Newspace parameters
| Level: | \( N \) | \(=\) | \( 841 = 29^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 841.d (of order \(7\), degree \(6\), not minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(6.71541880999\) |
| Analytic rank: | \(0\) |
| Dimension: | \(48\) |
| Relative dimension: | \(8\) over \(\Q(\zeta_{7})\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{7}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 190.1 | −1.36873 | − | 0.659148i | −1.94206 | + | 2.43527i | 0.191979 | + | 0.240734i | −1.68890 | − | 0.813330i | 4.26336 | − | 2.05313i | −0.214022 | + | 0.268375i | 0.572010 | + | 2.50614i | −1.49136 | − | 6.53408i | 1.77555 | + | 2.22647i |
| 190.2 | −1.25619 | − | 0.604951i | −0.0173539 | + | 0.0217611i | −0.0349213 | − | 0.0437899i | 1.03288 | + | 0.497407i | 0.0349642 | − | 0.0168379i | −0.0688706 | + | 0.0863610i | 0.637886 | + | 2.79476i | 0.667390 | + | 2.92403i | −0.996587 | − | 1.24968i |
| 190.3 | −0.836654 | − | 0.402911i | 1.02888 | − | 1.29017i | −0.709327 | − | 0.889468i | 0.454733 | + | 0.218988i | −1.38064 | + | 0.664881i | −2.58918 | + | 3.24673i | 0.648358 | + | 2.84064i | 0.0616082 | + | 0.269923i | −0.292221 | − | 0.366434i |
| 190.4 | −0.0377915 | − | 0.0181994i | −1.88776 | + | 2.36718i | −1.24588 | − | 1.56229i | 1.56952 | + | 0.755841i | 0.114422 | − | 0.0551030i | 1.28043 | − | 1.60561i | 0.0373185 | + | 0.163503i | −1.37232 | − | 6.01254i | −0.0455587 | − | 0.0571287i |
| 190.5 | 0.938760 | + | 0.452083i | 1.34483 | − | 1.68636i | −0.570088 | − | 0.714867i | −1.31745 | − | 0.634453i | 2.02485 | − | 0.975115i | −2.36982 | + | 2.97166i | −0.675706 | − | 2.96046i | −0.367688 | − | 1.61095i | −0.949949 | − | 1.19120i |
| 190.6 | 1.73762 | + | 0.836795i | −0.302293 | + | 0.379063i | 1.07213 | + | 1.34441i | −2.65771 | − | 1.27989i | −0.842470 | + | 0.405712i | 1.62444 | − | 2.03699i | −0.120353 | − | 0.527303i | 0.615255 | + | 2.69561i | −3.54710 | − | 4.44792i |
| 190.7 | 2.15716 | + | 1.03884i | −1.31018 | + | 1.64292i | 2.32720 | + | 2.91821i | 2.18748 | + | 1.05344i | −4.53300 | + | 2.18298i | −0.235910 | + | 0.295821i | 0.923050 | + | 4.04415i | −0.315036 | − | 1.38026i | 3.62441 | + | 4.54487i |
| 190.8 | 2.26970 | + | 1.09303i | −0.654995 | + | 0.821338i | 2.70986 | + | 3.39805i | 1.32042 | + | 0.635882i | −2.38439 | + | 1.14826i | 2.57292 | − | 3.22635i | 1.31525 | + | 5.76249i | 0.421985 | + | 1.84884i | 2.30193 | + | 2.88653i |
| 571.1 | −1.36873 | + | 0.659148i | −1.94206 | − | 2.43527i | 0.191979 | − | 0.240734i | −1.68890 | + | 0.813330i | 4.26336 | + | 2.05313i | −0.214022 | − | 0.268375i | 0.572010 | − | 2.50614i | −1.49136 | + | 6.53408i | 1.77555 | − | 2.22647i |
| 571.2 | −1.25619 | + | 0.604951i | −0.0173539 | − | 0.0217611i | −0.0349213 | + | 0.0437899i | 1.03288 | − | 0.497407i | 0.0349642 | + | 0.0168379i | −0.0688706 | − | 0.0863610i | 0.637886 | − | 2.79476i | 0.667390 | − | 2.92403i | −0.996587 | + | 1.24968i |
| 571.3 | −0.836654 | + | 0.402911i | 1.02888 | + | 1.29017i | −0.709327 | + | 0.889468i | 0.454733 | − | 0.218988i | −1.38064 | − | 0.664881i | −2.58918 | − | 3.24673i | 0.648358 | − | 2.84064i | 0.0616082 | − | 0.269923i | −0.292221 | + | 0.366434i |
| 571.4 | −0.0377915 | + | 0.0181994i | −1.88776 | − | 2.36718i | −1.24588 | + | 1.56229i | 1.56952 | − | 0.755841i | 0.114422 | + | 0.0551030i | 1.28043 | + | 1.60561i | 0.0373185 | − | 0.163503i | −1.37232 | + | 6.01254i | −0.0455587 | + | 0.0571287i |
| 571.5 | 0.938760 | − | 0.452083i | 1.34483 | + | 1.68636i | −0.570088 | + | 0.714867i | −1.31745 | + | 0.634453i | 2.02485 | + | 0.975115i | −2.36982 | − | 2.97166i | −0.675706 | + | 2.96046i | −0.367688 | + | 1.61095i | −0.949949 | + | 1.19120i |
| 571.6 | 1.73762 | − | 0.836795i | −0.302293 | − | 0.379063i | 1.07213 | − | 1.34441i | −2.65771 | + | 1.27989i | −0.842470 | − | 0.405712i | 1.62444 | + | 2.03699i | −0.120353 | + | 0.527303i | 0.615255 | − | 2.69561i | −3.54710 | + | 4.44792i |
| 571.7 | 2.15716 | − | 1.03884i | −1.31018 | − | 1.64292i | 2.32720 | − | 2.91821i | 2.18748 | − | 1.05344i | −4.53300 | − | 2.18298i | −0.235910 | − | 0.295821i | 0.923050 | − | 4.04415i | −0.315036 | + | 1.38026i | 3.62441 | − | 4.54487i |
| 571.8 | 2.26970 | − | 1.09303i | −0.654995 | − | 0.821338i | 2.70986 | − | 3.39805i | 1.32042 | − | 0.635882i | −2.38439 | − | 1.14826i | 2.57292 | + | 3.22635i | 1.31525 | − | 5.76249i | 0.421985 | − | 1.84884i | 2.30193 | − | 2.88653i |
| 574.1 | −1.57068 | + | 1.96957i | 0.233765 | − | 1.02419i | −0.967136 | − | 4.23730i | −0.913760 | + | 1.14582i | 1.65005 | + | 2.06910i | −0.918266 | + | 4.02319i | 5.32534 | + | 2.56455i | 1.70858 | + | 0.822811i | −0.821548 | − | 3.59944i |
| 574.2 | −1.49280 | + | 1.87192i | 0.467599 | − | 2.04869i | −0.830566 | − | 3.63895i | −1.51379 | + | 1.89823i | 3.13693 | + | 3.93359i | 0.0841952 | − | 0.368883i | 3.73735 | + | 1.79981i | −1.27556 | − | 0.614275i | −1.29354 | − | 5.66736i |
| 574.3 | −1.20247 | + | 1.50785i | 0.107887 | − | 0.472684i | −0.382638 | − | 1.67645i | 1.83920 | − | 2.30628i | 0.583007 | + | 0.731068i | −0.579757 | + | 2.54008i | −0.487301 | − | 0.234672i | 2.49112 | + | 1.19966i | 1.26595 | + | 5.54647i |
| 574.4 | −0.649642 | + | 0.814626i | −0.479963 | + | 2.10286i | 0.203462 | + | 0.891425i | 0.911707 | − | 1.14324i | −1.40124 | − | 1.75710i | 0.845778 | − | 3.70560i | −2.73588 | − | 1.31753i | −1.48874 | − | 0.716938i | 0.339033 | + | 1.48540i |
| See all 48 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 29.d | even | 7 | 5 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 841.2.d.q | 48 | |
| 29.b | even | 2 | 1 | 841.2.d.p | 48 | ||
| 29.c | odd | 4 | 2 | 841.2.e.m | 96 | ||
| 29.d | even | 7 | 1 | 841.2.a.i | ✓ | 8 | |
| 29.d | even | 7 | 5 | inner | 841.2.d.q | 48 | |
| 29.e | even | 14 | 1 | 841.2.a.j | yes | 8 | |
| 29.e | even | 14 | 5 | 841.2.d.p | 48 | ||
| 29.f | odd | 28 | 2 | 841.2.b.f | 16 | ||
| 29.f | odd | 28 | 10 | 841.2.e.m | 96 | ||
| 87.h | odd | 14 | 1 | 7569.2.a.bd | 8 | ||
| 87.j | odd | 14 | 1 | 7569.2.a.bi | 8 | ||
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 841.2.a.i | ✓ | 8 | 29.d | even | 7 | 1 | |
| 841.2.a.j | yes | 8 | 29.e | even | 14 | 1 | |
| 841.2.b.f | 16 | 29.f | odd | 28 | 2 | ||
| 841.2.d.p | 48 | 29.b | even | 2 | 1 | ||
| 841.2.d.p | 48 | 29.e | even | 14 | 5 | ||
| 841.2.d.q | 48 | 1.a | even | 1 | 1 | trivial | |
| 841.2.d.q | 48 | 29.d | even | 7 | 5 | inner | |
| 841.2.e.m | 96 | 29.c | odd | 4 | 2 | ||
| 841.2.e.m | 96 | 29.f | odd | 28 | 10 | ||
| 7569.2.a.bd | 8 | 87.h | odd | 14 | 1 | ||
| 7569.2.a.bi | 8 | 87.j | odd | 14 | 1 | ||
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{48} - 4 T_{2}^{47} + 19 T_{2}^{46} - 65 T_{2}^{45} + 225 T_{2}^{44} - 701 T_{2}^{43} + 2154 T_{2}^{42} + \cdots + 1 \)
acting on \(S_{2}^{\mathrm{new}}(841, [\chi])\).