Properties

Label 841.2.d.i.778.2
Level $841$
Weight $2$
Character 841.778
Analytic conductor $6.715$
Analytic rank $0$
Dimension $12$
Inner twists $6$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [841,2,Mod(190,841)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(841, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("841.190");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 841 = 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 841.d (of order \(7\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.71541880999\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{7})\)
Coefficient field: 12.0.4413675765625.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} + 2x^{10} - 3x^{9} + 5x^{8} - 8x^{7} + 13x^{6} + 8x^{5} + 5x^{4} + 3x^{3} + 2x^{2} + x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 778.2
Root \(0.385338 + 0.483198i\) of defining polynomial
Character \(\chi\) \(=\) 841.778
Dual form 841.2.d.i.574.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.385338 + 0.483198i) q^{2} +(0.137526 + 0.602539i) q^{3} +(0.360046 - 1.57747i) q^{4} +(2.40299 + 3.01326i) q^{5} +(-0.238152 + 0.298633i) q^{6} +(0.497572 + 2.18001i) q^{7} +(2.01463 - 0.970194i) q^{8} +(2.35877 - 1.13592i) q^{9} +O(q^{10})\) \(q+(0.385338 + 0.483198i) q^{2} +(0.137526 + 0.602539i) q^{3} +(0.360046 - 1.57747i) q^{4} +(2.40299 + 3.01326i) q^{5} +(-0.238152 + 0.298633i) q^{6} +(0.497572 + 2.18001i) q^{7} +(2.01463 - 0.970194i) q^{8} +(2.35877 - 1.13592i) q^{9} +(-0.530037 + 2.32225i) q^{10} +(1.24511 + 0.599613i) q^{11} +1.00000 q^{12} +(0.212690 + 0.102426i) q^{13} +(-0.861642 + 1.08046i) q^{14} +(-1.48513 + 1.86230i) q^{15} +(-1.67049 - 0.804465i) q^{16} -4.38197 q^{17} +(1.45780 + 0.702039i) q^{18} +(1.08014 - 4.73240i) q^{19} +(5.61850 - 2.70573i) q^{20} +(-1.24511 + 0.599613i) q^{21} +(0.190056 + 0.832688i) q^{22} +(-0.770676 + 0.966397i) q^{23} +(0.861642 + 1.08046i) q^{24} +(-2.19274 + 9.60704i) q^{25} +(0.0324654 + 0.142240i) q^{26} +(2.16484 + 2.71463i) q^{27} +3.61803 q^{28} -1.47214 q^{30} +(-6.29112 - 7.88881i) q^{31} +(-1.25013 - 5.47718i) q^{32} +(-0.190056 + 0.832688i) q^{33} +(-1.68854 - 2.11736i) q^{34} +(-5.37326 + 6.73785i) q^{35} +(-0.942614 - 4.12986i) q^{36} +(-4.24195 + 2.04281i) q^{37} +(2.70291 - 1.30165i) q^{38} +(-0.0324654 + 0.142240i) q^{39} +(7.76458 + 3.73922i) q^{40} +3.85410 q^{41} +(-0.769519 - 0.370581i) q^{42} +(-4.51161 + 5.65739i) q^{43} +(1.39417 - 1.74823i) q^{44} +(9.09093 + 4.37796i) q^{45} -0.763932 q^{46} +(6.30678 + 3.03719i) q^{47} +(0.254986 - 1.11717i) q^{48} +(1.80194 - 0.867767i) q^{49} +(-5.48705 + 2.64243i) q^{50} +(-0.602632 - 2.64030i) q^{51} +(0.238152 - 0.298633i) q^{52} +(-1.24698 - 1.56366i) q^{53} +(-0.477507 + 2.09210i) q^{54} +(1.18520 + 5.19270i) q^{55} +(3.11745 + 3.90916i) q^{56} +3.00000 q^{57} +6.09017 q^{59} +(2.40299 + 3.01326i) q^{60} +(0.137526 + 0.602539i) q^{61} +(1.38766 - 6.07972i) q^{62} +(3.64997 + 4.57692i) q^{63} +(-0.147186 + 0.184565i) q^{64} +(0.202456 + 0.887019i) q^{65} +(-0.475589 + 0.229032i) q^{66} +(1.37656 - 0.662915i) q^{67} +(-1.57771 + 6.91240i) q^{68} +(-0.688279 - 0.331458i) q^{69} -5.32624 q^{70} +(-9.43507 - 4.54369i) q^{71} +(3.64997 - 4.57692i) q^{72} +(-8.54693 + 10.7175i) q^{73} +(-2.62167 - 1.26253i) q^{74} -6.09017 q^{75} +(-7.07630 - 3.40777i) q^{76} +(-0.687628 + 3.01269i) q^{77} +(-0.0812403 + 0.0391233i) q^{78} +(5.48705 - 2.64243i) q^{79} +(-1.59011 - 6.96674i) q^{80} +(3.55901 - 4.46285i) q^{81} +(1.48513 + 1.86230i) q^{82} +(2.21281 - 9.69495i) q^{83} +(0.497572 + 2.18001i) q^{84} +(-10.5298 - 13.2040i) q^{85} -4.47214 q^{86} +3.09017 q^{88} +(2.93552 + 3.68102i) q^{89} +(1.38766 + 6.07972i) q^{90} +(-0.117461 + 0.514629i) q^{91} +(1.24698 + 1.56366i) q^{92} +(3.88812 - 4.87555i) q^{93} +(0.962679 + 4.21777i) q^{94} +(16.8555 - 8.11719i) q^{95} +(3.12829 - 1.50650i) q^{96} +(-0.792688 + 3.47299i) q^{97} +(1.11366 + 0.536310i) q^{98} +3.61803 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + q^{2} - q^{3} + q^{4} - q^{5} + 3 q^{6} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 12 q + q^{2} - q^{3} + q^{4} - q^{5} + 3 q^{6} + 3 q^{9} - 7 q^{10} + 5 q^{11} + 12 q^{12} - 4 q^{13} + 5 q^{14} + 7 q^{15} + 3 q^{16} - 66 q^{17} + q^{18} + 3 q^{19} + 8 q^{20} - 5 q^{21} - 5 q^{22} - 2 q^{23} - 5 q^{24} - 13 q^{25} + 7 q^{26} + 2 q^{27} + 30 q^{28} + 36 q^{30} + 9 q^{31} - 9 q^{32} + 5 q^{33} - 8 q^{34} + 15 q^{35} - 4 q^{36} + 4 q^{37} + 6 q^{38} - 7 q^{39} + 15 q^{40} + 6 q^{41} + 5 q^{42} + 10 q^{43} + 9 q^{45} - 36 q^{46} + 14 q^{47} + 9 q^{48} + 4 q^{49} - q^{50} + 8 q^{51} - 3 q^{52} + 4 q^{53} - 11 q^{54} - 5 q^{55} - 10 q^{56} + 36 q^{57} + 6 q^{59} - q^{60} - q^{61} + 8 q^{62} - 5 q^{63} - 4 q^{64} + 13 q^{65} - 10 q^{66} + 12 q^{67} - 3 q^{68} - 6 q^{69} + 30 q^{70} - 12 q^{71} - 5 q^{72} + 14 q^{73} - 17 q^{74} - 6 q^{75} - 9 q^{76} + 5 q^{77} + 11 q^{78} + q^{79} - 21 q^{80} + 2 q^{81} - 7 q^{82} + 2 q^{83} - 2 q^{85} - 30 q^{88} + 4 q^{89} + 8 q^{90} - 10 q^{91} - 4 q^{92} - 8 q^{93} - 7 q^{94} + 24 q^{95} - 2 q^{96} + 13 q^{97} - 2 q^{98} + 30 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/841\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{2}{7}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.385338 + 0.483198i 0.272475 + 0.341673i 0.899176 0.437587i \(-0.144167\pi\)
−0.626701 + 0.779260i \(0.715595\pi\)
\(3\) 0.137526 + 0.602539i 0.0794004 + 0.347876i 0.998986 0.0450129i \(-0.0143329\pi\)
−0.919586 + 0.392889i \(0.871476\pi\)
\(4\) 0.360046 1.57747i 0.180023 0.788733i
\(5\) 2.40299 + 3.01326i 1.07465 + 1.34757i 0.933904 + 0.357525i \(0.116379\pi\)
0.140748 + 0.990046i \(0.455049\pi\)
\(6\) −0.238152 + 0.298633i −0.0972251 + 0.121916i
\(7\) 0.497572 + 2.18001i 0.188065 + 0.823964i 0.977636 + 0.210306i \(0.0674459\pi\)
−0.789571 + 0.613659i \(0.789697\pi\)
\(8\) 2.01463 0.970194i 0.712278 0.343015i
\(9\) 2.35877 1.13592i 0.786256 0.378641i
\(10\) −0.530037 + 2.32225i −0.167613 + 0.734358i
\(11\) 1.24511 + 0.599613i 0.375414 + 0.180790i 0.612070 0.790804i \(-0.290337\pi\)
−0.236656 + 0.971594i \(0.576051\pi\)
\(12\) 1.00000 0.288675
\(13\) 0.212690 + 0.102426i 0.0589896 + 0.0284079i 0.463146 0.886282i \(-0.346721\pi\)
−0.404156 + 0.914690i \(0.632435\pi\)
\(14\) −0.861642 + 1.08046i −0.230283 + 0.288766i
\(15\) −1.48513 + 1.86230i −0.383459 + 0.480843i
\(16\) −1.67049 0.804465i −0.417622 0.201116i
\(17\) −4.38197 −1.06278 −0.531391 0.847126i \(-0.678331\pi\)
−0.531391 + 0.847126i \(0.678331\pi\)
\(18\) 1.45780 + 0.702039i 0.343606 + 0.165472i
\(19\) 1.08014 4.73240i 0.247801 1.08569i −0.685918 0.727679i \(-0.740599\pi\)
0.933719 0.358008i \(-0.116544\pi\)
\(20\) 5.61850 2.70573i 1.25634 0.605019i
\(21\) −1.24511 + 0.599613i −0.271705 + 0.130846i
\(22\) 0.190056 + 0.832688i 0.0405200 + 0.177530i
\(23\) −0.770676 + 0.966397i −0.160697 + 0.201508i −0.855661 0.517537i \(-0.826849\pi\)
0.694964 + 0.719045i \(0.255420\pi\)
\(24\) 0.861642 + 1.08046i 0.175882 + 0.220549i
\(25\) −2.19274 + 9.60704i −0.438549 + 1.92141i
\(26\) 0.0324654 + 0.142240i 0.00636698 + 0.0278956i
\(27\) 2.16484 + 2.71463i 0.416624 + 0.522430i
\(28\) 3.61803 0.683744
\(29\) 0 0
\(30\) −1.47214 −0.268774
\(31\) −6.29112 7.88881i −1.12992 1.41687i −0.895683 0.444693i \(-0.853313\pi\)
−0.234235 0.972180i \(-0.575258\pi\)
\(32\) −1.25013 5.47718i −0.220994 0.968237i
\(33\) −0.190056 + 0.832688i −0.0330844 + 0.144952i
\(34\) −1.68854 2.11736i −0.289582 0.363124i
\(35\) −5.37326 + 6.73785i −0.908246 + 1.13890i
\(36\) −0.942614 4.12986i −0.157102 0.688310i
\(37\) −4.24195 + 2.04281i −0.697371 + 0.335836i −0.748759 0.662842i \(-0.769350\pi\)
0.0513875 + 0.998679i \(0.483636\pi\)
\(38\) 2.70291 1.30165i 0.438469 0.211156i
\(39\) −0.0324654 + 0.142240i −0.00519862 + 0.0227766i
\(40\) 7.76458 + 3.73922i 1.22769 + 0.591223i
\(41\) 3.85410 0.601910 0.300955 0.953638i \(-0.402695\pi\)
0.300955 + 0.953638i \(0.402695\pi\)
\(42\) −0.769519 0.370581i −0.118739 0.0571819i
\(43\) −4.51161 + 5.65739i −0.688015 + 0.862743i −0.996065 0.0886269i \(-0.971752\pi\)
0.308050 + 0.951370i \(0.400324\pi\)
\(44\) 1.39417 1.74823i 0.210178 0.263555i
\(45\) 9.09093 + 4.37796i 1.35520 + 0.652628i
\(46\) −0.763932 −0.112636
\(47\) 6.30678 + 3.03719i 0.919939 + 0.443019i 0.833049 0.553199i \(-0.186593\pi\)
0.0868895 + 0.996218i \(0.472307\pi\)
\(48\) 0.254986 1.11717i 0.0368041 0.161249i
\(49\) 1.80194 0.867767i 0.257420 0.123967i
\(50\) −5.48705 + 2.64243i −0.775987 + 0.373695i
\(51\) −0.602632 2.64030i −0.0843854 0.369716i
\(52\) 0.238152 0.298633i 0.0330257 0.0414130i
\(53\) −1.24698 1.56366i −0.171286 0.214786i 0.688778 0.724973i \(-0.258148\pi\)
−0.860064 + 0.510187i \(0.829576\pi\)
\(54\) −0.477507 + 2.09210i −0.0649805 + 0.284698i
\(55\) 1.18520 + 5.19270i 0.159812 + 0.700183i
\(56\) 3.11745 + 3.90916i 0.416587 + 0.522383i
\(57\) 3.00000 0.397360
\(58\) 0 0
\(59\) 6.09017 0.792873 0.396436 0.918062i \(-0.370247\pi\)
0.396436 + 0.918062i \(0.370247\pi\)
\(60\) 2.40299 + 3.01326i 0.310225 + 0.389010i
\(61\) 0.137526 + 0.602539i 0.0176083 + 0.0771472i 0.982969 0.183773i \(-0.0588312\pi\)
−0.965360 + 0.260920i \(0.915974\pi\)
\(62\) 1.38766 6.07972i 0.176232 0.772125i
\(63\) 3.64997 + 4.57692i 0.459853 + 0.576638i
\(64\) −0.147186 + 0.184565i −0.0183982 + 0.0230707i
\(65\) 0.202456 + 0.887019i 0.0251116 + 0.110021i
\(66\) −0.475589 + 0.229032i −0.0585410 + 0.0281918i
\(67\) 1.37656 0.662915i 0.168173 0.0809880i −0.347903 0.937530i \(-0.613106\pi\)
0.516077 + 0.856542i \(0.327392\pi\)
\(68\) −1.57771 + 6.91240i −0.191326 + 0.838252i
\(69\) −0.688279 0.331458i −0.0828591 0.0399028i
\(70\) −5.32624 −0.636607
\(71\) −9.43507 4.54369i −1.11974 0.539237i −0.219926 0.975517i \(-0.570581\pi\)
−0.899811 + 0.436280i \(0.856296\pi\)
\(72\) 3.64997 4.57692i 0.430153 0.539395i
\(73\) −8.54693 + 10.7175i −1.00034 + 1.25439i −0.0333868 + 0.999443i \(0.510629\pi\)
−0.966955 + 0.254947i \(0.917942\pi\)
\(74\) −2.62167 1.26253i −0.304763 0.146766i
\(75\) −6.09017 −0.703232
\(76\) −7.07630 3.40777i −0.811707 0.390898i
\(77\) −0.687628 + 3.01269i −0.0783624 + 0.343328i
\(78\) −0.0812403 + 0.0391233i −0.00919865 + 0.00442984i
\(79\) 5.48705 2.64243i 0.617342 0.297296i −0.0989550 0.995092i \(-0.531550\pi\)
0.716297 + 0.697796i \(0.245836\pi\)
\(80\) −1.59011 6.96674i −0.177780 0.778905i
\(81\) 3.55901 4.46285i 0.395445 0.495873i
\(82\) 1.48513 + 1.86230i 0.164005 + 0.205656i
\(83\) 2.21281 9.69495i 0.242887 1.06416i −0.695487 0.718539i \(-0.744811\pi\)
0.938374 0.345620i \(-0.112331\pi\)
\(84\) 0.497572 + 2.18001i 0.0542895 + 0.237858i
\(85\) −10.5298 13.2040i −1.14212 1.43217i
\(86\) −4.47214 −0.482243
\(87\) 0 0
\(88\) 3.09017 0.329413
\(89\) 2.93552 + 3.68102i 0.311164 + 0.390188i 0.912681 0.408673i \(-0.134008\pi\)
−0.601517 + 0.798860i \(0.705437\pi\)
\(90\) 1.38766 + 6.07972i 0.146272 + 0.640858i
\(91\) −0.117461 + 0.514629i −0.0123132 + 0.0539478i
\(92\) 1.24698 + 1.56366i 0.130007 + 0.163023i
\(93\) 3.88812 4.87555i 0.403180 0.505571i
\(94\) 0.962679 + 4.21777i 0.0992927 + 0.435030i
\(95\) 16.8555 8.11719i 1.72934 0.832806i
\(96\) 3.12829 1.50650i 0.319279 0.153757i
\(97\) −0.792688 + 3.47299i −0.0804852 + 0.352629i −0.999095 0.0425373i \(-0.986456\pi\)
0.918610 + 0.395166i \(0.129313\pi\)
\(98\) 1.11366 + 0.536310i 0.112497 + 0.0541755i
\(99\) 3.61803 0.363626
\(100\) 14.3653 + 6.91796i 1.43653 + 0.691796i
\(101\) −0.385338 + 0.483198i −0.0383426 + 0.0480800i −0.800633 0.599155i \(-0.795503\pi\)
0.762291 + 0.647235i \(0.224075\pi\)
\(102\) 1.04357 1.30860i 0.103329 0.129571i
\(103\) −8.27120 3.98320i −0.814986 0.392476i −0.0205229 0.999789i \(-0.506533\pi\)
−0.794463 + 0.607313i \(0.792247\pi\)
\(104\) 0.527864 0.0517613
\(105\) −4.79877 2.31097i −0.468312 0.225527i
\(106\) 0.275051 1.20508i 0.0267153 0.117047i
\(107\) −6.09409 + 2.93476i −0.589138 + 0.283714i −0.704608 0.709597i \(-0.748877\pi\)
0.115470 + 0.993311i \(0.463163\pi\)
\(108\) 5.06167 2.43757i 0.487060 0.234556i
\(109\) 3.20029 + 14.0214i 0.306532 + 1.34300i 0.860068 + 0.510179i \(0.170421\pi\)
−0.553536 + 0.832825i \(0.686722\pi\)
\(110\) −2.05240 + 2.57363i −0.195689 + 0.245386i
\(111\) −1.81425 2.27500i −0.172201 0.215933i
\(112\) 0.922549 4.04195i 0.0871727 0.381929i
\(113\) −1.76777 7.74509i −0.166298 0.728597i −0.987456 0.157896i \(-0.949529\pi\)
0.821158 0.570701i \(-0.193328\pi\)
\(114\) 1.15601 + 1.44960i 0.108271 + 0.135767i
\(115\) −4.76393 −0.444239
\(116\) 0 0
\(117\) 0.618034 0.0571373
\(118\) 2.34677 + 2.94276i 0.216038 + 0.270903i
\(119\) −2.18034 9.55271i −0.199872 0.875695i
\(120\) −1.18520 + 5.19270i −0.108193 + 0.474026i
\(121\) −5.66763 7.10698i −0.515239 0.646089i
\(122\) −0.238152 + 0.298633i −0.0215613 + 0.0270370i
\(123\) 0.530037 + 2.32225i 0.0477919 + 0.209390i
\(124\) −14.7094 + 7.08369i −1.32095 + 0.636134i
\(125\) −16.8555 + 8.11719i −1.50760 + 0.726023i
\(126\) −0.805088 + 3.52732i −0.0717230 + 0.314239i
\(127\) −14.3653 6.91796i −1.27471 0.613870i −0.330687 0.943740i \(-0.607281\pi\)
−0.944026 + 0.329871i \(0.892995\pi\)
\(128\) −11.3820 −1.00603
\(129\) −4.02926 1.94039i −0.354756 0.170842i
\(130\) −0.350592 + 0.439628i −0.0307490 + 0.0385580i
\(131\) 8.93226 11.2007i 0.780415 0.978610i −0.219580 0.975594i \(-0.570469\pi\)
0.999995 0.00301554i \(-0.000959877\pi\)
\(132\) 1.24511 + 0.599613i 0.108373 + 0.0521896i
\(133\) 10.8541 0.941170
\(134\) 0.850760 + 0.409704i 0.0734944 + 0.0353931i
\(135\) −2.97777 + 13.0465i −0.256285 + 1.12286i
\(136\) −8.82803 + 4.25136i −0.756997 + 0.364551i
\(137\) −6.43823 + 3.10049i −0.550055 + 0.264893i −0.688202 0.725519i \(-0.741600\pi\)
0.138147 + 0.990412i \(0.455885\pi\)
\(138\) −0.105060 0.460299i −0.00894331 0.0391832i
\(139\) 0.805422 1.00997i 0.0683150 0.0856643i −0.746500 0.665386i \(-0.768267\pi\)
0.814815 + 0.579721i \(0.196839\pi\)
\(140\) 8.69411 + 10.9021i 0.734787 + 0.921393i
\(141\) −0.962679 + 4.21777i −0.0810722 + 0.355200i
\(142\) −1.44019 6.30987i −0.120858 0.529512i
\(143\) 0.203406 + 0.255063i 0.0170097 + 0.0213294i
\(144\) −4.85410 −0.404508
\(145\) 0 0
\(146\) −8.47214 −0.701159
\(147\) 0.770676 + 0.966397i 0.0635643 + 0.0797071i
\(148\) 1.69517 + 7.42703i 0.139342 + 0.610498i
\(149\) −2.14021 + 9.37689i −0.175333 + 0.768185i 0.808412 + 0.588617i \(0.200327\pi\)
−0.983746 + 0.179568i \(0.942530\pi\)
\(150\) −2.34677 2.94276i −0.191613 0.240275i
\(151\) 1.66706 2.09043i 0.135664 0.170117i −0.709359 0.704847i \(-0.751015\pi\)
0.845023 + 0.534731i \(0.179587\pi\)
\(152\) −2.41526 10.5820i −0.195904 0.858311i
\(153\) −10.3360 + 4.97757i −0.835619 + 0.402413i
\(154\) −1.72070 + 0.828644i −0.138658 + 0.0667741i
\(155\) 8.65352 37.9135i 0.695067 3.04529i
\(156\) 0.212690 + 0.102426i 0.0170288 + 0.00820065i
\(157\) 14.5623 1.16220 0.581099 0.813833i \(-0.302623\pi\)
0.581099 + 0.813833i \(0.302623\pi\)
\(158\) 3.39119 + 1.63311i 0.269788 + 0.129923i
\(159\) 0.770676 0.966397i 0.0611186 0.0766403i
\(160\) 13.5001 16.9286i 1.06728 1.33832i
\(161\) −2.49022 1.19923i −0.196257 0.0945122i
\(162\) 3.52786 0.277175
\(163\) 5.43684 + 2.61825i 0.425847 + 0.205077i 0.634517 0.772909i \(-0.281199\pi\)
−0.208670 + 0.977986i \(0.566913\pi\)
\(164\) 1.38766 6.07972i 0.108358 0.474746i
\(165\) −2.96581 + 1.42826i −0.230888 + 0.111190i
\(166\) 5.53726 2.66661i 0.429775 0.206969i
\(167\) −2.34267 10.2639i −0.181281 0.794245i −0.981022 0.193899i \(-0.937887\pi\)
0.799740 0.600346i \(-0.204971\pi\)
\(168\) −1.92669 + 2.41599i −0.148647 + 0.186398i
\(169\) −8.07062 10.1202i −0.620817 0.778480i
\(170\) 2.32261 10.1760i 0.178136 0.780464i
\(171\) −2.82784 12.3896i −0.216250 0.947455i
\(172\) 7.29995 + 9.15384i 0.556616 + 0.697974i
\(173\) 4.09017 0.310970 0.155485 0.987838i \(-0.450306\pi\)
0.155485 + 0.987838i \(0.450306\pi\)
\(174\) 0 0
\(175\) −22.0344 −1.66565
\(176\) −1.59757 2.00329i −0.120421 0.151004i
\(177\) 0.837554 + 3.66956i 0.0629544 + 0.275821i
\(178\) −0.647498 + 2.83687i −0.0485320 + 0.212633i
\(179\) −9.97584 12.5093i −0.745629 0.934989i 0.253851 0.967243i \(-0.418303\pi\)
−0.999480 + 0.0322542i \(0.989731\pi\)
\(180\) 10.1792 12.7644i 0.758716 0.951400i
\(181\) −1.32272 5.79524i −0.0983174 0.430757i 0.901681 0.432401i \(-0.142334\pi\)
−0.999999 + 0.00164474i \(0.999476\pi\)
\(182\) −0.293930 + 0.141549i −0.0217876 + 0.0104923i
\(183\) −0.344139 + 0.165729i −0.0254395 + 0.0122510i
\(184\) −0.615033 + 2.69463i −0.0453408 + 0.198651i
\(185\) −16.3489 7.87321i −1.20199 0.578850i
\(186\) 3.85410 0.282596
\(187\) −5.45602 2.62748i −0.398984 0.192141i
\(188\) 7.06179 8.85521i 0.515034 0.645833i
\(189\) −4.84073 + 6.07009i −0.352111 + 0.441534i
\(190\) 10.4173 + 5.01670i 0.755749 + 0.363949i
\(191\) 17.0344 1.23257 0.616284 0.787524i \(-0.288637\pi\)
0.616284 + 0.787524i \(0.288637\pi\)
\(192\) −0.131450 0.0633028i −0.00948656 0.00456848i
\(193\) −2.77531 + 12.1594i −0.199771 + 0.875255i 0.771301 + 0.636470i \(0.219606\pi\)
−0.971072 + 0.238785i \(0.923251\pi\)
\(194\) −1.98360 + 0.955250i −0.142414 + 0.0685829i
\(195\) −0.506620 + 0.243975i −0.0362798 + 0.0174714i
\(196\) −0.720093 3.15493i −0.0514352 0.225352i
\(197\) −3.92287 + 4.91912i −0.279493 + 0.350473i −0.901687 0.432390i \(-0.857670\pi\)
0.622194 + 0.782863i \(0.286242\pi\)
\(198\) 1.39417 + 1.74823i 0.0990790 + 0.124241i
\(199\) 1.30266 5.70733i 0.0923431 0.404582i −0.907538 0.419969i \(-0.862041\pi\)
0.999882 + 0.0153872i \(0.00489810\pi\)
\(200\) 4.90312 + 21.4820i 0.346703 + 1.51901i
\(201\) 0.588744 + 0.738262i 0.0415268 + 0.0520730i
\(202\) −0.381966 −0.0268750
\(203\) 0 0
\(204\) −4.38197 −0.306799
\(205\) 9.26138 + 11.6134i 0.646843 + 0.811115i
\(206\) −1.26253 5.53151i −0.0879647 0.385398i
\(207\) −0.720093 + 3.15493i −0.0500499 + 0.219283i
\(208\) −0.272898 0.342203i −0.0189221 0.0237275i
\(209\) 4.18250 5.24469i 0.289309 0.362782i
\(210\) −0.732494 3.20926i −0.0505469 0.221460i
\(211\) 10.4985 5.05582i 0.722748 0.348057i −0.0360795 0.999349i \(-0.511487\pi\)
0.758827 + 0.651292i \(0.225773\pi\)
\(212\) −2.91560 + 1.40408i −0.200244 + 0.0964324i
\(213\) 1.44019 6.30987i 0.0986799 0.432345i
\(214\) −3.76636 1.81378i −0.257463 0.123988i
\(215\) −27.8885 −1.90198
\(216\) 6.99506 + 3.36864i 0.475954 + 0.229207i
\(217\) 14.0674 17.6399i 0.954955 1.19748i
\(218\) −5.54192 + 6.94934i −0.375346 + 0.470669i
\(219\) −7.63313 3.67592i −0.515799 0.248396i
\(220\) 8.61803 0.581028
\(221\) −0.932000 0.448827i −0.0626931 0.0301914i
\(222\) 0.400176 1.75328i 0.0268580 0.117673i
\(223\) −2.40898 + 1.16010i −0.161317 + 0.0776862i −0.512800 0.858508i \(-0.671392\pi\)
0.351483 + 0.936194i \(0.385677\pi\)
\(224\) 11.3182 5.45058i 0.756232 0.364182i
\(225\) 5.74068 + 25.1516i 0.382712 + 1.67677i
\(226\) 3.06123 3.83866i 0.203630 0.255344i
\(227\) −13.0238 16.3313i −0.864420 1.08395i −0.995703 0.0926030i \(-0.970481\pi\)
0.131284 0.991345i \(-0.458090\pi\)
\(228\) 1.08014 4.73240i 0.0715340 0.313411i
\(229\) −0.509973 2.23434i −0.0336999 0.147649i 0.955279 0.295707i \(-0.0955551\pi\)
−0.988979 + 0.148058i \(0.952698\pi\)
\(230\) −1.83572 2.30192i −0.121044 0.151784i
\(231\) −1.90983 −0.125658
\(232\) 0 0
\(233\) 15.2361 0.998148 0.499074 0.866559i \(-0.333674\pi\)
0.499074 + 0.866559i \(0.333674\pi\)
\(234\) 0.238152 + 0.298633i 0.0155685 + 0.0195223i
\(235\) 6.00333 + 26.3023i 0.391614 + 1.71577i
\(236\) 2.19274 9.60704i 0.142735 0.625365i
\(237\) 2.34677 + 2.94276i 0.152439 + 0.191153i
\(238\) 3.77568 4.73456i 0.244741 0.306896i
\(239\) 6.17332 + 27.0471i 0.399319 + 1.74953i 0.630090 + 0.776522i \(0.283018\pi\)
−0.230771 + 0.973008i \(0.574125\pi\)
\(240\) 3.97905 1.91621i 0.256846 0.123691i
\(241\) 4.19174 2.01863i 0.270013 0.130032i −0.293978 0.955812i \(-0.594979\pi\)
0.563992 + 0.825781i \(0.309265\pi\)
\(242\) 1.25013 5.47718i 0.0803614 0.352086i
\(243\) 12.5634 + 6.05019i 0.805940 + 0.388120i
\(244\) 1.00000 0.0640184
\(245\) 6.94485 + 3.34446i 0.443690 + 0.213670i
\(246\) −0.917862 + 1.15096i −0.0585207 + 0.0733827i
\(247\) 0.714456 0.895899i 0.0454597 0.0570047i
\(248\) −20.3279 9.78942i −1.29083 0.621629i
\(249\) 6.14590 0.389480
\(250\) −10.4173 5.01670i −0.658846 0.317284i
\(251\) 4.37309 19.1597i 0.276027 1.20935i −0.626742 0.779227i \(-0.715612\pi\)
0.902769 0.430126i \(-0.141531\pi\)
\(252\) 8.53410 4.10981i 0.537598 0.258893i
\(253\) −1.53904 + 0.741162i −0.0967585 + 0.0465965i
\(254\) −2.19274 9.60704i −0.137585 0.602799i
\(255\) 6.50780 8.16052i 0.407534 0.511031i
\(256\) −4.09153 5.13062i −0.255721 0.320664i
\(257\) 5.15811 22.5992i 0.321754 1.40970i −0.512676 0.858582i \(-0.671346\pi\)
0.834430 0.551114i \(-0.185797\pi\)
\(258\) −0.615033 2.69463i −0.0382903 0.167761i
\(259\) −6.56402 8.23102i −0.407868 0.511450i
\(260\) 1.47214 0.0912980
\(261\) 0 0
\(262\) 8.85410 0.547008
\(263\) −10.4174 13.0630i −0.642364 0.805499i 0.348932 0.937148i \(-0.386544\pi\)
−0.991296 + 0.131649i \(0.957973\pi\)
\(264\) 0.424977 + 1.86195i 0.0261555 + 0.114595i
\(265\) 1.71524 7.51494i 0.105366 0.461639i
\(266\) 4.18250 + 5.24469i 0.256445 + 0.321572i
\(267\) −1.81425 + 2.27500i −0.111030 + 0.139228i
\(268\) −0.550102 2.41015i −0.0336028 0.147224i
\(269\) 5.40581 2.60330i 0.329598 0.158726i −0.261765 0.965132i \(-0.584304\pi\)
0.591363 + 0.806406i \(0.298590\pi\)
\(270\) −7.45147 + 3.58844i −0.453482 + 0.218385i
\(271\) −2.26534 + 9.92510i −0.137610 + 0.602907i 0.858347 + 0.513070i \(0.171492\pi\)
−0.995956 + 0.0898370i \(0.971365\pi\)
\(272\) 7.32002 + 3.52514i 0.443842 + 0.213743i
\(273\) −0.326238 −0.0197448
\(274\) −3.97905 1.91621i −0.240383 0.115762i
\(275\) −8.49071 + 10.6470i −0.512009 + 0.642039i
\(276\) −0.770676 + 0.966397i −0.0463892 + 0.0581703i
\(277\) 19.2645 + 9.27729i 1.15749 + 0.557418i 0.911276 0.411797i \(-0.135099\pi\)
0.246215 + 0.969215i \(0.420813\pi\)
\(278\) 0.798374 0.0478833
\(279\) −23.8004 11.4616i −1.42489 0.686191i
\(280\) −4.28809 + 18.7874i −0.256263 + 1.12276i
\(281\) −20.8346 + 10.0334i −1.24289 + 0.598542i −0.935595 0.353074i \(-0.885136\pi\)
−0.307290 + 0.951616i \(0.599422\pi\)
\(282\) −2.40898 + 1.16010i −0.143452 + 0.0690831i
\(283\) 1.16513 + 5.10479i 0.0692601 + 0.303448i 0.997679 0.0680857i \(-0.0216891\pi\)
−0.928419 + 0.371534i \(0.878832\pi\)
\(284\) −10.5646 + 13.2476i −0.626893 + 0.786098i
\(285\) 7.20898 + 9.03977i 0.427023 + 0.535470i
\(286\) −0.0448660 + 0.196571i −0.00265298 + 0.0116235i
\(287\) 1.91769 + 8.40196i 0.113198 + 0.495952i
\(288\) −9.17042 11.4993i −0.540372 0.677605i
\(289\) 2.20163 0.129507
\(290\) 0 0
\(291\) −2.20163 −0.129062
\(292\) 13.8292 + 17.3413i 0.809294 + 1.01482i
\(293\) −1.89763 8.31405i −0.110861 0.485712i −0.999626 0.0273496i \(-0.991293\pi\)
0.888765 0.458363i \(-0.151564\pi\)
\(294\) −0.169991 + 0.744779i −0.00991407 + 0.0434364i
\(295\) 14.6346 + 18.3513i 0.852062 + 1.06845i
\(296\) −6.56402 + 8.23102i −0.381526 + 0.478418i
\(297\) 1.06774 + 4.67807i 0.0619565 + 0.271449i
\(298\) −5.35560 + 2.57912i −0.310242 + 0.149405i
\(299\) −0.262899 + 0.126606i −0.0152039 + 0.00732179i
\(300\) −2.19274 + 9.60704i −0.126598 + 0.554663i
\(301\) −14.5780 7.02039i −0.840261 0.404648i
\(302\) 1.65248 0.0950893
\(303\) −0.344139 0.165729i −0.0197703 0.00952087i
\(304\) −5.61141 + 7.03648i −0.321836 + 0.403570i
\(305\) −1.48513 + 1.86230i −0.0850384 + 0.106635i
\(306\) −6.38802 3.07631i −0.365179 0.175861i
\(307\) −19.1803 −1.09468 −0.547340 0.836910i \(-0.684360\pi\)
−0.547340 + 0.836910i \(0.684360\pi\)
\(308\) 4.50484 + 2.16942i 0.256687 + 0.123614i
\(309\) 1.26253 5.53151i 0.0718229 0.314677i
\(310\) 21.6543 10.4282i 1.22988 0.592279i
\(311\) −1.88318 + 0.906891i −0.106785 + 0.0514251i −0.486514 0.873673i \(-0.661732\pi\)
0.379729 + 0.925098i \(0.376017\pi\)
\(312\) 0.0725948 + 0.318058i 0.00410987 + 0.0180065i
\(313\) −8.04915 + 10.0933i −0.454965 + 0.570508i −0.955418 0.295256i \(-0.904595\pi\)
0.500454 + 0.865763i \(0.333167\pi\)
\(314\) 5.61141 + 7.03648i 0.316670 + 0.397092i
\(315\) −5.02059 + 21.9966i −0.282878 + 1.23937i
\(316\) −2.19274 9.60704i −0.123351 0.540438i
\(317\) 17.2758 + 21.6631i 0.970305 + 1.21672i 0.976229 + 0.216741i \(0.0695427\pi\)
−0.00592451 + 0.999982i \(0.501886\pi\)
\(318\) 0.763932 0.0428392
\(319\) 0 0
\(320\) −0.909830 −0.0508610
\(321\) −2.60640 3.26832i −0.145475 0.182420i
\(322\) −0.380111 1.66538i −0.0211828 0.0928078i
\(323\) −4.73313 + 20.7372i −0.263359 + 1.15385i
\(324\) −5.75859 7.22105i −0.319922 0.401169i
\(325\) −1.45039 + 1.81873i −0.0804529 + 0.100885i
\(326\) 0.829890 + 3.63598i 0.0459633 + 0.201379i
\(327\) −8.00830 + 3.85659i −0.442860 + 0.213270i
\(328\) 7.76458 3.73922i 0.428727 0.206464i
\(329\) −3.48300 + 15.2600i −0.192024 + 0.841313i
\(330\) −1.83297 0.882711i −0.100902 0.0485917i
\(331\) 21.1803 1.16418 0.582088 0.813126i \(-0.302236\pi\)
0.582088 + 0.813126i \(0.302236\pi\)
\(332\) −14.4967 6.98126i −0.795612 0.383147i
\(333\) −7.68528 + 9.63704i −0.421151 + 0.528107i
\(334\) 4.05678 5.08705i 0.221977 0.278351i
\(335\) 5.30539 + 2.55494i 0.289865 + 0.139591i
\(336\) 2.56231 0.139785
\(337\) 30.6950 + 14.7819i 1.67206 + 0.805223i 0.997769 + 0.0667606i \(0.0212664\pi\)
0.674294 + 0.738463i \(0.264448\pi\)
\(338\) 1.78017 7.79942i 0.0968283 0.424233i
\(339\) 4.42360 2.13030i 0.240257 0.115702i
\(340\) −24.6201 + 11.8564i −1.33521 + 0.643004i
\(341\) −3.10289 13.5947i −0.168031 0.736192i
\(342\) 4.89695 6.14058i 0.264797 0.332045i
\(343\) 12.5475 + 15.7341i 0.677501 + 0.849559i
\(344\) −3.60046 + 15.7747i −0.194124 + 0.850513i
\(345\) −0.655162 2.87045i −0.0352727 0.154540i
\(346\) 1.57610 + 1.97636i 0.0847315 + 0.106250i
\(347\) −32.1246 −1.72454 −0.862270 0.506449i \(-0.830958\pi\)
−0.862270 + 0.506449i \(0.830958\pi\)
\(348\) 0 0
\(349\) 4.52786 0.242371 0.121186 0.992630i \(-0.461330\pi\)
0.121186 + 0.992630i \(0.461330\pi\)
\(350\) −8.49071 10.6470i −0.453847 0.569107i
\(351\) 0.182392 + 0.799110i 0.00973534 + 0.0426533i
\(352\) 1.72764 7.56927i 0.0920834 0.403444i
\(353\) −11.9240 14.9522i −0.634651 0.795827i 0.355672 0.934611i \(-0.384252\pi\)
−0.990323 + 0.138784i \(0.955681\pi\)
\(354\) −1.45039 + 1.81873i −0.0770871 + 0.0966642i
\(355\) −8.98110 39.3488i −0.476667 2.08841i
\(356\) 6.86361 3.30534i 0.363771 0.175183i
\(357\) 5.45602 2.62748i 0.288763 0.139061i
\(358\) 2.20041 9.64062i 0.116295 0.509522i
\(359\) 21.4106 + 10.3108i 1.13001 + 0.544182i 0.902970 0.429704i \(-0.141382\pi\)
0.227036 + 0.973886i \(0.427096\pi\)
\(360\) 22.5623 1.18914
\(361\) −4.11050 1.97951i −0.216342 0.104185i
\(362\) 2.29055 2.87226i 0.120389 0.150963i
\(363\) 3.50279 4.39236i 0.183849 0.230539i
\(364\) 0.769519 + 0.370581i 0.0403338 + 0.0194237i
\(365\) −52.8328 −2.76540
\(366\) −0.212690 0.102426i −0.0111175 0.00535390i
\(367\) −6.06826 + 26.5868i −0.316761 + 1.38782i 0.526437 + 0.850214i \(0.323528\pi\)
−0.843197 + 0.537604i \(0.819329\pi\)
\(368\) 2.06484 0.994373i 0.107637 0.0518353i
\(369\) 9.09093 4.37796i 0.473255 0.227908i
\(370\) −2.49552 10.9336i −0.129736 0.568411i
\(371\) 2.78833 3.49646i 0.144763 0.181527i
\(372\) −6.29112 7.88881i −0.326179 0.409016i
\(373\) −4.58794 + 20.1011i −0.237555 + 1.04080i 0.705644 + 0.708566i \(0.250658\pi\)
−0.943199 + 0.332229i \(0.892199\pi\)
\(374\) −0.832817 3.64881i −0.0430639 0.188675i
\(375\) −7.20898 9.03977i −0.372270 0.466812i
\(376\) 15.6525 0.807215
\(377\) 0 0
\(378\) −4.79837 −0.246802
\(379\) −15.1457 18.9921i −0.777982 0.975558i −1.00000 0.000515656i \(-0.999836\pi\)
0.222018 0.975043i \(-0.428736\pi\)
\(380\) −6.73582 29.5116i −0.345540 1.51391i
\(381\) 2.19274 9.60704i 0.112338 0.492184i
\(382\) 6.56402 + 8.23102i 0.335844 + 0.421135i
\(383\) −17.9902 + 22.5590i −0.919258 + 1.15271i 0.0686449 + 0.997641i \(0.478132\pi\)
−0.987903 + 0.155072i \(0.950439\pi\)
\(384\) −1.56531 6.85807i −0.0798794 0.349975i
\(385\) −10.7304 + 5.16748i −0.546871 + 0.263359i
\(386\) −6.94485 + 3.34446i −0.353484 + 0.170229i
\(387\) −4.21550 + 18.4693i −0.214286 + 0.938847i
\(388\) 5.19312 + 2.50088i 0.263641 + 0.126963i
\(389\) −19.1246 −0.969656 −0.484828 0.874609i \(-0.661118\pi\)
−0.484828 + 0.874609i \(0.661118\pi\)
\(390\) −0.313108 0.150785i −0.0158549 0.00763530i
\(391\) 3.37708 4.23472i 0.170786 0.214159i
\(392\) 2.78833 3.49646i 0.140832 0.176598i
\(393\) 7.97727 + 3.84165i 0.402400 + 0.193786i
\(394\) −3.88854 −0.195902
\(395\) 21.1477 + 10.1842i 1.06405 + 0.512422i
\(396\) 1.30266 5.70733i 0.0654611 0.286804i
\(397\) 12.6638 6.09855i 0.635577 0.306078i −0.0882095 0.996102i \(-0.528115\pi\)
0.723786 + 0.690024i \(0.242400\pi\)
\(398\) 3.25974 1.56981i 0.163396 0.0786873i
\(399\) 1.49272 + 6.54002i 0.0747293 + 0.327410i
\(400\) 11.3915 14.2845i 0.569574 0.714223i
\(401\) 15.6302 + 19.5996i 0.780535 + 0.978759i 0.999995 + 0.00313805i \(0.000998873\pi\)
−0.219460 + 0.975621i \(0.570430\pi\)
\(402\) −0.129861 + 0.568960i −0.00647690 + 0.0283772i
\(403\) −0.530037 2.32225i −0.0264030 0.115679i
\(404\) 0.623490 + 0.781831i 0.0310198 + 0.0388976i
\(405\) 22.0000 1.09319
\(406\) 0 0
\(407\) −6.50658 −0.322519
\(408\) −3.77568 4.73456i −0.186924 0.234396i
\(409\) −6.10072 26.7290i −0.301661 1.32167i −0.867619 0.497230i \(-0.834350\pi\)
0.565957 0.824435i \(-0.308507\pi\)
\(410\) −2.04282 + 8.95017i −0.100888 + 0.442017i
\(411\) −2.75359 3.45289i −0.135824 0.170318i
\(412\) −9.26138 + 11.6134i −0.456275 + 0.572151i
\(413\) 3.03030 + 13.2766i 0.149111 + 0.653299i
\(414\) −1.80194 + 0.867767i −0.0885604 + 0.0426484i
\(415\) 34.5307 16.6291i 1.69505 0.816292i
\(416\) 0.295116 1.29299i 0.0144692 0.0633939i
\(417\) 0.719310 + 0.346401i 0.0352248 + 0.0169634i
\(418\) 4.14590 0.202783
\(419\) 15.8231 + 7.62000i 0.773009 + 0.372261i 0.778436 0.627724i \(-0.216013\pi\)
−0.00542744 + 0.999985i \(0.501728\pi\)
\(420\) −5.37326 + 6.73785i −0.262188 + 0.328773i
\(421\) −19.3497 + 24.2637i −0.943045 + 1.18254i 0.0400047 + 0.999199i \(0.487263\pi\)
−0.983049 + 0.183341i \(0.941309\pi\)
\(422\) 6.48844 + 3.12467i 0.315852 + 0.152106i
\(423\) 18.3262 0.891052
\(424\) −4.02926 1.94039i −0.195678 0.0942335i
\(425\) 9.60853 42.0977i 0.466082 2.04204i
\(426\) 3.60388 1.73553i 0.174608 0.0840869i
\(427\) −1.24511 + 0.599613i −0.0602550 + 0.0290173i
\(428\) 2.43533 + 10.6699i 0.117716 + 0.515748i
\(429\) −0.125712 + 0.157638i −0.00606942 + 0.00761082i
\(430\) −10.7465 13.4757i −0.518243 0.649856i
\(431\) −3.24808 + 14.2308i −0.156455 + 0.685472i 0.834470 + 0.551053i \(0.185774\pi\)
−0.990925 + 0.134419i \(0.957083\pi\)
\(432\) −1.43252 6.27629i −0.0689222 0.301968i
\(433\) 6.47305 + 8.11695i 0.311075 + 0.390076i 0.912651 0.408740i \(-0.134032\pi\)
−0.601576 + 0.798816i \(0.705460\pi\)
\(434\) 13.9443 0.669346
\(435\) 0 0
\(436\) 23.2705 1.11446
\(437\) 3.74094 + 4.69099i 0.178953 + 0.224400i
\(438\) −1.16513 5.10479i −0.0556723 0.243916i
\(439\) 4.66054 20.4192i 0.222435 0.974553i −0.733203 0.680010i \(-0.761975\pi\)
0.955638 0.294543i \(-0.0951674\pi\)
\(440\) 7.42566 + 9.31148i 0.354004 + 0.443907i
\(441\) 3.26463 4.09372i 0.155459 0.194939i
\(442\) −0.142262 0.623291i −0.00676672 0.0296469i
\(443\) 1.72070 0.828644i 0.0817528 0.0393701i −0.392561 0.919726i \(-0.628411\pi\)
0.474313 + 0.880356i \(0.342696\pi\)
\(444\) −4.24195 + 2.04281i −0.201314 + 0.0969476i
\(445\) −4.03784 + 17.6909i −0.191412 + 0.838631i
\(446\) −1.48883 0.716982i −0.0704981 0.0339501i
\(447\) −5.94427 −0.281154
\(448\) −0.475589 0.229032i −0.0224695 0.0108207i
\(449\) −16.2884 + 20.4250i −0.768698 + 0.963917i −0.999960 0.00897427i \(-0.997143\pi\)
0.231261 + 0.972892i \(0.425715\pi\)
\(450\) −9.94109 + 12.4657i −0.468628 + 0.587640i
\(451\) 4.79877 + 2.31097i 0.225965 + 0.108819i
\(452\) −12.8541 −0.604606
\(453\) 1.48883 + 0.716982i 0.0699513 + 0.0336868i
\(454\) 2.87271 12.5862i 0.134823 0.590697i
\(455\) −1.83297 + 0.882711i −0.0859309 + 0.0413821i
\(456\) 6.04388 2.91058i 0.283031 0.136300i
\(457\) −4.16297 18.2392i −0.194735 0.853191i −0.974009 0.226508i \(-0.927269\pi\)
0.779274 0.626683i \(-0.215588\pi\)
\(458\) 0.883116 1.10739i 0.0412653 0.0517450i
\(459\) −9.48626 11.8954i −0.442781 0.555230i
\(460\) −1.71524 + 7.51494i −0.0799733 + 0.350386i
\(461\) 8.67358 + 38.0014i 0.403969 + 1.76990i 0.611063 + 0.791582i \(0.290742\pi\)
−0.207094 + 0.978321i \(0.566401\pi\)
\(462\) −0.735930 0.922827i −0.0342386 0.0429338i
\(463\) 10.7082 0.497652 0.248826 0.968548i \(-0.419955\pi\)
0.248826 + 0.968548i \(0.419955\pi\)
\(464\) 0 0
\(465\) 24.0344 1.11457
\(466\) 5.87103 + 7.36204i 0.271970 + 0.341040i
\(467\) 3.99298 + 17.4944i 0.184773 + 0.809543i 0.979316 + 0.202336i \(0.0648532\pi\)
−0.794543 + 0.607207i \(0.792290\pi\)
\(468\) 0.222521 0.974928i 0.0102860 0.0450661i
\(469\) 2.13010 + 2.67106i 0.0983587 + 0.123338i
\(470\) −10.3959 + 13.0361i −0.479528 + 0.601309i
\(471\) 2.00269 + 8.77435i 0.0922790 + 0.404301i
\(472\) 12.2694 5.90864i 0.564746 0.271967i
\(473\) −9.00969 + 4.33884i −0.414266 + 0.199500i
\(474\) −0.517637 + 2.26791i −0.0237758 + 0.104169i
\(475\) 43.0959 + 20.7539i 1.97737 + 0.952253i
\(476\) −15.8541 −0.726672
\(477\) −4.71753 2.27184i −0.216001 0.104021i
\(478\) −10.6903 + 13.4052i −0.488963 + 0.613140i
\(479\) −6.97083 + 8.74114i −0.318505 + 0.399393i −0.915151 0.403112i \(-0.867928\pi\)
0.596645 + 0.802505i \(0.296500\pi\)
\(480\) 12.0567 + 5.80622i 0.550312 + 0.265016i
\(481\) −1.11146 −0.0506780
\(482\) 2.59064 + 1.24758i 0.118000 + 0.0568259i
\(483\) 0.380111 1.66538i 0.0172957 0.0757772i
\(484\) −13.2516 + 6.38165i −0.602347 + 0.290075i
\(485\) −12.3698 + 5.95700i −0.561686 + 0.270494i
\(486\) 1.91769 + 8.40196i 0.0869883 + 0.381121i
\(487\) 26.5372 33.2766i 1.20251 1.50790i 0.394335 0.918967i \(-0.370975\pi\)
0.808178 0.588938i \(-0.200454\pi\)
\(488\) 0.861642 + 1.08046i 0.0390047 + 0.0489103i
\(489\) −0.829890 + 3.63598i −0.0375289 + 0.164425i
\(490\) 1.06007 + 4.64449i 0.0478893 + 0.209817i
\(491\) −9.43004 11.8249i −0.425572 0.533650i 0.522105 0.852881i \(-0.325147\pi\)
−0.947677 + 0.319231i \(0.896575\pi\)
\(492\) 3.85410 0.173756
\(493\) 0 0
\(494\) 0.708204 0.0318636
\(495\) 8.69411 + 10.9021i 0.390771 + 0.490012i
\(496\) 4.16297 + 18.2392i 0.186923 + 0.818962i
\(497\) 5.21064 22.8293i 0.233729 1.02403i
\(498\) 2.36825 + 2.96969i 0.106124 + 0.133075i
\(499\) 15.3920 19.3010i 0.689042 0.864032i −0.307110 0.951674i \(-0.599362\pi\)
0.996152 + 0.0876423i \(0.0279332\pi\)
\(500\) 6.73582 + 29.5116i 0.301235 + 1.31980i
\(501\) 5.86222 2.82310i 0.261905 0.126127i
\(502\) 10.9431 5.26991i 0.488413 0.235207i
\(503\) −3.17549 + 13.9127i −0.141588 + 0.620337i 0.853479 + 0.521128i \(0.174489\pi\)
−0.995067 + 0.0992095i \(0.968369\pi\)
\(504\) 11.7938 + 5.67961i 0.525339 + 0.252990i
\(505\) −2.38197 −0.105996
\(506\) −0.951178 0.458063i −0.0422850 0.0203634i
\(507\) 4.98792 6.25465i 0.221521 0.277779i
\(508\) −16.0850 + 20.1700i −0.713657 + 0.894898i
\(509\) −28.4367 13.6944i −1.26043 0.606992i −0.320143 0.947369i \(-0.603731\pi\)
−0.940289 + 0.340377i \(0.889445\pi\)
\(510\) 6.45085 0.285648
\(511\) −27.6169 13.2996i −1.22170 0.588340i
\(512\) −4.16297 + 18.2392i −0.183979 + 0.806064i
\(513\) 15.1850 7.31272i 0.670435 0.322865i
\(514\) 12.9075 6.21592i 0.569325 0.274173i
\(515\) −7.87323 34.4949i −0.346936 1.52003i
\(516\) −4.51161 + 5.65739i −0.198613 + 0.249053i
\(517\) 6.03149 + 7.56325i 0.265265 + 0.332631i
\(518\) 1.44785 6.34344i 0.0636149 0.278715i
\(519\) 0.562503 + 2.46449i 0.0246911 + 0.108179i
\(520\) 1.26845 + 1.59059i 0.0556254 + 0.0697520i
\(521\) 4.09017 0.179194 0.0895968 0.995978i \(-0.471442\pi\)
0.0895968 + 0.995978i \(0.471442\pi\)
\(522\) 0 0
\(523\) −20.3820 −0.891241 −0.445621 0.895222i \(-0.647017\pi\)
−0.445621 + 0.895222i \(0.647017\pi\)
\(524\) −14.4527 18.1231i −0.631369 0.791712i
\(525\) −3.03030 13.2766i −0.132253 0.579438i
\(526\) 2.29780 10.0673i 0.100189 0.438957i
\(527\) 27.5675 + 34.5685i 1.20086 + 1.50583i
\(528\) 0.987354 1.23810i 0.0429690 0.0538815i
\(529\) 4.77800 + 20.9338i 0.207739 + 0.910165i
\(530\) 4.29215 2.06699i 0.186439 0.0897844i
\(531\) 14.3653 6.91796i 0.623401 0.300214i
\(532\) 3.90798 17.1220i 0.169432 0.742332i
\(533\) 0.819729 + 0.394760i 0.0355064 + 0.0170990i
\(534\) −1.79837 −0.0778232
\(535\) −23.4873 11.3109i −1.01544 0.489011i
\(536\) 2.13010 2.67106i 0.0920061 0.115372i
\(537\) 6.16541 7.73117i 0.266057 0.333625i
\(538\) 3.34098 + 1.60893i 0.144040 + 0.0693659i
\(539\) 2.76393 0.119051
\(540\) 19.5082 + 9.39466i 0.839500 + 0.404282i
\(541\) 3.24808 14.2308i 0.139646 0.611829i −0.855866 0.517197i \(-0.826975\pi\)
0.995512 0.0946319i \(-0.0301674\pi\)
\(542\) −5.66871 + 2.72991i −0.243492 + 0.117260i
\(543\) 3.30995 1.59399i 0.142043 0.0684045i
\(544\) 5.47803 + 24.0008i 0.234869 + 1.02903i
\(545\) −34.5598 + 43.3366i −1.48038 + 1.85634i
\(546\) −0.125712 0.157638i −0.00537997 0.00674627i
\(547\) −1.64264 + 7.19688i −0.0702343 + 0.307717i −0.997828 0.0658742i \(-0.979016\pi\)
0.927594 + 0.373591i \(0.121874\pi\)
\(548\) 2.57286 + 11.2724i 0.109907 + 0.481534i
\(549\) 1.00883 + 1.26503i 0.0430557 + 0.0539902i
\(550\) −8.41641 −0.358877
\(551\) 0 0
\(552\) −1.70820 −0.0727060
\(553\) 8.49071 + 10.6470i 0.361062 + 0.452757i
\(554\) 2.94057 + 12.8835i 0.124933 + 0.547366i
\(555\) 2.49552 10.9336i 0.105929 0.464106i
\(556\) −1.30320 1.63416i −0.0552680 0.0693038i
\(557\) −3.43330 + 4.30522i −0.145473 + 0.182418i −0.849230 0.528024i \(-0.822933\pi\)
0.703756 + 0.710441i \(0.251505\pi\)
\(558\) −3.63293 15.9169i −0.153794 0.673816i
\(559\) −1.53904 + 0.741162i −0.0650944 + 0.0313478i
\(560\) 14.3963 6.93290i 0.608356 0.292969i
\(561\) 0.832817 3.64881i 0.0351616 0.154053i
\(562\) −12.8765 6.20098i −0.543161 0.261572i
\(563\) 28.3951 1.19671 0.598356 0.801230i \(-0.295821\pi\)
0.598356 + 0.801230i \(0.295821\pi\)
\(564\) 6.30678 + 3.03719i 0.265563 + 0.127889i
\(565\) 19.0900 23.9381i 0.803124 1.00709i
\(566\) −2.01766 + 2.53006i −0.0848084 + 0.106346i
\(567\) 11.4999 + 5.53806i 0.482951 + 0.232577i
\(568\) −23.4164 −0.982531
\(569\) 1.75173 + 0.843588i 0.0734363 + 0.0353650i 0.470241 0.882538i \(-0.344167\pi\)
−0.396805 + 0.917903i \(0.629881\pi\)
\(570\) −1.59011 + 6.96674i −0.0666025 + 0.291804i
\(571\) 31.0894 14.9718i 1.30105 0.626552i 0.350336 0.936624i \(-0.386067\pi\)
0.950713 + 0.310072i \(0.100353\pi\)
\(572\) 0.475589 0.229032i 0.0198854 0.00957629i
\(573\) 2.34267 + 10.2639i 0.0978664 + 0.428781i
\(574\) −3.32086 + 4.16422i −0.138610 + 0.173811i
\(575\) −7.59432 9.52297i −0.316705 0.397135i
\(576\) −0.137526 + 0.602539i −0.00573023 + 0.0251058i
\(577\) 0.615033 + 2.69463i 0.0256041 + 0.112179i 0.986115 0.166063i \(-0.0531055\pi\)
−0.960511 + 0.278242i \(0.910248\pi\)
\(578\) 0.848370 + 1.06382i 0.0352875 + 0.0442492i
\(579\) −7.70820 −0.320342
\(580\) 0 0
\(581\) 22.2361 0.922508
\(582\) −0.848370 1.06382i −0.0351661 0.0440969i
\(583\) −0.615033 2.69463i −0.0254721 0.111600i
\(584\) −6.82082 + 29.8840i −0.282247 + 1.23661i
\(585\) 1.48513 + 1.86230i 0.0614026 + 0.0769965i
\(586\) 3.28611 4.12065i 0.135748 0.170223i
\(587\) −10.3735 45.4492i −0.428160 1.87589i −0.480056 0.877238i \(-0.659384\pi\)
0.0518966 0.998652i \(-0.483473\pi\)
\(588\) 1.80194 0.867767i 0.0743107 0.0357861i
\(589\) −44.1283 + 21.2511i −1.81827 + 0.875635i
\(590\) −3.22802 + 14.1429i −0.132895 + 0.582253i
\(591\) −3.50346 1.68718i −0.144113 0.0694011i
\(592\) 8.72949 0.358780
\(593\) 13.0079 + 6.26428i 0.534171 + 0.257243i 0.681466 0.731849i \(-0.261343\pi\)
−0.147295 + 0.989093i \(0.547057\pi\)
\(594\) −1.84900 + 2.31857i −0.0758652 + 0.0951319i
\(595\) 23.5454 29.5250i 0.965268 1.21041i
\(596\) 14.0212 + 6.75223i 0.574329 + 0.276582i
\(597\) 3.61803 0.148076
\(598\) −0.162481 0.0782465i −0.00664433 0.00319974i
\(599\) −2.90810 + 12.7412i −0.118822 + 0.520592i 0.880126 + 0.474739i \(0.157458\pi\)
−0.998948 + 0.0458528i \(0.985399\pi\)
\(600\) −12.2694 + 5.90864i −0.500897 + 0.241219i
\(601\) −26.2714 + 12.6516i −1.07163 + 0.516071i −0.884633 0.466289i \(-0.845591\pi\)
−0.187000 + 0.982360i \(0.559876\pi\)
\(602\) −2.22521 9.74928i −0.0906928 0.397351i
\(603\) 2.49396 3.12733i 0.101562 0.127355i
\(604\) −2.69737 3.38239i −0.109754 0.137627i
\(605\) 7.79590 34.1561i 0.316948 1.38864i
\(606\) −0.0525301 0.230149i −0.00213389 0.00934917i
\(607\) 6.84512 + 8.58350i 0.277835 + 0.348394i 0.901096 0.433620i \(-0.142764\pi\)
−0.623261 + 0.782014i \(0.714193\pi\)
\(608\) −27.2705 −1.10597
\(609\) 0 0
\(610\) −1.47214 −0.0596050
\(611\) 1.03030 + 1.29196i 0.0416816 + 0.0522670i
\(612\) 4.13050 + 18.0969i 0.166966 + 0.731524i
\(613\) −6.12845 + 26.8505i −0.247526 + 1.08448i 0.686459 + 0.727169i \(0.259164\pi\)
−0.933985 + 0.357313i \(0.883693\pi\)
\(614\) −7.39091 9.26791i −0.298273 0.374022i
\(615\) −5.72385 + 7.17748i −0.230808 + 0.289424i
\(616\) 1.53758 + 6.73659i 0.0619509 + 0.271425i
\(617\) 12.7760 6.15262i 0.514344 0.247695i −0.158661 0.987333i \(-0.550718\pi\)
0.673005 + 0.739638i \(0.265003\pi\)
\(618\) 3.15932 1.52145i 0.127086 0.0612016i
\(619\) −1.57005 + 6.87883i −0.0631055 + 0.276483i −0.996630 0.0820308i \(-0.973859\pi\)
0.933524 + 0.358514i \(0.116717\pi\)
\(620\) −56.6917 27.3013i −2.27679 1.09644i
\(621\) −4.29180 −0.172224
\(622\) −1.16387 0.560489i −0.0466669 0.0224736i
\(623\) −6.56402 + 8.23102i −0.262982 + 0.329769i
\(624\) 0.168660 0.211493i 0.00675181 0.00846650i
\(625\) −20.5717 9.90679i −0.822866 0.396271i
\(626\) −7.97871 −0.318894
\(627\) 3.73533 + 1.79884i 0.149175 + 0.0718387i
\(628\) 5.24311 22.9715i 0.209223 0.916665i
\(629\) 18.5881 8.95154i 0.741154 0.356921i
\(630\) −12.5634 + 6.05019i −0.500536 + 0.241045i
\(631\) 6.27838 + 27.5074i 0.249938 + 1.09505i 0.931629 + 0.363411i \(0.118388\pi\)
−0.681691 + 0.731641i \(0.738755\pi\)
\(632\) 8.49071 10.6470i 0.337742 0.423515i
\(633\) 4.49014 + 5.63046i 0.178467 + 0.223791i
\(634\) −3.81058 + 16.6953i −0.151338 + 0.663054i
\(635\) −13.6741 59.9101i −0.542640 2.37746i
\(636\) −1.24698 1.56366i −0.0494460 0.0620033i
\(637\) 0.472136 0.0187067
\(638\) 0 0
\(639\) −27.4164 −1.08458
\(640\) −27.3508 34.2968i −1.08113 1.35570i
\(641\) −2.46013 10.7785i −0.0971693 0.425727i 0.902821 0.430016i \(-0.141492\pi\)
−0.999991 + 0.00428892i \(0.998635\pi\)
\(642\) 0.574903 2.51882i 0.0226896 0.0994097i
\(643\) −23.3287 29.2533i −0.919996 1.15364i −0.987767 0.155938i \(-0.950160\pi\)
0.0677709 0.997701i \(-0.478411\pi\)
\(644\) −2.78833 + 3.49646i −0.109876 + 0.137780i
\(645\) −3.83539 16.8039i −0.151018 0.661654i
\(646\) −11.8440 + 5.70379i −0.465998 + 0.224413i
\(647\) 27.5047 13.2455i 1.08132 0.520736i 0.193581 0.981084i \(-0.437990\pi\)
0.887738 + 0.460348i \(0.152275\pi\)
\(648\) 2.84024 12.4439i 0.111575 0.488843i
\(649\) 7.58292 + 3.65174i 0.297656 + 0.143343i
\(650\) −1.43769 −0.0563910
\(651\) 12.5634 + 6.05019i 0.492397 + 0.237126i
\(652\) 6.08771 7.63375i 0.238413 0.298961i
\(653\) 29.9357 37.5382i 1.17147 1.46898i 0.317815 0.948153i \(-0.397051\pi\)
0.853660 0.520830i \(-0.174378\pi\)
\(654\) −4.94940 2.38351i −0.193537 0.0932025i
\(655\) 55.2148 2.15742
\(656\) −6.43823 3.10049i −0.251371 0.121054i
\(657\) −7.98595 + 34.9887i −0.311562 + 1.36504i
\(658\) −8.71576 + 4.19729i −0.339776 + 0.163627i
\(659\) 6.35699 3.06137i 0.247633 0.119254i −0.305950 0.952047i \(-0.598974\pi\)
0.553584 + 0.832794i \(0.313260\pi\)
\(660\) 1.18520 + 5.19270i 0.0461338 + 0.202125i
\(661\) −23.3502 + 29.2803i −0.908218 + 1.13887i 0.0816186 + 0.996664i \(0.473991\pi\)
−0.989837 + 0.142206i \(0.954580\pi\)
\(662\) 8.16159 + 10.2343i 0.317209 + 0.397768i
\(663\) 0.142262 0.623291i 0.00552500 0.0242066i
\(664\) −4.94799 21.6786i −0.192019 0.841291i
\(665\) 26.0823 + 32.7062i 1.01143 + 1.26829i
\(666\) −7.61803 −0.295193
\(667\) 0 0
\(668\) −17.0344 −0.659082
\(669\) −1.03030 1.29196i −0.0398338 0.0499500i
\(670\) 0.809825 + 3.54807i 0.0312863 + 0.137074i
\(671\) −0.190056 + 0.832688i −0.00733701 + 0.0321456i
\(672\) 4.84073 + 6.07009i 0.186735 + 0.234159i
\(673\) −4.03531 + 5.06012i −0.155550 + 0.195053i −0.853500 0.521093i \(-0.825524\pi\)
0.697950 + 0.716147i \(0.254096\pi\)
\(674\) 4.68534 + 20.5278i 0.180473 + 0.790702i
\(675\) −30.8265 + 14.8452i −1.18651 + 0.571393i
\(676\) −18.8701 + 9.08738i −0.725774 + 0.349515i
\(677\) 9.08616 39.8091i 0.349209 1.52999i −0.429771 0.902938i \(-0.641406\pi\)
0.778980 0.627048i \(-0.215737\pi\)
\(678\) 2.73394 + 1.31659i 0.104996 + 0.0505635i
\(679\) −7.96556 −0.305690
\(680\) −34.0241 16.3852i −1.30477 0.628342i
\(681\) 8.04915 10.0933i 0.308444 0.386777i
\(682\) 5.37326 6.73785i 0.205753 0.258006i
\(683\) −18.7889 9.04826i −0.718937 0.346222i 0.0383853 0.999263i \(-0.487779\pi\)
−0.757322 + 0.653041i \(0.773493\pi\)
\(684\) −20.5623 −0.786219
\(685\) −24.8136 11.9496i −0.948079 0.456571i
\(686\) −2.76765 + 12.1259i −0.105669 + 0.462967i
\(687\) 1.27614 0.614556i 0.0486878 0.0234468i
\(688\) 12.0878 5.82116i 0.460842 0.221930i
\(689\) −0.105060 0.460299i −0.00400247 0.0175360i
\(690\) 1.13454 1.42267i 0.0431912 0.0541600i
\(691\) 7.37764 + 9.25127i 0.280659 + 0.351935i 0.902101 0.431525i \(-0.142024\pi\)
−0.621442 + 0.783460i \(0.713453\pi\)
\(692\) 1.47265 6.45211i 0.0559818 0.245272i
\(693\) 1.80023 + 7.88733i 0.0683852 + 0.299615i
\(694\) −12.3788 15.5226i −0.469894 0.589228i
\(695\) 4.97871 0.188853
\(696\) 0 0
\(697\) −16.8885 −0.639699
\(698\) 1.74476 + 2.18786i 0.0660400 + 0.0828116i
\(699\) 2.09535 + 9.18032i 0.0792533 + 0.347232i
\(700\) −7.93342 + 34.7586i −0.299855 + 1.31375i
\(701\) −13.1280 16.4620i −0.495839 0.621762i 0.469446 0.882961i \(-0.344454\pi\)
−0.965285 + 0.261199i \(0.915882\pi\)
\(702\) −0.315846 + 0.396058i −0.0119208 + 0.0149483i
\(703\) 5.08552 + 22.2811i 0.191804 + 0.840348i
\(704\) −0.293930 + 0.141549i −0.0110779 + 0.00533484i
\(705\) −15.0225 + 7.23447i −0.565782 + 0.272466i
\(706\) 2.63012 11.5233i 0.0989859 0.433686i
\(707\) −1.24511 0.599613i −0.0468271 0.0225508i
\(708\) 6.09017 0.228883
\(709\) 37.3961 + 18.0090i 1.40444 + 0.676343i 0.974057 0.226302i \(-0.0726638\pi\)
0.430384 + 0.902646i \(0.358378\pi\)
\(710\) 15.5525 19.5022i 0.583675 0.731905i
\(711\) 9.94109 12.4657i 0.372820 0.467502i
\(712\) 9.48528 + 4.56787i 0.355476 + 0.171188i
\(713\) 12.4721 0.467085
\(714\) 3.37201 + 1.62387i 0.126194 + 0.0607719i
\(715\) −0.279788 + 1.22583i −0.0104635 + 0.0458434i
\(716\) −23.3248 + 11.2326i −0.871688 + 0.419783i
\(717\) −15.4479 + 7.43933i −0.576913 + 0.277827i
\(718\) 3.26815 + 14.3187i 0.121966 + 0.534369i
\(719\) 5.30376 6.65071i 0.197797 0.248030i −0.673035 0.739611i \(-0.735010\pi\)
0.870832 + 0.491581i \(0.163581\pi\)
\(720\) −11.6644 14.6267i −0.434706 0.545104i
\(721\) 4.56788 20.0132i 0.170117 0.745330i
\(722\) −0.627433 2.74897i −0.0233507 0.102306i
\(723\) 1.79278 + 2.24807i 0.0666740 + 0.0836066i
\(724\) −9.61803 −0.357451
\(725\) 0 0
\(726\) 3.47214 0.128863
\(727\) 17.4925 + 21.9349i 0.648759 + 0.813519i 0.992068 0.125704i \(-0.0401190\pi\)
−0.343308 + 0.939223i \(0.611548\pi\)
\(728\) 0.262650 + 1.15075i 0.00973447 + 0.0426495i
\(729\) 1.89289 8.29330i 0.0701071 0.307159i
\(730\) −20.3585 25.5287i −0.753501 0.944861i
\(731\) 19.7697 24.7905i 0.731210 0.916909i
\(732\) 0.137526 + 0.602539i 0.00508309 + 0.0222705i
\(733\) −13.3521 + 6.43001i −0.493169 + 0.237498i −0.663902 0.747820i \(-0.731101\pi\)
0.170733 + 0.985317i \(0.445387\pi\)
\(734\) −15.1850 + 7.31272i −0.560489 + 0.269917i
\(735\) −1.06007 + 4.64449i −0.0391014 + 0.171315i
\(736\) 6.25657 + 3.01301i 0.230620 + 0.111061i
\(737\) 2.11146 0.0777765
\(738\) 5.61850 + 2.70573i 0.206820 + 0.0995992i
\(739\) −31.2174 + 39.1454i −1.14835 + 1.43999i −0.269432 + 0.963020i \(0.586836\pi\)
−0.878920 + 0.476968i \(0.841736\pi\)
\(740\) −18.3061 + 22.9551i −0.672945 + 0.843846i
\(741\) 0.638070 + 0.307278i 0.0234401 + 0.0112881i
\(742\) 2.76393 0.101467
\(743\) −31.7466 15.2884i −1.16467 0.560875i −0.251261 0.967919i \(-0.580845\pi\)
−0.913409 + 0.407044i \(0.866560\pi\)
\(744\) 3.10289 13.5947i 0.113758 0.498404i
\(745\) −33.3979 + 16.0836i −1.22360 + 0.589257i
\(746\) −11.4807 + 5.52883i −0.420339 + 0.202425i
\(747\) −5.79321 25.3817i −0.211962 0.928668i
\(748\) −6.10919 + 7.66068i −0.223374 + 0.280102i
\(749\) −9.43004 11.8249i −0.344566 0.432072i
\(750\) 1.59011 6.96674i 0.0580627 0.254389i
\(751\) 4.12284 + 18.0633i 0.150444 + 0.659140i 0.992756 + 0.120149i \(0.0383373\pi\)
−0.842311 + 0.538991i \(0.818806\pi\)
\(752\) −8.09210 10.1472i −0.295088 0.370029i
\(753\) 12.1459 0.442621
\(754\) 0 0
\(755\) 10.3050 0.375036
\(756\) 7.83247 + 9.82161i 0.284864 + 0.357208i
\(757\) 0.00473663 + 0.0207525i 0.000172156 + 0.000754264i 0.975014 0.222144i \(-0.0713054\pi\)
−0.974842 + 0.222898i \(0.928448\pi\)
\(758\) 3.34074 14.6367i 0.121341 0.531630i
\(759\) −0.658236 0.825401i −0.0238924 0.0299602i
\(760\) 26.0823 32.7062i 0.946106 1.18638i
\(761\) −5.60789 24.5698i −0.203286 0.890653i −0.968919 0.247377i \(-0.920432\pi\)
0.765634 0.643277i \(-0.222426\pi\)
\(762\) 5.48705 2.64243i 0.198775 0.0957250i
\(763\) −28.9743 + 13.9533i −1.04894 + 0.505143i
\(764\) 6.13319 26.8713i 0.221891 0.972168i
\(765\) −39.8361 19.1841i −1.44028 0.693602i
\(766\) −17.8328 −0.644326
\(767\) 1.29532 + 0.623792i 0.0467712 + 0.0225238i
\(768\)