 | − | 0.970194i | 1.74823 | + | 1.39417i | 1.63232 | − | 2.04686i | −1.03350 | + | 2.14608i |
236.3 | 0.602539 | + | 0.137526i | −0.268155 | − | 0.556829i | −1.45780 | − | 0.702039i | 0.857618 | − | 3.75747i | −0.0849954 | − | 0.372389i | 2.01463 | − | 0.970194i | −1.74823 | − | 1.39417i | 1.63232 | − | 2.04686i | 1.03350 | − | 2.14608i |
236.4 | 1.57747 | + | 0.360046i | −0.702039 | − | 1.45780i | 0.556829 | + | 0.268155i | −0.635097 | + | 2.78254i | −0.582567 | − | 2.55239i | −2.01463 | + | 0.970194i | −1.74823 | − | 1.39417i | 0.238152 | − | 0.298633i | −2.00369 | + | 4.16070i |
267.1 | −1.26503 | − | 1.00883i | −1.57747 | − | 0.360046i | 0.137526 | + | 0.602539i | 1.77950 | − | 2.23143i | 1.63232 | + | 2.04686i | −0.497572 | + | 2.18001i | −0.970194 | + | 2.01463i | −0.344139 | − | 0.165729i | −4.50225 | + | 1.02761i |
267.2 | −0.483198 | − | 0.385338i | −0.602539 | − | 0.137526i | −0.360046 | − | 1.57747i | −2.40299 | + | 3.01326i | 0.238152 | + | 0.298633i | 0.497572 | − | 2.18001i | −0.970194 | + | 2.01463i | −2.35877 | − | 1.13592i | 2.32225 | − | 0.530037i |
267.3 | 0.483198 | + | 0.385338i | 0.602539 | + | 0.137526i | −0.360046 | − | 1.57747i | −2.40299 | + | 3.01326i | 0.238152 | + | 0.298633i | 0.497572 | − | 2.18001i | 0.970194 | − | 2.01463i | −2.35877 | − | 1.13592i | −2.32225 | + | 0.530037i |
267.4 | 1.26503 | + | 1.00883i | 1.57747 | + | 0.360046i | 0.137526 | + | 0.602539i | 1.77950 | − | 2.23143i | 1.63232 | + | 2.04686i | −0.497572 | + | 2.18001i | 0.970194 | − | 2.01463i | −0.344139 | − | 0.165729i | 4.50225 | − | 1.02761i |
270.1 | −0.702039 | − | 1.45780i | 1.26503 | − | 1.00883i | −0.385338 | + | 0.483198i | −2.57146 | + | 1.23835i | −2.35877 | − | 1.13592i | 1.39417 | + | 1.74823i | −2.18001 | − | 0.497572i | −0.0849954 | + | 0.372389i | 3.61052 | + | 2.87930i |
270.2 | −0.268155 | − | 0.556829i | 0.483198 | − | 0.385338i | 1.00883 | − | 1.26503i | 3.47243 | − | 1.67223i | −0.344139 | − | 0.165729i | −1.39417 | − | 1.74823i | −2.18001 | − | 0.497572i | −0.582567 | + | 2.55239i | −1.86230 | − | 1.48513i |
270.3 | 0.268155 | + | 0.556829i | −0.483198 | + | 0.385338i | 1.00883 | − | 1.26503i | 3.47243 | − | 1.67223i | −0.344139 | − | 0.165729i | −1.39417 | − | 1.74823i | 2.18001 | + | 0.497572i | −0.582567 | + | 2.55239i | 1.86230 | + | 1.48513i |
270.4 | 0.702039 | + | 1.45780i | −1.26503 | + | 1.00883i | −0.385338 | + | 0.483198i | −2.57146 | + | 1.23835i | −2.35877 | − | 1.13592i | 1.39417 | + | 1.74823i | 2.18001 | + | 0.497572i | −0.0849954 | + | 0.372389i | −3.61052 | − | 2.87930i |
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
29.b | even | 2 | 1 | inner |
29.d | even | 7 | 5 | inner |
29.e | even | 14 | 5 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 841.2.e.j | 24 | |
29.b | even | 2 | 1 | inner | 841.2.e.j | 24 | |
29.c | odd | 4 | 1 | 841.2.d.g | 12 | ||
29.c | odd | 4 | 1 | 841.2.d.i | 12 | ||
29.d | even | 7 | 1 | 841.2.b.b | 4 | ||
29.d | even | 7 | 5 | inner | 841.2.e.j | 24 | |
29.e | even | 14 | 1 | 841.2.b.b | 4 | ||
29.e | even | 14 | 5 | inner | 841.2.e.j | 24 | |
29.f | odd | 28 | 1 | 841.2.a.a | ✓ | 2 | |
29.f | odd | 28 | 1 | 841.2.a.c | yes | 2 | |
29.f | odd | 28 | 5 | 841.2.d.g | 12 | ||
29.f | odd | 28 | 5 | 841.2.d.i | 12 | ||
87.k | even | 28 | 1 | 7569.2.a.d | 2 | ||
87.k | even | 28 | 1 | 7569.2.a.l | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
841.2.a.a | ✓ | 2 | 29.f | odd | 28 | 1 | |
841.2.a.c | yes | 2 | 29.f | odd | 28 | 1 | |
841.2.b.b | 4 | 29.d | even | 7 | 1 | ||
841.2.b.b | 4 | 29.e | even | 14 | 1 | ||
841.2.d.g | 12 | 29.c | odd | 4 | 1 | ||
841.2.d.g | 12 | 29.f | odd | 28 | 5 | ||
841.2.d.i | 12 | 29.c | odd | 4 | 1 | ||
841.2.d.i | 12 | 29.f | odd | 28 | 5 | ||
841.2.e.j | 24 | 1.a | even | 1 | 1 | trivial | |
841.2.e.j | 24 | 29.b | even | 2 | 1 | inner | |
841.2.e.j | 24 | 29.d | even | 7 | 5 | inner | |
841.2.e.j | 24 | 29.e | even | 14 | 5 | inner | |
7569.2.a.d | 2 | 87.k | even | 28 | 1 | ||
7569.2.a.l | 2 | 87.k | even | 28 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{24} - 3 T_{2}^{22} + 8 T_{2}^{20} - 21 T_{2}^{18} + 55 T_{2}^{16} - 144 T_{2}^{14} + 377 T_{2}^{12} + \cdots + 1 \) acting on \(S_{2}^{\mathrm{new}}(841, [\chi])\).