Properties

Label 841.2.d.q
Level $841$
Weight $2$
Character orbit 841.d
Analytic conductor $6.715$
Analytic rank $0$
Dimension $48$
Inner twists $6$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [841,2,Mod(190,841)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("841.190"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(841, base_ring=CyclotomicField(14)) chi = DirichletCharacter(H, H._module([2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 841 = 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 841.d (of order \(7\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,4,6,-6,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.71541880999\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(8\) over \(\Q(\zeta_{7})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 48 q + 4 q^{2} + 6 q^{3} - 6 q^{4} + q^{5} - 3 q^{6} + 15 q^{8} - 8 q^{9} - 3 q^{10} + 5 q^{11} - 72 q^{12} + 4 q^{13} + 15 q^{14} - 7 q^{15} + 2 q^{16} - 54 q^{17} - 11 q^{18} + 17 q^{19} + 7 q^{20} + 25 q^{21}+ \cdots - 90 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
190.1 −1.36873 0.659148i −1.94206 + 2.43527i 0.191979 + 0.240734i −1.68890 0.813330i 4.26336 2.05313i −0.214022 + 0.268375i 0.572010 + 2.50614i −1.49136 6.53408i 1.77555 + 2.22647i
190.2 −1.25619 0.604951i −0.0173539 + 0.0217611i −0.0349213 0.0437899i 1.03288 + 0.497407i 0.0349642 0.0168379i −0.0688706 + 0.0863610i 0.637886 + 2.79476i 0.667390 + 2.92403i −0.996587 1.24968i
190.3 −0.836654 0.402911i 1.02888 1.29017i −0.709327 0.889468i 0.454733 + 0.218988i −1.38064 + 0.664881i −2.58918 + 3.24673i 0.648358 + 2.84064i 0.0616082 + 0.269923i −0.292221 0.366434i
190.4 −0.0377915 0.0181994i −1.88776 + 2.36718i −1.24588 1.56229i 1.56952 + 0.755841i 0.114422 0.0551030i 1.28043 1.60561i 0.0373185 + 0.163503i −1.37232 6.01254i −0.0455587 0.0571287i
190.5 0.938760 + 0.452083i 1.34483 1.68636i −0.570088 0.714867i −1.31745 0.634453i 2.02485 0.975115i −2.36982 + 2.97166i −0.675706 2.96046i −0.367688 1.61095i −0.949949 1.19120i
190.6 1.73762 + 0.836795i −0.302293 + 0.379063i 1.07213 + 1.34441i −2.65771 1.27989i −0.842470 + 0.405712i 1.62444 2.03699i −0.120353 0.527303i 0.615255 + 2.69561i −3.54710 4.44792i
190.7 2.15716 + 1.03884i −1.31018 + 1.64292i 2.32720 + 2.91821i 2.18748 + 1.05344i −4.53300 + 2.18298i −0.235910 + 0.295821i 0.923050 + 4.04415i −0.315036 1.38026i 3.62441 + 4.54487i
190.8 2.26970 + 1.09303i −0.654995 + 0.821338i 2.70986 + 3.39805i 1.32042 + 0.635882i −2.38439 + 1.14826i 2.57292 3.22635i 1.31525 + 5.76249i 0.421985 + 1.84884i 2.30193 + 2.88653i
571.1 −1.36873 + 0.659148i −1.94206 2.43527i 0.191979 0.240734i −1.68890 + 0.813330i 4.26336 + 2.05313i −0.214022 0.268375i 0.572010 2.50614i −1.49136 + 6.53408i 1.77555 2.22647i
571.2 −1.25619 + 0.604951i −0.0173539 0.0217611i −0.0349213 + 0.0437899i 1.03288 0.497407i 0.0349642 + 0.0168379i −0.0688706 0.0863610i 0.637886 2.79476i 0.667390 2.92403i −0.996587 + 1.24968i
571.3 −0.836654 + 0.402911i 1.02888 + 1.29017i −0.709327 + 0.889468i 0.454733 0.218988i −1.38064 0.664881i −2.58918 3.24673i 0.648358 2.84064i 0.0616082 0.269923i −0.292221 + 0.366434i
571.4 −0.0377915 + 0.0181994i −1.88776 2.36718i −1.24588 + 1.56229i 1.56952 0.755841i 0.114422 + 0.0551030i 1.28043 + 1.60561i 0.0373185 0.163503i −1.37232 + 6.01254i −0.0455587 + 0.0571287i
571.5 0.938760 0.452083i 1.34483 + 1.68636i −0.570088 + 0.714867i −1.31745 + 0.634453i 2.02485 + 0.975115i −2.36982 2.97166i −0.675706 + 2.96046i −0.367688 + 1.61095i −0.949949 + 1.19120i
571.6 1.73762 0.836795i −0.302293 0.379063i 1.07213 1.34441i −2.65771 + 1.27989i −0.842470 0.405712i 1.62444 + 2.03699i −0.120353 + 0.527303i 0.615255 2.69561i −3.54710 + 4.44792i
571.7 2.15716 1.03884i −1.31018 1.64292i 2.32720 2.91821i 2.18748 1.05344i −4.53300 2.18298i −0.235910 0.295821i 0.923050 4.04415i −0.315036 + 1.38026i 3.62441 4.54487i
571.8 2.26970 1.09303i −0.654995 0.821338i 2.70986 3.39805i 1.32042 0.635882i −2.38439 1.14826i 2.57292 + 3.22635i 1.31525 5.76249i 0.421985 1.84884i 2.30193 2.88653i
574.1 −1.57068 + 1.96957i 0.233765 1.02419i −0.967136 4.23730i −0.913760 + 1.14582i 1.65005 + 2.06910i −0.918266 + 4.02319i 5.32534 + 2.56455i 1.70858 + 0.822811i −0.821548 3.59944i
574.2 −1.49280 + 1.87192i 0.467599 2.04869i −0.830566 3.63895i −1.51379 + 1.89823i 3.13693 + 3.93359i 0.0841952 0.368883i 3.73735 + 1.79981i −1.27556 0.614275i −1.29354 5.66736i
574.3 −1.20247 + 1.50785i 0.107887 0.472684i −0.382638 1.67645i 1.83920 2.30628i 0.583007 + 0.731068i −0.579757 + 2.54008i −0.487301 0.234672i 2.49112 + 1.19966i 1.26595 + 5.54647i
574.4 −0.649642 + 0.814626i −0.479963 + 2.10286i 0.203462 + 0.891425i 0.911707 1.14324i −1.40124 1.75710i 0.845778 3.70560i −2.73588 1.31753i −1.48874 0.716938i 0.339033 + 1.48540i
See all 48 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 190.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
29.d even 7 5 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 841.2.d.q 48
29.b even 2 1 841.2.d.p 48
29.c odd 4 2 841.2.e.m 96
29.d even 7 1 841.2.a.i 8
29.d even 7 5 inner 841.2.d.q 48
29.e even 14 1 841.2.a.j yes 8
29.e even 14 5 841.2.d.p 48
29.f odd 28 2 841.2.b.f 16
29.f odd 28 10 841.2.e.m 96
87.h odd 14 1 7569.2.a.bd 8
87.j odd 14 1 7569.2.a.bi 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
841.2.a.i 8 29.d even 7 1
841.2.a.j yes 8 29.e even 14 1
841.2.b.f 16 29.f odd 28 2
841.2.d.p 48 29.b even 2 1
841.2.d.p 48 29.e even 14 5
841.2.d.q 48 1.a even 1 1 trivial
841.2.d.q 48 29.d even 7 5 inner
841.2.e.m 96 29.c odd 4 2
841.2.e.m 96 29.f odd 28 10
7569.2.a.bd 8 87.h odd 14 1
7569.2.a.bi 8 87.j odd 14 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{48} - 4 T_{2}^{47} + 19 T_{2}^{46} - 65 T_{2}^{45} + 225 T_{2}^{44} - 701 T_{2}^{43} + 2154 T_{2}^{42} + \cdots + 1 \) acting on \(S_{2}^{\mathrm{new}}(841, [\chi])\). Copy content Toggle raw display