Properties

Label 841.2.d.i.605.1
Level $841$
Weight $2$
Character 841.605
Analytic conductor $6.715$
Analytic rank $0$
Dimension $12$
Inner twists $6$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [841,2,Mod(190,841)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("841.190"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(841, base_ring=CyclotomicField(14)) chi = DirichletCharacter(H, H._module([2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 841 = 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 841.d (of order \(7\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,1,-1,1,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.71541880999\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{7})\)
Coefficient field: 12.0.4413675765625.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} + 2x^{10} - 3x^{9} + 5x^{8} - 8x^{7} + 13x^{6} + 8x^{5} + 5x^{4} + 3x^{3} + 2x^{2} + x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 605.1
Root \(-0.137526 + 0.602539i\) of defining polynomial
Character \(\chi\) \(=\) 841.605
Dual form 841.2.d.i.645.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.137526 + 0.602539i) q^{2} +(0.556829 - 0.268155i) q^{3} +(1.45780 + 0.702039i) q^{4} +(-0.857618 + 3.75747i) q^{5} +(0.0849954 + 0.372389i) q^{6} +(2.01463 - 0.970194i) q^{7} +(-1.39417 + 1.74823i) q^{8} +(-1.63232 + 2.04686i) q^{9} +(-2.14608 - 1.03350i) q^{10} +(-0.861642 - 1.08046i) q^{11} +1.00000 q^{12} +(-0.147186 - 0.184565i) q^{13} +(0.307516 + 1.34732i) q^{14} +(0.530037 + 2.32225i) q^{15} +(1.15601 + 1.44960i) q^{16} -4.38197 q^{17} +(-1.00883 - 1.26503i) q^{18} +(4.37339 + 2.10612i) q^{19} +(-3.88812 + 4.87555i) q^{20} +(0.861642 - 1.08046i) q^{21} +(0.769519 - 0.370581i) q^{22} +(0.275051 + 1.20508i) q^{23} +(-0.307516 + 1.34732i) q^{24} +(-8.87824 - 4.27553i) q^{25} +(0.131450 - 0.0633028i) q^{26} +(-0.772623 + 3.38508i) q^{27} +3.61803 q^{28} -1.47214 q^{30} +(2.24527 - 9.83719i) q^{31} +(-5.06167 + 2.43757i) q^{32} +(-0.769519 - 0.370581i) q^{33} +(0.602632 - 2.64030i) q^{34} +(1.91769 + 8.40196i) q^{35} +(-3.81657 + 1.83796i) q^{36} +(2.93552 - 3.68102i) q^{37} +(-1.87047 + 2.34549i) q^{38} +(-0.131450 - 0.0633028i) q^{39} +(-5.37326 - 6.73785i) q^{40} +3.85410 q^{41} +(0.532524 + 0.667764i) q^{42} +(1.61018 + 7.05464i) q^{43} +(-0.497572 - 2.18001i) q^{44} +(-6.29112 - 7.88881i) q^{45} -0.763932 q^{46} +(-4.36443 - 5.47282i) q^{47} +(1.03242 + 0.497187i) q^{48} +(-1.24698 + 1.56366i) q^{49} +(3.79716 - 4.76149i) q^{50} +(-2.44001 + 1.17505i) q^{51} +(-0.0849954 - 0.372389i) q^{52} +(0.445042 - 1.94986i) q^{53} +(-1.93339 - 0.931070i) q^{54} +(4.79877 - 2.31097i) q^{55} +(-1.11260 + 4.87464i) q^{56} +3.00000 q^{57} +6.09017 q^{59} +(-0.857618 + 3.75747i) q^{60} +(0.556829 - 0.268155i) q^{61} +(5.61850 + 2.70573i) q^{62} +(-1.30266 + 5.70733i) q^{63} +(0.0525301 + 0.230149i) q^{64} +(0.819729 - 0.394760i) q^{65} +(0.329118 - 0.412701i) q^{66} +(-0.952608 + 1.19453i) q^{67} +(-6.38802 - 3.07631i) q^{68} +(0.476304 + 0.597266i) q^{69} -5.32624 q^{70} +(6.52927 + 8.18745i) q^{71} +(-1.30266 - 5.70733i) q^{72} +(3.05036 + 13.3645i) q^{73} +(1.81425 + 2.27500i) q^{74} -6.09017 q^{75} +(4.89695 + 6.14058i) q^{76} +(-2.78415 - 1.34077i) q^{77} +(0.0562200 - 0.0704977i) q^{78} +(-3.79716 + 4.76149i) q^{79} +(-6.43823 + 3.10049i) q^{80} +(-1.27019 - 5.56509i) q^{81} +(-0.530037 + 2.32225i) q^{82} +(8.95948 + 4.31466i) q^{83} +(2.01463 - 0.970194i) q^{84} +(3.75805 - 16.4651i) q^{85} -4.47214 q^{86} +3.09017 q^{88} +(-1.04767 + 4.59016i) q^{89} +(5.61850 - 2.70573i) q^{90} +(-0.475589 - 0.229032i) q^{91} +(-0.445042 + 1.94986i) q^{92} +(-1.38766 - 6.07972i) q^{93} +(3.89781 - 1.87708i) q^{94} +(-11.6644 + 14.6267i) q^{95} +(-2.16484 + 2.71463i) q^{96} +(-3.20953 - 1.54563i) q^{97} +(-0.770676 - 0.966397i) q^{98} +3.61803 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + q^{2} - q^{3} + q^{4} - q^{5} + 3 q^{6} + 3 q^{9} - 7 q^{10} + 5 q^{11} + 12 q^{12} - 4 q^{13} + 5 q^{14} + 7 q^{15} + 3 q^{16} - 66 q^{17} + q^{18} + 3 q^{19} + 8 q^{20} - 5 q^{21} - 5 q^{22}+ \cdots + 30 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/841\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{4}{7}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.137526 + 0.602539i −0.0972452 + 0.426059i −0.999992 0.00411419i \(-0.998690\pi\)
0.902746 + 0.430173i \(0.141548\pi\)
\(3\) 0.556829 0.268155i 0.321486 0.154819i −0.266180 0.963923i \(-0.585761\pi\)
0.587665 + 0.809104i \(0.300047\pi\)
\(4\) 1.45780 + 0.702039i 0.728899 + 0.351019i
\(5\) −0.857618 + 3.75747i −0.383539 + 1.68039i 0.302756 + 0.953068i \(0.402093\pi\)
−0.686294 + 0.727324i \(0.740764\pi\)
\(6\) 0.0849954 + 0.372389i 0.0346992 + 0.152027i
\(7\) 2.01463 0.970194i 0.761458 0.366699i −0.0125117 0.999922i \(-0.503983\pi\)
0.773969 + 0.633223i \(0.218268\pi\)
\(8\) −1.39417 + 1.74823i −0.492912 + 0.618092i
\(9\) −1.63232 + 2.04686i −0.544106 + 0.682287i
\(10\) −2.14608 1.03350i −0.678649 0.326820i
\(11\) −0.861642 1.08046i −0.259795 0.325772i 0.634778 0.772694i \(-0.281092\pi\)
−0.894573 + 0.446922i \(0.852520\pi\)
\(12\) 1.00000 0.288675
\(13\) −0.147186 0.184565i −0.0408220 0.0511892i 0.761001 0.648750i \(-0.224708\pi\)
−0.801823 + 0.597561i \(0.796137\pi\)
\(14\) 0.307516 + 1.34732i 0.0821872 + 0.360086i
\(15\) 0.530037 + 2.32225i 0.136855 + 0.599601i
\(16\) 1.15601 + 1.44960i 0.289003 + 0.362399i
\(17\) −4.38197 −1.06278 −0.531391 0.847126i \(-0.678331\pi\)
−0.531391 + 0.847126i \(0.678331\pi\)
\(18\) −1.00883 1.26503i −0.237783 0.298170i
\(19\) 4.37339 + 2.10612i 1.00333 + 0.483176i 0.862066 0.506796i \(-0.169170\pi\)
0.141260 + 0.989973i \(0.454885\pi\)
\(20\) −3.88812 + 4.87555i −0.869411 + 1.09021i
\(21\) 0.861642 1.08046i 0.188026 0.235777i
\(22\) 0.769519 0.370581i 0.164062 0.0790081i
\(23\) 0.275051 + 1.20508i 0.0573521 + 0.251276i 0.995475 0.0950275i \(-0.0302939\pi\)
−0.938123 + 0.346303i \(0.887437\pi\)
\(24\) −0.307516 + 1.34732i −0.0627715 + 0.275020i
\(25\) −8.87824 4.27553i −1.77565 0.855107i
\(26\) 0.131450 0.0633028i 0.0257794 0.0124147i
\(27\) −0.772623 + 3.38508i −0.148691 + 0.651459i
\(28\) 3.61803 0.683744
\(29\) 0 0
\(30\) −1.47214 −0.268774
\(31\) 2.24527 9.83719i 0.403263 1.76681i −0.210775 0.977535i \(-0.567599\pi\)
0.614038 0.789277i \(-0.289544\pi\)
\(32\) −5.06167 + 2.43757i −0.894786 + 0.430906i
\(33\) −0.769519 0.370581i −0.133956 0.0645099i
\(34\) 0.602632 2.64030i 0.103351 0.452808i
\(35\) 1.91769 + 8.40196i 0.324149 + 1.42019i
\(36\) −3.81657 + 1.83796i −0.636094 + 0.306327i
\(37\) 2.93552 3.68102i 0.482596 0.605156i −0.479609 0.877482i \(-0.659221\pi\)
0.962205 + 0.272326i \(0.0877929\pi\)
\(38\) −1.87047 + 2.34549i −0.303430 + 0.380489i
\(39\) −0.131450 0.0633028i −0.0210488 0.0101366i
\(40\) −5.37326 6.73785i −0.849586 1.06535i
\(41\) 3.85410 0.601910 0.300955 0.953638i \(-0.402695\pi\)
0.300955 + 0.953638i \(0.402695\pi\)
\(42\) 0.532524 + 0.667764i 0.0821702 + 0.103038i
\(43\) 1.61018 + 7.05464i 0.245550 + 1.07582i 0.935877 + 0.352326i \(0.114609\pi\)
−0.690328 + 0.723497i \(0.742534\pi\)
\(44\) −0.497572 2.18001i −0.0750118 0.328648i
\(45\) −6.29112 7.88881i −0.937825 1.17599i
\(46\) −0.763932 −0.112636
\(47\) −4.36443 5.47282i −0.636617 0.798293i 0.353958 0.935261i \(-0.384836\pi\)
−0.990575 + 0.136968i \(0.956264\pi\)
\(48\) 1.03242 + 0.497187i 0.149017 + 0.0717627i
\(49\) −1.24698 + 1.56366i −0.178140 + 0.223380i
\(50\) 3.79716 4.76149i 0.536999 0.673376i
\(51\) −2.44001 + 1.17505i −0.341669 + 0.164539i
\(52\) −0.0849954 0.372389i −0.0117867 0.0516411i
\(53\) 0.445042 1.94986i 0.0611312 0.267833i −0.935121 0.354328i \(-0.884710\pi\)
0.996252 + 0.0864950i \(0.0275667\pi\)
\(54\) −1.93339 0.931070i −0.263101 0.126703i
\(55\) 4.79877 2.31097i 0.647067 0.311611i
\(56\) −1.11260 + 4.87464i −0.148678 + 0.651401i
\(57\) 3.00000 0.397360
\(58\) 0 0
\(59\) 6.09017 0.792873 0.396436 0.918062i \(-0.370247\pi\)
0.396436 + 0.918062i \(0.370247\pi\)
\(60\) −0.857618 + 3.75747i −0.110718 + 0.485087i
\(61\) 0.556829 0.268155i 0.0712947 0.0343337i −0.397897 0.917430i \(-0.630260\pi\)
0.469191 + 0.883097i \(0.344545\pi\)
\(62\) 5.61850 + 2.70573i 0.713551 + 0.343628i
\(63\) −1.30266 + 5.70733i −0.164120 + 0.719056i
\(64\) 0.0525301 + 0.230149i 0.00656626 + 0.0287687i
\(65\) 0.819729 0.394760i 0.101675 0.0489640i
\(66\) 0.329118 0.412701i 0.0405116 0.0507999i
\(67\) −0.952608 + 1.19453i −0.116380 + 0.145935i −0.836609 0.547801i \(-0.815465\pi\)
0.720229 + 0.693736i \(0.244037\pi\)
\(68\) −6.38802 3.07631i −0.774662 0.373057i
\(69\) 0.476304 + 0.597266i 0.0573402 + 0.0719024i
\(70\) −5.32624 −0.636607
\(71\) 6.52927 + 8.18745i 0.774882 + 0.971671i 0.999996 0.00266125i \(-0.000847104\pi\)
−0.225115 + 0.974332i \(0.572276\pi\)
\(72\) −1.30266 5.70733i −0.153520 0.672615i
\(73\) 3.05036 + 13.3645i 0.357018 + 1.56420i 0.760579 + 0.649245i \(0.224915\pi\)
−0.403561 + 0.914953i \(0.632228\pi\)
\(74\) 1.81425 + 2.27500i 0.210902 + 0.264463i
\(75\) −6.09017 −0.703232
\(76\) 4.89695 + 6.14058i 0.561719 + 0.704373i
\(77\) −2.78415 1.34077i −0.317283 0.152795i
\(78\) 0.0562200 0.0704977i 0.00636567 0.00798229i
\(79\) −3.79716 + 4.76149i −0.427214 + 0.535709i −0.948123 0.317903i \(-0.897021\pi\)
0.520910 + 0.853612i \(0.325593\pi\)
\(80\) −6.43823 + 3.10049i −0.719816 + 0.346645i
\(81\) −1.27019 5.56509i −0.141133 0.618343i
\(82\) −0.530037 + 2.32225i −0.0585328 + 0.256449i
\(83\) 8.95948 + 4.31466i 0.983431 + 0.473595i 0.855284 0.518160i \(-0.173383\pi\)
0.128147 + 0.991755i \(0.459097\pi\)
\(84\) 2.01463 0.970194i 0.219814 0.105857i
\(85\) 3.75805 16.4651i 0.407618 1.78589i
\(86\) −4.47214 −0.482243
\(87\) 0 0
\(88\) 3.09017 0.329413
\(89\) −1.04767 + 4.59016i −0.111053 + 0.486556i 0.888560 + 0.458760i \(0.151706\pi\)
−0.999614 + 0.0277963i \(0.991151\pi\)
\(90\) 5.61850 2.70573i 0.592242 0.285209i
\(91\) −0.475589 0.229032i −0.0498553 0.0240090i
\(92\) −0.445042 + 1.94986i −0.0463988 + 0.203287i
\(93\) −1.38766 6.07972i −0.143893 0.630437i
\(94\) 3.89781 1.87708i 0.402028 0.193606i
\(95\) −11.6644 + 14.6267i −1.19674 + 1.50066i
\(96\) −2.16484 + 2.71463i −0.220948 + 0.277060i
\(97\) −3.20953 1.54563i −0.325878 0.156935i 0.263790 0.964580i \(-0.415027\pi\)
−0.589668 + 0.807645i \(0.700742\pi\)
\(98\) −0.770676 0.966397i −0.0778500 0.0976208i
\(99\) 3.61803 0.363626
\(100\) −9.94109 12.4657i −0.994109 1.24657i
\(101\) 0.137526 + 0.602539i 0.0136843 + 0.0599548i 0.981309 0.192438i \(-0.0616395\pi\)
−0.967625 + 0.252393i \(0.918782\pi\)
\(102\) −0.372447 1.63180i −0.0368778 0.161572i
\(103\) 5.72385 + 7.17748i 0.563988 + 0.707218i 0.979289 0.202466i \(-0.0648955\pi\)
−0.415302 + 0.909684i \(0.636324\pi\)
\(104\) 0.527864 0.0517613
\(105\) 3.32086 + 4.16422i 0.324082 + 0.406386i
\(106\) 1.11366 + 0.536310i 0.108168 + 0.0520910i
\(107\) 4.21724 5.28826i 0.407696 0.511235i −0.535016 0.844842i \(-0.679694\pi\)
0.942712 + 0.333607i \(0.108266\pi\)
\(108\) −3.50279 + 4.39236i −0.337056 + 0.422655i
\(109\) 12.9577 6.24010i 1.24112 0.597693i 0.306005 0.952030i \(-0.401008\pi\)
0.935118 + 0.354337i \(0.115293\pi\)
\(110\) 0.732494 + 3.20926i 0.0698405 + 0.305991i
\(111\) 0.647498 2.83687i 0.0614578 0.269264i
\(112\) 3.73533 + 1.79884i 0.352955 + 0.169974i
\(113\) −7.15754 + 3.44689i −0.673325 + 0.324256i −0.739117 0.673577i \(-0.764757\pi\)
0.0657920 + 0.997833i \(0.479043\pi\)
\(114\) −0.412577 + 1.80762i −0.0386413 + 0.169299i
\(115\) −4.76393 −0.444239
\(116\) 0 0
\(117\) 0.618034 0.0571373
\(118\) −0.837554 + 3.66956i −0.0771031 + 0.337811i
\(119\) −8.82803 + 4.25136i −0.809264 + 0.389721i
\(120\) −4.79877 2.31097i −0.438066 0.210962i
\(121\) 2.02275 8.86226i 0.183887 0.805660i
\(122\) 0.0849954 + 0.372389i 0.00769512 + 0.0337145i
\(123\) 2.14608 1.03350i 0.193505 0.0931872i
\(124\) 10.1792 12.7644i 0.914123 1.14627i
\(125\) 11.6644 14.6267i 1.04329 1.30825i
\(126\) −3.25974 1.56981i −0.290400 0.139849i
\(127\) 9.94109 + 12.4657i 0.882129 + 1.10615i 0.993664 + 0.112394i \(0.0358520\pi\)
−0.111534 + 0.993761i \(0.535577\pi\)
\(128\) −11.3820 −1.00603
\(129\) 2.78833 + 3.49646i 0.245499 + 0.307846i
\(130\) 0.125125 + 0.548208i 0.0109742 + 0.0480810i
\(131\) −3.18789 13.9670i −0.278527 1.22031i −0.899656 0.436599i \(-0.856183\pi\)
0.621129 0.783708i \(-0.286674\pi\)
\(132\) −0.861642 1.08046i −0.0749963 0.0940424i
\(133\) 10.8541 0.941170
\(134\) −0.588744 0.738262i −0.0508597 0.0637761i
\(135\) −12.0567 5.80622i −1.03768 0.499720i
\(136\) 6.10919 7.66068i 0.523858 0.656898i
\(137\) 4.45539 5.58689i 0.380650 0.477320i −0.554189 0.832391i \(-0.686972\pi\)
0.934840 + 0.355070i \(0.115543\pi\)
\(138\) −0.425380 + 0.204852i −0.0362107 + 0.0174382i
\(139\) −0.287452 1.25941i −0.0243813 0.106822i 0.961273 0.275598i \(-0.0888757\pi\)
−0.985654 + 0.168776i \(0.946019\pi\)
\(140\) −3.10289 + 13.5947i −0.262242 + 1.14896i
\(141\) −3.89781 1.87708i −0.328254 0.158079i
\(142\) −5.83119 + 2.80815i −0.489343 + 0.235655i
\(143\) −0.0725948 + 0.318058i −0.00607068 + 0.0265974i
\(144\) −4.85410 −0.404508
\(145\) 0 0
\(146\) −8.47214 −0.701159
\(147\) −0.275051 + 1.20508i −0.0226858 + 0.0993931i
\(148\) 6.86361 3.30534i 0.564185 0.271697i
\(149\) −8.66555 4.17311i −0.709909 0.341874i 0.0438379 0.999039i \(-0.486041\pi\)
−0.753747 + 0.657164i \(0.771756\pi\)
\(150\) 0.837554 3.66956i 0.0683860 0.299619i
\(151\) −0.594968 2.60673i −0.0484178 0.212132i 0.944932 0.327266i \(-0.106127\pi\)
−0.993350 + 0.115134i \(0.963270\pi\)
\(152\) −9.77921 + 4.70942i −0.793199 + 0.381984i
\(153\) 7.15276 8.96928i 0.578266 0.725123i
\(154\) 1.19076 1.49317i 0.0959541 0.120323i
\(155\) 35.0374 + 16.8731i 2.81427 + 1.35528i
\(156\) −0.147186 0.184565i −0.0117843 0.0147771i
\(157\) 14.5623 1.16220 0.581099 0.813833i \(-0.302623\pi\)
0.581099 + 0.813833i \(0.302623\pi\)
\(158\) −2.34677 2.94276i −0.186699 0.234113i
\(159\) −0.275051 1.20508i −0.0218130 0.0955688i
\(160\) −4.81813 21.1096i −0.380907 1.66886i
\(161\) 1.72328 + 2.16093i 0.135814 + 0.170305i
\(162\) 3.52786 0.277175
\(163\) −3.76241 4.71792i −0.294695 0.369536i 0.612338 0.790596i \(-0.290229\pi\)
−0.907032 + 0.421061i \(0.861658\pi\)
\(164\) 5.61850 + 2.70573i 0.438731 + 0.211282i
\(165\) 2.05240 2.57363i 0.159779 0.200357i
\(166\) −3.83190 + 4.80506i −0.297413 + 0.372945i
\(167\) −9.48528 + 4.56787i −0.733993 + 0.353472i −0.763253 0.646100i \(-0.776399\pi\)
0.0292604 + 0.999572i \(0.490685\pi\)
\(168\) 0.687628 + 3.01269i 0.0530516 + 0.232434i
\(169\) 2.88037 12.6197i 0.221567 0.970749i
\(170\) 9.40404 + 4.52875i 0.721257 + 0.347339i
\(171\) −11.4497 + 5.51388i −0.875580 + 0.421657i
\(172\) −2.60532 + 11.4147i −0.198654 + 0.870359i
\(173\) 4.09017 0.310970 0.155485 0.987838i \(-0.450306\pi\)
0.155485 + 0.987838i \(0.450306\pi\)
\(174\) 0 0
\(175\) −22.0344 −1.66565
\(176\) 0.570167 2.49806i 0.0429779 0.188299i
\(177\) 3.39119 1.63311i 0.254897 0.122752i
\(178\) −2.62167 1.26253i −0.196502 0.0946305i
\(179\) 3.56033 15.5988i 0.266112 1.16591i −0.648383 0.761315i \(-0.724554\pi\)
0.914495 0.404598i \(-0.132589\pi\)
\(180\) −3.63293 15.9169i −0.270783 1.18638i
\(181\) −5.35560 + 2.57912i −0.398079 + 0.191705i −0.622203 0.782856i \(-0.713762\pi\)
0.224124 + 0.974561i \(0.428048\pi\)
\(182\) 0.203406 0.255063i 0.0150775 0.0189065i
\(183\) 0.238152 0.298633i 0.0176047 0.0220756i
\(184\) −2.49022 1.19923i −0.183581 0.0884081i
\(185\) 11.3138 + 14.1870i 0.831806 + 1.04305i
\(186\) 3.85410 0.282596
\(187\) 3.77568 + 4.73456i 0.276105 + 0.346225i
\(188\) −2.52033 11.0423i −0.183814 0.805340i
\(189\) 1.72764 + 7.56927i 0.125667 + 0.550584i
\(190\) −7.20898 9.03977i −0.522994 0.655814i
\(191\) 17.0344 1.23257 0.616284 0.787524i \(-0.288637\pi\)
0.616284 + 0.787524i \(0.288637\pi\)
\(192\) 0.0909659 + 0.114068i 0.00656490 + 0.00823213i
\(193\) −11.2370 5.41146i −0.808857 0.389525i −0.0167141 0.999860i \(-0.505321\pi\)
−0.792143 + 0.610335i \(0.791035\pi\)
\(194\) 1.37269 1.72130i 0.0985535 0.123582i
\(195\) 0.350592 0.439628i 0.0251064 0.0314824i
\(196\) −2.91560 + 1.40408i −0.208257 + 0.100291i
\(197\) 1.40006 + 6.13405i 0.0997499 + 0.437033i 0.999999 + 0.00165687i \(0.000527397\pi\)
−0.900249 + 0.435376i \(0.856615\pi\)
\(198\) −0.497572 + 2.18001i −0.0353609 + 0.154926i
\(199\) 5.27436 + 2.54000i 0.373890 + 0.180056i 0.611386 0.791333i \(-0.290612\pi\)
−0.237496 + 0.971389i \(0.576327\pi\)
\(200\) 19.8523 9.56039i 1.40377 0.676021i
\(201\) −0.210120 + 0.920597i −0.0148207 + 0.0649339i
\(202\) −0.381966 −0.0268750
\(203\) 0 0
\(204\) −4.38197 −0.306799
\(205\) −3.30535 + 14.4817i −0.230856 + 1.01144i
\(206\) −5.11188 + 2.46175i −0.356162 + 0.171518i
\(207\) −2.91560 1.40408i −0.202648 0.0975901i
\(208\) 0.0973961 0.426720i 0.00675320 0.0295877i
\(209\) −1.49272 6.54002i −0.103253 0.452382i
\(210\) −2.96581 + 1.42826i −0.204660 + 0.0985591i
\(211\) −7.26520 + 9.11027i −0.500157 + 0.627177i −0.966265 0.257551i \(-0.917084\pi\)
0.466108 + 0.884728i \(0.345656\pi\)
\(212\) 2.01766 2.53006i 0.138573 0.173765i
\(213\) 5.83119 + 2.80815i 0.399547 + 0.192412i
\(214\) 2.60640 + 3.26832i 0.178170 + 0.223418i
\(215\) −27.8885 −1.90198
\(216\) −4.84073 6.07009i −0.329370 0.413017i
\(217\) −5.02059 21.9966i −0.340820 1.49323i
\(218\) 1.97789 + 8.66569i 0.133959 + 0.586915i
\(219\) 5.28229 + 6.62378i 0.356944 + 0.447594i
\(220\) 8.61803 0.581028
\(221\) 0.644964 + 0.808759i 0.0433850 + 0.0544030i
\(222\) 1.62028 + 0.780285i 0.108746 + 0.0523693i
\(223\) 1.66706 2.09043i 0.111635 0.139986i −0.722875 0.690979i \(-0.757180\pi\)
0.834510 + 0.550993i \(0.185751\pi\)
\(224\) −7.83247 + 9.82161i −0.523329 + 0.656234i
\(225\) 23.2435 11.1935i 1.54957 0.746233i
\(226\) −1.09254 4.78673i −0.0726747 0.318409i
\(227\) 4.64814 20.3648i 0.308508 1.35166i −0.548411 0.836209i \(-0.684767\pi\)
0.856919 0.515452i \(-0.172376\pi\)
\(228\) 4.37339 + 2.10612i 0.289635 + 0.139481i
\(229\) −2.06484 + 0.994373i −0.136448 + 0.0657100i −0.500862 0.865527i \(-0.666984\pi\)
0.364414 + 0.931237i \(0.381269\pi\)
\(230\) 0.655162 2.87045i 0.0432001 0.189272i
\(231\) −1.90983 −0.125658
\(232\) 0 0
\(233\) 15.2361 0.998148 0.499074 0.866559i \(-0.333674\pi\)
0.499074 + 0.866559i \(0.333674\pi\)
\(234\) −0.0849954 + 0.372389i −0.00555633 + 0.0243439i
\(235\) 24.3070 11.7056i 1.58561 0.763591i
\(236\) 8.87824 + 4.27553i 0.577924 + 0.278314i
\(237\) −0.837554 + 3.66956i −0.0544050 + 0.238364i
\(238\) −1.34753 5.90390i −0.0873472 0.382693i
\(239\) 24.9953 12.0371i 1.61681 0.778614i 0.616845 0.787085i \(-0.288411\pi\)
0.999964 + 0.00847060i \(0.00269631\pi\)
\(240\) −2.75359 + 3.45289i −0.177743 + 0.222883i
\(241\) −2.90077 + 3.63745i −0.186855 + 0.234309i −0.866432 0.499296i \(-0.833592\pi\)
0.679577 + 0.733605i \(0.262164\pi\)
\(242\) 5.06167 + 2.43757i 0.325377 + 0.156693i
\(243\) −8.69411 10.9021i −0.557728 0.699368i
\(244\) 1.00000 0.0640184
\(245\) −4.80599 6.02652i −0.307043 0.385020i
\(246\) 0.327581 + 1.43523i 0.0208858 + 0.0915067i
\(247\) −0.254986 1.11717i −0.0162244 0.0710837i
\(248\) 14.0674 + 17.6399i 0.893279 + 1.12014i
\(249\) 6.14590 0.389480
\(250\) 7.20898 + 9.03977i 0.455936 + 0.571726i
\(251\) 17.7063 + 8.52689i 1.11761 + 0.538213i 0.899153 0.437634i \(-0.144183\pi\)
0.218457 + 0.975847i \(0.429898\pi\)
\(252\) −5.90578 + 7.40561i −0.372029 + 0.466510i
\(253\) 1.06505 1.33553i 0.0669590 0.0839639i
\(254\) −8.87824 + 4.27553i −0.557070 + 0.268271i
\(255\) −2.32261 10.1760i −0.145447 0.637246i
\(256\) 1.46025 6.39778i 0.0912657 0.399861i
\(257\) 20.8848 + 10.0576i 1.30276 + 0.627374i 0.951137 0.308769i \(-0.0999170\pi\)
0.351619 + 0.936143i \(0.385631\pi\)
\(258\) −2.49022 + 1.19923i −0.155034 + 0.0746605i
\(259\) 2.34267 10.2639i 0.145566 0.637768i
\(260\) 1.47214 0.0912980
\(261\) 0 0
\(262\) 8.85410 0.547008
\(263\) 3.71793 16.2893i 0.229257 1.00444i −0.720990 0.692945i \(-0.756313\pi\)
0.950248 0.311496i \(-0.100830\pi\)
\(264\) 1.72070 0.828644i 0.105902 0.0509995i
\(265\) 6.94485 + 3.34446i 0.426619 + 0.205449i
\(266\) −1.49272 + 6.54002i −0.0915243 + 0.400994i
\(267\) 0.647498 + 2.83687i 0.0396262 + 0.173614i
\(268\) −2.22732 + 1.07262i −0.136055 + 0.0655207i
\(269\) −3.74094 + 4.69099i −0.228089 + 0.286015i −0.882686 0.469964i \(-0.844267\pi\)
0.654597 + 0.755978i \(0.272838\pi\)
\(270\) 5.15658 6.46614i 0.313819 0.393517i
\(271\) −9.17217 4.41708i −0.557170 0.268319i 0.134037 0.990976i \(-0.457206\pi\)
−0.691206 + 0.722658i \(0.742920\pi\)
\(272\) −5.06561 6.35208i −0.307148 0.385151i
\(273\) −0.326238 −0.0197448
\(274\) 2.75359 + 3.45289i 0.166350 + 0.208597i
\(275\) 3.03030 + 13.2766i 0.182734 + 0.800609i
\(276\) 0.275051 + 1.20508i 0.0165561 + 0.0725371i
\(277\) −13.3314 16.7171i −0.801008 1.00443i −0.999703 0.0243714i \(-0.992242\pi\)
0.198695 0.980061i \(-0.436330\pi\)
\(278\) 0.798374 0.0478833
\(279\) 16.4704 + 20.6532i 0.986055 + 1.23647i
\(280\) −17.3621 8.36116i −1.03759 0.499675i
\(281\) 14.4180 18.0795i 0.860103 1.07854i −0.136032 0.990704i \(-0.543435\pi\)
0.996135 0.0878311i \(-0.0279936\pi\)
\(282\) 1.66706 2.09043i 0.0992722 0.124483i
\(283\) 4.71753 2.27184i 0.280428 0.135047i −0.288383 0.957515i \(-0.593118\pi\)
0.568811 + 0.822468i \(0.307403\pi\)
\(284\) 3.77046 + 16.5194i 0.223735 + 0.980249i
\(285\) −2.57286 + 11.2724i −0.152403 + 0.667720i
\(286\) −0.181659 0.0874823i −0.0107417 0.00517294i
\(287\) 7.76458 3.73922i 0.458329 0.220719i
\(288\) 3.27288 14.3394i 0.192856 0.844960i
\(289\) 2.20163 0.129507
\(290\) 0 0
\(291\) −2.20163 −0.129062
\(292\) −4.93559 + 21.6242i −0.288834 + 1.26546i
\(293\) −7.68334 + 3.70010i −0.448866 + 0.216162i −0.644639 0.764487i \(-0.722992\pi\)
0.195774 + 0.980649i \(0.437278\pi\)
\(294\) −0.688279 0.331458i −0.0401412 0.0193310i
\(295\) −5.22304 + 22.8836i −0.304097 + 1.33234i
\(296\) 2.34267 + 10.2639i 0.136165 + 0.596578i
\(297\) 4.32319 2.08194i 0.250857 0.120806i
\(298\) 3.70619 4.64742i 0.214694 0.269218i
\(299\) 0.181932 0.228135i 0.0105214 0.0131934i
\(300\) −8.87824 4.27553i −0.512585 0.246848i
\(301\) 10.0883 + 12.6503i 0.581479 + 0.729151i
\(302\) 1.65248 0.0950893
\(303\) 0.238152 + 0.298633i 0.0136815 + 0.0171560i
\(304\) 2.00269 + 8.77435i 0.114862 + 0.503244i
\(305\) 0.530037 + 2.32225i 0.0303498 + 0.132971i
\(306\) 4.42065 + 5.54332i 0.252712 + 0.316890i
\(307\) −19.1803 −1.09468 −0.547340 0.836910i \(-0.684360\pi\)
−0.547340 + 0.836910i \(0.684360\pi\)
\(308\) −3.11745 3.90916i −0.177633 0.222745i
\(309\) 5.11188 + 2.46175i 0.290805 + 0.140044i
\(310\) −14.9852 + 18.7909i −0.851104 + 1.06725i
\(311\) 1.30320 1.63416i 0.0738977 0.0926647i −0.743509 0.668726i \(-0.766840\pi\)
0.817406 + 0.576062i \(0.195411\pi\)
\(312\) 0.293930 0.141549i 0.0166405 0.00801365i
\(313\) 2.87271 + 12.5862i 0.162375 + 0.711411i 0.988909 + 0.148524i \(0.0474523\pi\)
−0.826534 + 0.562887i \(0.809691\pi\)
\(314\) −2.00269 + 8.77435i −0.113018 + 0.495165i
\(315\) −20.3279 9.78942i −1.14535 0.551571i
\(316\) −8.87824 + 4.27553i −0.499440 + 0.240518i
\(317\) −6.16566 + 27.0135i −0.346298 + 1.51723i 0.439214 + 0.898383i \(0.355257\pi\)
−0.785512 + 0.618847i \(0.787600\pi\)
\(318\) 0.763932 0.0428392
\(319\) 0 0
\(320\) −0.909830 −0.0508610
\(321\) 0.930213 4.07553i 0.0519194 0.227474i
\(322\) −1.53904 + 0.741162i −0.0857673 + 0.0413033i
\(323\) −19.1641 9.22893i −1.06632 0.513511i
\(324\) 2.05522 9.00450i 0.114179 0.500250i
\(325\) 0.517637 + 2.26791i 0.0287133 + 0.125801i
\(326\) 3.36015 1.61817i 0.186102 0.0896219i
\(327\) 5.54192 6.94934i 0.306469 0.384300i
\(328\) −5.37326 + 6.73785i −0.296688 + 0.372036i
\(329\) −14.1024 6.79135i −0.777490 0.374420i
\(330\) 1.26845 + 1.59059i 0.0698261 + 0.0875591i
\(331\) 21.1803 1.16418 0.582088 0.813126i \(-0.302236\pi\)
0.582088 + 0.813126i \(0.302236\pi\)
\(332\) 10.0321 + 12.5798i 0.550581 + 0.690406i
\(333\) 2.74285 + 12.0172i 0.150307 + 0.658538i
\(334\) −1.44785 6.34344i −0.0792228 0.347098i
\(335\) −3.67145 4.60385i −0.200593 0.251535i
\(336\) 2.56231 0.139785
\(337\) −21.2416 26.6361i −1.15710 1.45096i −0.869992 0.493065i \(-0.835876\pi\)
−0.287111 0.957897i \(-0.592695\pi\)
\(338\) 7.20775 + 3.47107i 0.392050 + 0.188801i
\(339\) −3.06123 + 3.83866i −0.166263 + 0.208487i
\(340\) 17.0376 21.3645i 0.923995 1.15865i
\(341\) −12.5634 + 6.05019i −0.680344 + 0.327636i
\(342\) −1.74770 7.65718i −0.0945049 0.414053i
\(343\) −4.47815 + 19.6200i −0.241797 + 1.05938i
\(344\) −14.5780 7.02039i −0.785992 0.378514i
\(345\) −2.65270 + 1.27747i −0.142816 + 0.0687768i
\(346\) −0.562503 + 2.46449i −0.0302403 + 0.132492i
\(347\) −32.1246 −1.72454 −0.862270 0.506449i \(-0.830958\pi\)
−0.862270 + 0.506449i \(0.830958\pi\)
\(348\) 0 0
\(349\) 4.52786 0.242371 0.121186 0.992630i \(-0.461330\pi\)
0.121186 + 0.992630i \(0.461330\pi\)
\(350\) 3.03030 13.2766i 0.161976 0.709664i
\(351\) 0.738488 0.355637i 0.0394176 0.0189825i
\(352\) 6.99506 + 3.36864i 0.372838 + 0.179549i
\(353\) 4.25563 18.6451i 0.226504 0.992379i −0.725962 0.687735i \(-0.758605\pi\)
0.952466 0.304645i \(-0.0985377\pi\)
\(354\) 0.517637 + 2.26791i 0.0275121 + 0.120538i
\(355\) −36.3637 + 17.5118i −1.92999 + 0.929432i
\(356\) −4.74977 + 5.95602i −0.251737 + 0.315668i
\(357\) −3.77568 + 4.73456i −0.199830 + 0.250579i
\(358\) 8.90927 + 4.29048i 0.470870 + 0.226759i
\(359\) −14.8166 18.5794i −0.781989 0.980583i −0.999989 0.00463409i \(-0.998525\pi\)
0.218001 0.975949i \(-0.430047\pi\)
\(360\) 22.5623 1.18914
\(361\) 2.84455 + 3.56695i 0.149713 + 0.187734i
\(362\) −0.817489 3.58165i −0.0429663 0.188248i
\(363\) −1.25013 5.47718i −0.0656148 0.287477i
\(364\) −0.532524 0.667764i −0.0279118 0.0350003i
\(365\) −52.8328 −2.76540
\(366\) 0.147186 + 0.184565i 0.00769353 + 0.00964739i
\(367\) −24.5699 11.8322i −1.28254 0.617637i −0.336496 0.941685i \(-0.609242\pi\)
−0.946041 + 0.324047i \(0.894956\pi\)
\(368\) −1.42891 + 1.79180i −0.0744872 + 0.0934039i
\(369\) −6.29112 + 7.88881i −0.327503 + 0.410675i
\(370\) −10.1042 + 4.86591i −0.525291 + 0.252967i
\(371\) −0.995144 4.36001i −0.0516653 0.226360i
\(372\) 2.24527 9.83719i 0.116412 0.510034i
\(373\) −18.5762 8.94583i −0.961840 0.463198i −0.114018 0.993479i \(-0.536372\pi\)
−0.847822 + 0.530281i \(0.822086\pi\)
\(374\) −3.37201 + 1.62387i −0.174362 + 0.0839685i
\(375\) 2.57286 11.2724i 0.132862 0.582105i
\(376\) 15.6525 0.807215
\(377\) 0 0
\(378\) −4.79837 −0.246802
\(379\) 5.40543 23.6828i 0.277658 1.21650i −0.623087 0.782153i \(-0.714122\pi\)
0.900745 0.434348i \(-0.143021\pi\)
\(380\) −27.2728 + 13.1339i −1.39906 + 0.673754i
\(381\) 8.87824 + 4.27553i 0.454846 + 0.219042i
\(382\) −2.34267 + 10.2639i −0.119861 + 0.525147i
\(383\) 6.42064 + 28.1307i 0.328079 + 1.43741i 0.822787 + 0.568350i \(0.192418\pi\)
−0.494707 + 0.869060i \(0.664725\pi\)
\(384\) −6.33781 + 3.05213i −0.323425 + 0.155753i
\(385\) 7.42566 9.31148i 0.378447 0.474557i
\(386\) 4.80599 6.02652i 0.244618 0.306742i
\(387\) −17.0682 8.21961i −0.867625 0.417826i
\(388\) −3.59375 4.50642i −0.182445 0.228779i
\(389\) −19.1246 −0.969656 −0.484828 0.874609i \(-0.661118\pi\)
−0.484828 + 0.874609i \(0.661118\pi\)
\(390\) 0.216678 + 0.271705i 0.0109719 + 0.0137583i
\(391\) −1.20526 5.28061i −0.0609528 0.267052i
\(392\) −0.995144 4.36001i −0.0502624 0.220214i
\(393\) −5.52044 6.92242i −0.278469 0.349190i
\(394\) −3.88854 −0.195902
\(395\) −14.6346 18.3513i −0.736349 0.923352i
\(396\) 5.27436 + 2.54000i 0.265047 + 0.127640i
\(397\) −8.76360 + 10.9892i −0.439833 + 0.551533i −0.951499 0.307651i \(-0.900457\pi\)
0.511666 + 0.859184i \(0.329028\pi\)
\(398\) −2.25581 + 2.82869i −0.113073 + 0.141790i
\(399\) 6.04388 2.91058i 0.302573 0.145711i
\(400\) −4.06557 17.8124i −0.203279 0.890622i
\(401\) −5.57835 + 24.4404i −0.278570 + 1.22049i 0.621033 + 0.783784i \(0.286713\pi\)
−0.899603 + 0.436709i \(0.856144\pi\)
\(402\) −0.525798 0.253211i −0.0262244 0.0126290i
\(403\) −2.14608 + 1.03350i −0.106904 + 0.0514821i
\(404\) −0.222521 + 0.974928i −0.0110708 + 0.0485045i
\(405\) 22.0000 1.09319
\(406\) 0 0
\(407\) −6.50658 −0.322519
\(408\) 1.34753 5.90390i 0.0667125 0.292287i
\(409\) −24.7013 + 11.8955i −1.22140 + 0.588196i −0.929702 0.368313i \(-0.879935\pi\)
−0.291700 + 0.956510i \(0.594221\pi\)
\(410\) −8.27120 3.98320i −0.408485 0.196716i
\(411\) 0.982743 4.30568i 0.0484751 0.212383i
\(412\) 3.30535 + 14.4817i 0.162843 + 0.713461i
\(413\) 12.2694 5.90864i 0.603739 0.290745i
\(414\) 1.24698 1.56366i 0.0612857 0.0768498i
\(415\) −23.8960 + 29.9647i −1.17301 + 1.47091i
\(416\) 1.19490 + 0.575433i 0.0585847 + 0.0282129i
\(417\) −0.497778 0.624194i −0.0243763 0.0305669i
\(418\) 4.14590 0.202783
\(419\) −10.9499 13.7308i −0.534939 0.670792i 0.438767 0.898601i \(-0.355415\pi\)
−0.973706 + 0.227809i \(0.926844\pi\)
\(420\) 1.91769 + 8.40196i 0.0935738 + 0.409974i
\(421\) 6.90581 + 30.2563i 0.336569 + 1.47460i 0.806148 + 0.591714i \(0.201548\pi\)
−0.469579 + 0.882890i \(0.655594\pi\)
\(422\) −4.49014 5.63046i −0.218577 0.274086i
\(423\) 18.3262 0.891052
\(424\) 2.78833 + 3.49646i 0.135413 + 0.169803i
\(425\) 38.9041 + 18.7352i 1.88713 + 0.908793i
\(426\) −2.49396 + 3.12733i −0.120833 + 0.151519i
\(427\) 0.861642 1.08046i 0.0416978 0.0522873i
\(428\) 9.86045 4.74854i 0.476623 0.229529i
\(429\) 0.0448660 + 0.196571i 0.00216615 + 0.00949053i
\(430\) 3.83539 16.8039i 0.184959 0.810357i
\(431\) −13.1512 6.33329i −0.633472 0.305064i 0.0894526 0.995991i \(-0.471488\pi\)
−0.722924 + 0.690927i \(0.757203\pi\)
\(432\) −5.80016 + 2.79321i −0.279060 + 0.134388i
\(433\) −2.31020 + 10.1217i −0.111021 + 0.486416i 0.888594 + 0.458694i \(0.151683\pi\)
−0.999616 + 0.0277224i \(0.991175\pi\)
\(434\) 13.9443 0.669346
\(435\) 0 0
\(436\) 23.2705 1.11446
\(437\) −1.33513 + 5.84957i −0.0638677 + 0.279823i
\(438\) −4.71753 + 2.27184i −0.225413 + 0.108553i
\(439\) 18.8701 + 9.08738i 0.900622 + 0.433717i 0.826114 0.563503i \(-0.190547\pi\)
0.0745088 + 0.997220i \(0.476261\pi\)
\(440\) −2.65019 + 11.6112i −0.126343 + 0.553543i
\(441\) −1.16513 5.10479i −0.0554826 0.243085i
\(442\) −0.576008 + 0.277391i −0.0273979 + 0.0131941i
\(443\) −1.19076 + 1.49317i −0.0565747 + 0.0709424i −0.809314 0.587377i \(-0.800161\pi\)
0.752739 + 0.658319i \(0.228732\pi\)
\(444\) 2.93552 3.68102i 0.139313 0.174694i
\(445\) −16.3489 7.87321i −0.775012 0.373226i
\(446\) 1.03030 + 1.29196i 0.0487862 + 0.0611760i
\(447\) −5.94427 −0.281154
\(448\) 0.329118 + 0.412701i 0.0155494 + 0.0194983i
\(449\) 5.81327 + 25.4696i 0.274345 + 1.20199i 0.904826 + 0.425781i \(0.140001\pi\)
−0.630481 + 0.776205i \(0.717142\pi\)
\(450\) 3.54793 + 15.5445i 0.167251 + 0.732775i
\(451\) −3.32086 4.16422i −0.156373 0.196085i
\(452\) −12.8541 −0.604606
\(453\) −1.03030 1.29196i −0.0484078 0.0607015i
\(454\) 11.6314 + 5.60137i 0.545887 + 0.262885i
\(455\) 1.26845 1.59059i 0.0594660 0.0745680i
\(456\) −4.18250 + 5.24469i −0.195863 + 0.245605i
\(457\) −16.8555 + 8.11719i −0.788467 + 0.379706i −0.784376 0.620286i \(-0.787017\pi\)
−0.00409151 + 0.999992i \(0.501302\pi\)
\(458\) −0.315180 1.38090i −0.0147274 0.0645250i
\(459\) 3.38561 14.8333i 0.158027 0.692360i
\(460\) −6.94485 3.34446i −0.323805 0.155936i
\(461\) 35.1186 16.9122i 1.63564 0.787681i 0.635761 0.771886i \(-0.280686\pi\)
0.999875 0.0157954i \(-0.00502805\pi\)
\(462\) 0.262650 1.15075i 0.0122196 0.0535376i
\(463\) 10.7082 0.497652 0.248826 0.968548i \(-0.419955\pi\)
0.248826 + 0.968548i \(0.419955\pi\)
\(464\) 0 0
\(465\) 24.0344 1.11457
\(466\) −2.09535 + 9.18032i −0.0970651 + 0.425270i
\(467\) 16.1672 7.78573i 0.748130 0.360281i −0.0206558 0.999787i \(-0.506575\pi\)
0.768786 + 0.639506i \(0.220861\pi\)
\(468\) 0.900969 + 0.433884i 0.0416473 + 0.0200563i
\(469\) −0.760222 + 3.33075i −0.0351038 + 0.153800i
\(470\) 3.71026 + 16.2557i 0.171142 + 0.749820i
\(471\) 8.10872 3.90495i 0.373630 0.179931i
\(472\) −8.49071 + 10.6470i −0.390816 + 0.490068i
\(473\) 6.23490 7.81831i 0.286681 0.359486i
\(474\) −2.09587 1.00932i −0.0962664 0.0463595i
\(475\) −29.8233 37.3972i −1.36839 1.71590i
\(476\) −15.8541 −0.726672
\(477\) 3.26463 + 4.09372i 0.149477 + 0.187439i
\(478\) 3.81532 + 16.7160i 0.174509 + 0.764573i
\(479\) 2.48786 + 10.9000i 0.113673 + 0.498035i 0.999426 + 0.0338776i \(0.0107856\pi\)
−0.885753 + 0.464157i \(0.846357\pi\)
\(480\) −8.34352 10.4624i −0.380828 0.477543i
\(481\) −1.11146 −0.0506780
\(482\) −1.79278 2.24807i −0.0816587 0.102397i
\(483\) 1.53904 + 0.741162i 0.0700287 + 0.0337240i
\(484\) 9.17042 11.4993i 0.416837 0.522697i
\(485\) 8.56020 10.7341i 0.388699 0.487413i
\(486\) 7.76458 3.73922i 0.352209 0.169615i
\(487\) −9.47100 41.4952i −0.429172 1.88033i −0.472613 0.881270i \(-0.656689\pi\)
0.0434408 0.999056i \(-0.486168\pi\)
\(488\) −0.307516 + 1.34732i −0.0139206 + 0.0609902i
\(489\) −3.36015 1.61817i −0.151951 0.0731760i
\(490\) 4.29215 2.06699i 0.193900 0.0933772i
\(491\) 3.36554 14.7454i 0.151885 0.665451i −0.840452 0.541886i \(-0.817710\pi\)
0.992337 0.123564i \(-0.0394326\pi\)
\(492\) 3.85410 0.173756
\(493\) 0 0
\(494\) 0.708204 0.0318636
\(495\) −3.10289 + 13.5947i −0.139465 + 0.611035i
\(496\) 16.8555 8.11719i 0.756835 0.364472i
\(497\) 21.0975 + 10.1600i 0.946350 + 0.455738i
\(498\) −0.845218 + 3.70314i −0.0378751 + 0.165942i
\(499\) −5.49336 24.0680i −0.245916 1.07743i −0.935529 0.353251i \(-0.885076\pi\)
0.689612 0.724179i \(-0.257781\pi\)
\(500\) 27.2728 13.1339i 1.21968 0.587365i
\(501\) −4.05678 + 5.08705i −0.181244 + 0.227273i
\(502\) −7.57284 + 9.49605i −0.337993 + 0.423829i
\(503\) −12.8573 6.19174i −0.573278 0.276076i 0.124701 0.992194i \(-0.460203\pi\)
−0.697979 + 0.716118i \(0.745917\pi\)
\(504\) −8.16159 10.2343i −0.363546 0.455872i
\(505\) −2.38197 −0.105996
\(506\) 0.658236 + 0.825401i 0.0292621 + 0.0366936i
\(507\) −1.78017 7.79942i −0.0790600 0.346385i
\(508\) 5.74068 + 25.1516i 0.254701 + 1.11592i
\(509\) 19.6788 + 24.6764i 0.872246 + 1.09376i 0.994855 + 0.101307i \(0.0323025\pi\)
−0.122609 + 0.992455i \(0.539126\pi\)
\(510\) 6.45085 0.285648
\(511\) 19.1115 + 23.9651i 0.845443 + 1.06015i
\(512\) −16.8555 8.11719i −0.744915 0.358732i
\(513\) −10.5084 + 13.1771i −0.463955 + 0.581782i
\(514\) −8.93226 + 11.2007i −0.393985 + 0.494042i
\(515\) −31.8780 + 15.3517i −1.40471 + 0.676475i
\(516\) 1.61018 + 7.05464i 0.0708841 + 0.310563i
\(517\) −2.15261 + 9.43122i −0.0946719 + 0.414785i
\(518\) 5.86222 + 2.82310i 0.257571 + 0.124040i
\(519\) 2.27753 1.09680i 0.0999723 0.0481441i
\(520\) −0.452706 + 1.98343i −0.0198525 + 0.0869793i
\(521\) 4.09017 0.179194 0.0895968 0.995978i \(-0.471442\pi\)
0.0895968 + 0.995978i \(0.471442\pi\)
\(522\) 0 0
\(523\) −20.3820 −0.891241 −0.445621 0.895222i \(-0.647017\pi\)
−0.445621 + 0.895222i \(0.647017\pi\)
\(524\) 5.15811 22.5992i 0.225333 0.987249i
\(525\) −12.2694 + 5.90864i −0.535482 + 0.257874i
\(526\) 9.30362 + 4.48039i 0.405657 + 0.195354i
\(527\) −9.83871 + 43.1062i −0.428581 + 1.87774i
\(528\) −0.352382 1.54389i −0.0153355 0.0671891i
\(529\) 19.3457 9.31641i 0.841119 0.405061i
\(530\) −2.97026 + 3.72459i −0.129020 + 0.161786i
\(531\) −9.94109 + 12.4657i −0.431407 + 0.540967i
\(532\) 15.8231 + 7.62000i 0.686018 + 0.330369i
\(533\) −0.567270 0.711334i −0.0245712 0.0308113i
\(534\) −1.79837 −0.0778232
\(535\) 16.2537 + 20.3815i 0.702708 + 0.881168i
\(536\) −0.760222 3.33075i −0.0328366 0.143867i
\(537\) −2.20041 9.64062i −0.0949546 0.416023i
\(538\) −2.31203 2.89919i −0.0996786 0.124993i
\(539\) 2.76393 0.119051
\(540\) −13.5001 16.9286i −0.580952 0.728490i
\(541\) 13.1512 + 6.33329i 0.565415 + 0.272289i 0.694678 0.719321i \(-0.255547\pi\)
−0.129263 + 0.991610i \(0.541261\pi\)
\(542\) 3.92287 4.91912i 0.168502 0.211294i
\(543\) −2.29055 + 2.87226i −0.0982970 + 0.123261i
\(544\) 22.1801 10.6814i 0.950963 0.457960i
\(545\) 12.3342 + 54.0398i 0.528341 + 2.31481i
\(546\) 0.0448660 0.196571i 0.00192009 0.00841246i
\(547\) −6.65092 3.20292i −0.284373 0.136947i 0.286260 0.958152i \(-0.407588\pi\)
−0.570633 + 0.821205i \(0.693302\pi\)
\(548\) 10.4173 5.01670i 0.445004 0.214303i
\(549\) −0.360046 + 1.57747i −0.0153664 + 0.0673246i
\(550\) −8.41641 −0.358877
\(551\) 0 0
\(552\) −1.70820 −0.0727060
\(553\) −3.03030 + 13.2766i −0.128861 + 0.564579i
\(554\) 11.9061 5.73368i 0.505842 0.243601i
\(555\) 10.1042 + 4.86591i 0.428898 + 0.206546i
\(556\) 0.465107 2.03777i 0.0197249 0.0864205i
\(557\) 1.22533 + 5.36852i 0.0519188 + 0.227471i 0.994230 0.107266i \(-0.0342096\pi\)
−0.942312 + 0.334737i \(0.891352\pi\)
\(558\) −14.7094 + 7.08369i −0.622700 + 0.299876i
\(559\) 1.06505 1.33553i 0.0450467 0.0564868i
\(560\) −9.96257 + 12.4927i −0.420995 + 0.527911i
\(561\) 3.37201 + 1.62387i 0.142366 + 0.0685600i
\(562\) 8.91079 + 11.1738i 0.375879 + 0.471337i
\(563\) 28.3951 1.19671 0.598356 0.801230i \(-0.295821\pi\)
0.598356 + 0.801230i \(0.295821\pi\)
\(564\) −4.36443 5.47282i −0.183776 0.230447i
\(565\) −6.81315 29.8504i −0.286632 1.25581i
\(566\) 0.720093 + 3.15493i 0.0302678 + 0.132612i
\(567\) −7.95818 9.97924i −0.334212 0.419089i
\(568\) −23.4164 −0.982531
\(569\) −1.21223 1.52009i −0.0508195 0.0637256i 0.755772 0.654835i \(-0.227262\pi\)
−0.806592 + 0.591109i \(0.798690\pi\)
\(570\) −6.43823 3.10049i −0.269668 0.129865i
\(571\) −21.5145 + 26.9783i −0.900354 + 1.12901i 0.0907443 + 0.995874i \(0.471075\pi\)
−0.991098 + 0.133134i \(0.957496\pi\)
\(572\) −0.329118 + 0.412701i −0.0137611 + 0.0172559i
\(573\) 9.48528 4.56787i 0.396253 0.190825i
\(574\) 1.18520 + 5.19270i 0.0494693 + 0.216739i
\(575\) 2.71038 11.8750i 0.113031 0.495220i
\(576\) −0.556829 0.268155i −0.0232012 0.0111731i
\(577\) 2.49022 1.19923i 0.103669 0.0499244i −0.381331 0.924439i \(-0.624534\pi\)
0.485000 + 0.874514i \(0.338820\pi\)
\(578\) −0.302780 + 1.32656i −0.0125940 + 0.0551778i
\(579\) −7.70820 −0.320342
\(580\) 0 0
\(581\) 22.2361 0.922508
\(582\) 0.302780 1.32656i 0.0125506 0.0549879i
\(583\) −2.49022 + 1.19923i −0.103134 + 0.0496668i
\(584\) −27.6169 13.2996i −1.14280 0.550342i
\(585\) −0.530037 + 2.32225i −0.0219143 + 0.0960130i
\(586\) −1.17280 5.13837i −0.0484479 0.212264i
\(587\) −42.0014 + 20.2268i −1.73358 + 0.834850i −0.748421 + 0.663224i \(0.769188\pi\)
−0.985162 + 0.171626i \(0.945098\pi\)
\(588\) −1.24698 + 1.56366i −0.0514246 + 0.0644844i
\(589\) 30.5377 38.2931i 1.25829 1.57784i
\(590\) −13.0700 6.29417i −0.538082 0.259127i
\(591\) 2.42447 + 3.04019i 0.0997293 + 0.125057i
\(592\) 8.72949 0.358780
\(593\) −9.00176 11.2878i −0.369658 0.463536i 0.561860 0.827232i \(-0.310086\pi\)
−0.931518 + 0.363696i \(0.881515\pi\)
\(594\) 0.659899 + 2.89121i 0.0270760 + 0.118628i
\(595\) −8.40327 36.8171i −0.344500 1.50935i
\(596\) −9.70294 12.1671i −0.397448 0.498384i
\(597\) 3.61803 0.148076
\(598\) 0.112440 + 0.140995i 0.00459802 + 0.00576573i
\(599\) −11.7747 5.67038i −0.481099 0.231685i 0.177584 0.984106i \(-0.443172\pi\)
−0.658683 + 0.752420i \(0.728886\pi\)
\(600\) 8.49071 10.6470i 0.346632 0.434662i
\(601\) 18.1804 22.7975i 0.741593 0.929928i −0.257749 0.966212i \(-0.582981\pi\)
0.999342 + 0.0362840i \(0.0115521\pi\)
\(602\) −9.00969 + 4.33884i −0.367207 + 0.176838i
\(603\) −0.890084 3.89971i −0.0362470 0.158809i
\(604\) 0.962679 4.21777i 0.0391708 0.171619i
\(605\) 31.5649 + 15.2009i 1.28330 + 0.618003i
\(606\) −0.212690 + 0.102426i −0.00863994 + 0.00416077i
\(607\) −2.44299 + 10.7035i −0.0991581 + 0.434440i 0.900842 + 0.434147i \(0.142950\pi\)
−1.00000 0.000292533i \(0.999907\pi\)
\(608\) −27.2705 −1.10597
\(609\) 0 0
\(610\) −1.47214 −0.0596050
\(611\) −0.367710 + 1.61104i −0.0148760 + 0.0651759i
\(612\) 16.7241 8.05388i 0.676030 0.325559i
\(613\) −24.8136 11.9496i −1.00221 0.482640i −0.140523 0.990077i \(-0.544879\pi\)
−0.861689 + 0.507438i \(0.830593\pi\)
\(614\) 2.63779 11.5569i 0.106452 0.466398i
\(615\) 2.04282 + 8.95017i 0.0823744 + 0.360906i
\(616\) 6.22554 2.99806i 0.250834 0.120795i
\(617\) −8.84130 + 11.0866i −0.355937 + 0.446331i −0.927273 0.374385i \(-0.877854\pi\)
0.571336 + 0.820716i \(0.306425\pi\)
\(618\) −2.18632 + 2.74155i −0.0879465 + 0.110281i
\(619\) −6.35699 3.06137i −0.255509 0.123047i 0.301745 0.953389i \(-0.402431\pi\)
−0.557254 + 0.830342i \(0.688145\pi\)
\(620\) 39.2318 + 49.1952i 1.57559 + 1.97573i
\(621\) −4.29180 −0.172224
\(622\) 0.805422 + 1.00997i 0.0322945 + 0.0404960i
\(623\) 2.34267 + 10.2639i 0.0938571 + 0.411215i
\(624\) −0.0601941 0.263728i −0.00240969 0.0105576i
\(625\) 14.2360 + 17.8514i 0.569441 + 0.714057i
\(626\) −7.97871 −0.318894
\(627\) −2.58493 3.24139i −0.103232 0.129449i
\(628\) 21.2289 + 10.2233i 0.847125 + 0.407954i
\(629\) −12.8633 + 16.1301i −0.512895 + 0.643150i
\(630\) 8.69411 10.9021i 0.346382 0.434349i
\(631\) 25.4206 12.2419i 1.01198 0.487344i 0.146992 0.989138i \(-0.453041\pi\)
0.864987 + 0.501794i \(0.167326\pi\)
\(632\) −3.03030 13.2766i −0.120539 0.528115i
\(633\) −1.60251 + 7.02107i −0.0636942 + 0.279062i
\(634\) −15.4287 7.43009i −0.612754 0.295087i
\(635\) −55.3653 + 26.6625i −2.19711 + 1.05807i
\(636\) 0.445042 1.94986i 0.0176471 0.0773168i
\(637\) 0.472136 0.0187067
\(638\) 0 0
\(639\) −27.4164 −1.08458
\(640\) 9.76138 42.7674i 0.385853 1.69053i
\(641\) −9.96087 + 4.79690i −0.393431 + 0.189466i −0.620131 0.784498i \(-0.712921\pi\)
0.226700 + 0.973965i \(0.427206\pi\)
\(642\) 2.32774 + 1.12098i 0.0918684 + 0.0442415i
\(643\) 8.32593 36.4783i 0.328343 1.43856i −0.493946 0.869493i \(-0.664446\pi\)
0.822288 0.569071i \(-0.192697\pi\)
\(644\) 0.995144 + 4.36001i 0.0392142 + 0.171808i
\(645\) −15.5292 + 7.47845i −0.611460 + 0.294464i
\(646\) 8.19633 10.2779i 0.322480 0.404378i
\(647\) −19.0338 + 23.8676i −0.748296 + 0.938334i −0.999562 0.0295841i \(-0.990582\pi\)
0.251266 + 0.967918i \(0.419153\pi\)
\(648\) 11.4999 + 5.53806i 0.451759 + 0.217556i
\(649\) −5.24754 6.58021i −0.205984 0.258296i
\(650\) −1.43769 −0.0563910
\(651\) −8.69411 10.9021i −0.340749 0.427286i
\(652\) −2.17268 9.51913i −0.0850887 0.372798i
\(653\) −10.6839 46.8094i −0.418095 1.83179i −0.543141 0.839641i \(-0.682765\pi\)
0.125047 0.992151i \(-0.460092\pi\)
\(654\) 3.42509 + 4.29493i 0.133932 + 0.167945i
\(655\) 55.2148 2.15742
\(656\) 4.45539 + 5.58689i 0.173954 + 0.218131i
\(657\) −32.3345 15.5715i −1.26149 0.607500i
\(658\) 6.03149 7.56325i 0.235132 0.294846i
\(659\) −4.39917 + 5.51639i −0.171368 + 0.214888i −0.860097 0.510130i \(-0.829597\pi\)
0.688730 + 0.725018i \(0.258169\pi\)
\(660\) 4.79877 2.31097i 0.186792 0.0899543i
\(661\) 8.33360 + 36.5119i 0.324139 + 1.42015i 0.830111 + 0.557598i \(0.188277\pi\)
−0.505972 + 0.862550i \(0.668866\pi\)
\(662\) −2.91284 + 12.7620i −0.113211 + 0.496008i
\(663\) 0.576008 + 0.277391i 0.0223703 + 0.0107730i
\(664\) −20.0340 + 9.64787i −0.777470 + 0.374410i
\(665\) −9.30868 + 40.7840i −0.360975 + 1.58153i
\(666\) −7.61803 −0.295193
\(667\) 0 0
\(668\) −17.0344 −0.659082
\(669\) 0.367710 1.61104i 0.0142165 0.0622866i
\(670\) 3.27891 1.57904i 0.126676 0.0610037i
\(671\) −0.769519 0.370581i −0.0297070 0.0143061i
\(672\) −1.72764 + 7.56927i −0.0666451 + 0.291991i
\(673\) 1.44019 + 6.30987i 0.0555151 + 0.243227i 0.995071 0.0991692i \(-0.0316185\pi\)
−0.939556 + 0.342397i \(0.888761\pi\)
\(674\) 18.9706 9.13574i 0.730718 0.351895i
\(675\) 21.3326 26.7502i 0.821091 1.02962i
\(676\) 13.0585 16.3749i 0.502252 0.629804i
\(677\) 36.7891 + 17.7167i 1.41392 + 0.680908i 0.975932 0.218073i \(-0.0699772\pi\)
0.437987 + 0.898981i \(0.355691\pi\)
\(678\) −1.89194 2.37242i −0.0726597 0.0911123i
\(679\) −7.96556 −0.305690
\(680\) 23.5454 + 29.5250i 0.902926 + 1.13223i
\(681\) −2.87271 12.5862i −0.110082 0.482302i
\(682\) −1.91769 8.40196i −0.0734323 0.321728i
\(683\) 13.0023 + 16.3044i 0.497520 + 0.623870i 0.965668 0.259780i \(-0.0836500\pi\)
−0.468148 + 0.883650i \(0.655079\pi\)
\(684\) −20.5623 −0.786219
\(685\) 17.1715 + 21.5324i 0.656091 + 0.822712i
\(686\) −11.2060 5.39651i −0.427846 0.206040i
\(687\) −0.883116 + 1.10739i −0.0336930 + 0.0422496i
\(688\) −8.36499 + 10.4894i −0.318912 + 0.399903i
\(689\) −0.425380 + 0.204852i −0.0162057 + 0.00780424i
\(690\) −0.404912 1.77404i −0.0154148 0.0675365i
\(691\) −2.63305 + 11.5361i −0.100166 + 0.438856i 0.899831 + 0.436239i \(0.143690\pi\)
−0.999997 + 0.00261618i \(0.999167\pi\)
\(692\) 5.96264 + 2.87146i 0.226666 + 0.109156i
\(693\) 7.28899 3.51019i 0.276886 0.133341i
\(694\) 4.41795 19.3563i 0.167703 0.734756i
\(695\) 4.97871 0.188853
\(696\) 0 0
\(697\) −16.8885 −0.639699
\(698\) −0.622697 + 2.72821i −0.0235694 + 0.103264i
\(699\) 8.48389 4.08563i 0.320890 0.154533i
\(700\) −32.1218 15.4690i −1.21409 0.584674i
\(701\) 4.68534 20.5278i 0.176963 0.775325i −0.806059 0.591835i \(-0.798404\pi\)
0.983022 0.183490i \(-0.0587393\pi\)
\(702\) 0.112724 + 0.493877i 0.00425450 + 0.0186402i
\(703\) 20.5908 9.91602i 0.776598 0.373990i
\(704\) 0.203406 0.255063i 0.00766615 0.00961305i
\(705\) 10.3959 13.0361i 0.391533 0.490967i
\(706\) 10.6491 + 5.12836i 0.400786 + 0.193008i
\(707\) 0.861642 + 1.08046i 0.0324054 + 0.0406351i
\(708\) 6.09017 0.228883
\(709\) −25.8789 32.4511i −0.971904 1.21873i −0.975784 0.218736i \(-0.929807\pi\)
0.00388053 0.999992i \(-0.498765\pi\)
\(710\) −5.55062 24.3189i −0.208311 0.912671i
\(711\) −3.54793 15.5445i −0.133058 0.582965i
\(712\) −6.56402 8.23102i −0.245997 0.308470i
\(713\) 12.4721 0.467085
\(714\) −2.33350 2.92612i −0.0873291 0.109507i
\(715\) −1.13284 0.545546i −0.0423657 0.0204022i
\(716\) 16.1412 20.2405i 0.603227 0.756422i
\(717\) 10.6903 13.4052i 0.399236 0.500626i
\(718\) 13.2325 6.37241i 0.493831 0.237816i
\(719\) −1.89289 8.29330i −0.0705929 0.309288i 0.927288 0.374348i \(-0.122133\pi\)
−0.997881 + 0.0650598i \(0.979276\pi\)
\(720\) 4.16297 18.2392i 0.155145 0.679733i
\(721\) 18.4950 + 8.90671i 0.688789 + 0.331703i
\(722\) −2.54043 + 1.22340i −0.0945449 + 0.0455304i
\(723\) −0.639834 + 2.80330i −0.0237957 + 0.104256i
\(724\) −9.61803 −0.357451
\(725\) 0 0
\(726\) 3.47214 0.128863
\(727\) −6.24299 + 27.3523i −0.231540 + 1.01444i 0.716824 + 0.697255i \(0.245595\pi\)
−0.948363 + 0.317187i \(0.897262\pi\)
\(728\) 1.06345 0.512130i 0.0394141 0.0189808i
\(729\) 7.66416 + 3.69087i 0.283858 + 0.136699i
\(730\) 7.26586 31.8338i 0.268922 1.17822i
\(731\) −7.05574 30.9132i −0.260966 1.14337i
\(732\) 0.556829 0.268155i 0.0205810 0.00991129i
\(733\) 9.23991 11.5865i 0.341284 0.427956i −0.581338 0.813662i \(-0.697471\pi\)
0.922622 + 0.385706i \(0.126042\pi\)
\(734\) 10.5084 13.1771i 0.387871 0.486374i
\(735\) −4.29215 2.06699i −0.158319 0.0762422i
\(736\) −4.32968 5.42925i −0.159594 0.200125i
\(737\) 2.11146 0.0777765
\(738\) −3.88812 4.87555i −0.143124 0.179472i
\(739\) 11.1414 + 48.8136i 0.409842 + 1.79564i 0.584931 + 0.811083i \(0.301122\pi\)
−0.175089 + 0.984553i \(0.556021\pi\)
\(740\) 6.53337 + 28.6245i 0.240171 + 1.05226i
\(741\) −0.441558 0.553696i −0.0162210 0.0203405i
\(742\) 2.76393 0.101467
\(743\) 21.9693 + 27.5487i 0.805977 + 1.01066i 0.999562 + 0.0295793i \(0.00941674\pi\)
−0.193586 + 0.981083i \(0.562012\pi\)
\(744\) 12.5634 + 6.05019i 0.460595 + 0.221811i
\(745\) 23.1121 28.9816i 0.846761 1.06180i
\(746\) 7.94491 9.96260i 0.290884 0.364757i
\(747\) −23.4562 + 11.2959i −0.858218 + 0.413296i
\(748\) 2.18034 + 9.55271i 0.0797212 + 0.349282i
\(749\) 3.36554 14.7454i 0.122974 0.538785i
\(750\) 6.43823 + 3.10049i 0.235091 + 0.113214i
\(751\) 16.6930 8.03894i 0.609137 0.293345i −0.103772 0.994601i \(-0.533091\pi\)
0.712910 + 0.701256i \(0.247377\pi\)
\(752\) 2.88804 12.6533i 0.105316 0.461419i
\(753\) 12.1459 0.442621
\(754\) 0 0
\(755\) 10.3050 0.375036
\(756\) −2.79538 + 12.2473i −0.101667 + 0.445432i
\(757\) 0.0191782 0.00923575i 0.000697045 0.000335679i −0.433535 0.901137i \(-0.642734\pi\)
0.434232 + 0.900801i \(0.357020\pi\)
\(758\) 13.5264 + 6.51396i 0.491300 + 0.236598i
\(759\) 0.234922 1.02926i 0.00852711 0.0373597i
\(760\) −9.30868 40.7840i −0.337661 1.47939i
\(761\) −22.7059 + 10.9346i −0.823088 + 0.396378i −0.797518 0.603295i \(-0.793854\pi\)
−0.0255694 + 0.999673i \(0.508140\pi\)
\(762\) −3.79716 + 4.76149i −0.137557 + 0.172490i
\(763\) 20.0508 25.1430i 0.725889 0.910236i
\(764\) 24.8328 + 11.9588i 0.898418 + 0.432656i
\(765\) 27.5675 + 34.5685i 0.996704 + 1.24983i
\(766\) −17.8328 −0.644326
\(767\) −0.896388 1.12403i −0.0323667 0.0405865i
\(768\) −0.902484 3.95404i −0.0325656 0.142679i
\(769\) 4.30816 + 18.8753i 0.155356 + 0.680660i 0.991275 + 0.131807i \(0.0420780\pi\)
−0.835919 + 0.548852i \(0.815065\pi\)
\(770\) 4.58931 + 5.75481i 0.165387 + 0.207389i
\(771\) 14.3262 0.515947
\(772\) −12.5822 15.7776i −0.452845 0.567849i
\(773\) 12.6136 + 6.07437i 0.453678 + 0.218480i 0.646746 0.762705i \(-0.276129\pi\)
−0.193068 + 0.981185i \(0.561844\pi\)
\(774\) 7.29995 9.15384i 0.262391 0.329028i
\(775\) −61.9933 + 77.7372i −2.22687 + 2.79240i
\(776\) 7.17672 3.45613i 0.257629 0.124068i
\(777\) −1.44785 6.34344i −0.0519413 0.227570i
\(778\) 2.63012 11.5233i 0.0942944 0.413131i
\(779\) 16.8555 + 8.11719i 0.603911 + 0.290828i
\(780\) 0.819729 0.394760i 0.0293510 0.0141347i
\(781\) 3.22035 14.1093i 0.115233 0.504870i
\(782\) 3.34752 0.119707
\(783\) 0 0
\(784\) −3.70820 −0.132436
\(785\) −12.4889 + 54.7175i −0.445748 + 1.95295i
\(786\) 4.93022 2.37427i 0.175855 0.0846874i
\(787\) −17.4434 8.40028i −0.621789 0.299438i 0.0963393 0.995349i \(-0.469287\pi\)
−0.718128 + 0.695911i \(0.755001\pi\)
\(788\) −2.26534 + 9.92510i −0.0806994 + 0.353567i
\(789\) −2.29780 10.0673i −0.0818040 0.358407i
\(790\) 13.0700 6.29417i 0.465009 0.223936i
\(791\) −11.0756 + 13.8884i −0.393804 + 0.493815i
\(792\) −5.04414 + 6.32515i −0.179236 + 0.224754i
\(793\) −0.131450 0.0633028i −0.00466791 0.00224795i
\(794\) −5.41620 6.79171i −0.192214 0.241029i
\(795\) 4.76393 0.168959
\(796\) 5.90578 + 7.40561i 0.209325 + 0.262485i
\(797\) −9.60853 42.0977i −0.340352 1.49118i −0.798333 0.602216i \(-0.794285\pi\)
0.457982 0.888962i \(-0.348573\pi\)
\(798\) 0.922549 + 4.04195i 0.0326579 + 0.143084i
\(799\) 19.1248 + 23.9817i 0.676586 + 0.848412i
\(800\) 55.3607 1.95730
\(801\) −7.68528 9.63704i −0.271546 0.340508i
\(802\) −13.9591 6.72234i −0.492913 0.237374i
\(803\) 11.8116 14.8112i 0.416821 0.522677i
\(804\) −0.952608 + 1.19453i −0.0335959 + 0.0421279i
\(805\) −9.59755 + 4.62194i −0.338269 + 0.162902i
\(806\) −0.327581 1.43523i −0.0115386 0.0505537i
\(807\) −0.825153 + 3.61523i −0.0290468 + 0.127262i
\(808\) −1.24511 0.599613i −0.0438028 0.0210943i
\(809\) 38.8037 18.6869i 1.36427 0.656996i 0.398683 0.917089i \(-0.369467\pi\)
0.965584 + 0.260093i \(0.0837532\pi\)
\(810\) −3.02556 + 13.2558i −0.106307 + 0.465763i
\(811\) 5.65248 0.198485 0.0992426 0.995063i \(-0.468358\pi\)
0.0992426 + 0.995063i \(0.468358\pi\)
\(812\) 0 0
\(813\) −6.29180 −0.220663
\(814\) 0.894820 3.92046i 0.0313634 0.137412i
\(815\) 20.9542 10.0910i 0.733992 0.353472i
\(816\) −4.52402 2.17865i −0.158372 0.0762682i
\(817\) −7.81596 + 34.2440i −0.273446 + 1.19804i
\(818\) −3.77046 16.5194i −0.131831 0.577589i
\(819\) 1.24511 0.599613i 0.0435076 0.0209522i
\(820\) −14.9852 + 18.7909i −0.523307 + 0.656206i
\(821\) 5.35178 6.71092i 0.186778 0.234213i −0.679622 0.733562i \(-0.737856\pi\)
0.866401 + 0.499350i \(0.166428\pi\)
\(822\) 2.45919 + 1.18428i 0.0857739 + 0.0413066i
\(823\) −3.41182 4.27829i −0.118929 0.149132i 0.718803 0.695214i \(-0.244690\pi\)
−0.837732 + 0.546082i \(0.816119\pi\)
\(824\) −20.5279 −0.715122
\(825\) 5.24754 + 6.58021i 0.182696 + 0.229094i
\(826\) 1.87283 + 8.20539i 0.0651640 + 0.285502i
\(827\) −6.00040 26.2895i −0.208654 0.914175i −0.965463 0.260539i \(-0.916100\pi\)
0.756809 0.653636i \(-0.226757\pi\)
\(828\) −3.26463 4.09372i −0.113454 0.142267i
\(829\) 32.7984 1.13913 0.569567 0.821945i \(-0.307111\pi\)
0.569567 + 0.821945i \(0.307111\pi\)
\(830\) −14.7686 18.5192i −0.512624 0.642810i
\(831\) −11.9061 5.73368i −0.413018 0.198899i
\(832\) 0.0347459 0.0435700i 0.00120460 0.00151052i
\(833\) 5.46422 6.85192i 0.189324 0.237405i
\(834\) 0.444558 0.214088i 0.0153938 0.00741326i
\(835\) −9.02889 39.5581i −0.312458 1.36897i
\(836\) 2.41526 10.5820i 0.0835337 0.365985i
\(837\) 31.5649 + 15.2009i 1.09104 + 0.525419i
\(838\) 9.77921 4.70942i 0.337817 0.162684i
\(839\) 10.7288 47.0059i 0.370399 1.62283i −0.355258 0.934768i \(-0.615607\pi\)
0.725657 0.688057i \(-0.241536\pi\)
\(840\) −11.9098 −0.410928
\(841\) 0 0
\(842\) −19.1803 −0.660998
\(843\) 3.18022 13.9335i 0.109533 0.479894i
\(844\) −16.9870 + 8.18049i −0.584715 + 0.281584i
\(845\) 44.9480 + 21.6458i 1.54626 + 0.744639i
\(846\) −2.52033 + 11.0423i −0.0866506 + 0.379641i
\(847\) −4.52301 19.8166i −0.155413 0.680907i
\(848\) 3.34098 1.60893i 0.114730 0.0552509i
\(849\) 2.01766 2.53006i 0.0692458 0.0868314i
\(850\) −16.6390 + 20.8647i −0.570714 + 0.715652i
\(851\) 5.24333 + 2.52506i 0.179739 + 0.0865578i
\(852\) 6.52927 + 8.18745i 0.223689 + 0.280497i
\(853\) −45.0000 −1.54077 −0.770385 0.637579i \(-0.779936\pi\)
−0.770385 + 0.637579i \(0.779936\pi\)
\(854\) 0.532524 + 0.667764i 0.0182226 + 0.0228504i
\(855\) −10.8988 47.7507i −0.372731 1.63304i
\(856\) 3.36554 + 14.7454i 0.115032 + 0.503988i
\(857\) −28.2604 35.4375i −0.965358 1.21052i −0.977573 0.210596i \(-0.932460\pi\)
0.0122147 0.999925i \(-0.496112\pi\)
\(858\) −0.124612 −0.00425418
\(859\) 20.3932 + 25.5723i 0.695808 + 0.872516i 0.996703 0.0811417i \(-0.0258566\pi\)
−0.300894 + 0.953657i \(0.597285\pi\)
\(860\) −40.6559 19.5788i −1.38635 0.667633i
\(861\) 3.32086 4.16422i 0.113174 0.141916i
\(862\) 5.62468 7.05313i 0.191577 0.240230i
\(863\) −15.9856 + 7.69825i −0.544155 + 0.262051i −0.685705 0.727880i \(-0.740506\pi\)
0.141550 + 0.989931i \(0.454792\pi\)
\(864\) −4.34062 19.0175i −0.147671 0.646989i
\(865\) −3.50780 + 15.3687i −0.119269 + 0.522551i
\(866\) −5.78098 2.78398i −0.196446 0.0946033i
\(867\) 1.22593 0.590377i 0.0416348 0.0200502i
\(868\) 8.12348 35.5913i 0.275729 1.20805i
\(869\) 8.41641 0.285507
\(870\) 0 0
\(871\) 0.360680 0.0122212
\(872\) −7.15606 + 31.3528i −0.242335 + 1.06174i
\(873\) 8.40265 4.04650i 0.284387 0.136953i
\(874\) −3.34098 1.60893i −0.113010 0.0544228i
\(875\) 9.30868 40.7840i 0.314691 1.37875i
\(876\) 3.05036 + 13.3645i 0.103062 + 0.451545i
\(877\) −3.94801 + 1.90126i −0.133315 + 0.0642011i −0.499352 0.866399i \(-0.666429\pi\)
0.366037 + 0.930600i \(0.380714\pi\)
\(878\) −8.07062 + 10.1202i −0.272370 + 0.341542i
\(879\) −3.28611 + 4.12065i −0.110838 + 0.138986i
\(880\) 8.89742 + 4.28477i 0.299932 + 0.144440i
\(881\) 2.66262 + 3.33882i 0.0897059 + 0.112488i 0.824659 0.565631i \(-0.191367\pi\)
−0.734953 + 0.678118i \(0.762796\pi\)
\(882\) 3.23607 0.108964
\(883\) −12.8981 16.1737i −0.434055 0.544288i 0.515911 0.856642i \(-0.327454\pi\)
−0.949966 + 0.312355i \(0.898882\pi\)
\(884\) 0.372447 + 1.63180i 0.0125268 + 0.0548833i
\(885\) 3.22802 + 14.1429i 0.108509 + 0.475407i
\(886\) −0.735930 0.922827i −0.0247240 0.0310030i
\(887\) −38.0689 −1.27823 −0.639114 0.769112i \(-0.720699\pi\)
−0.639114 + 0.769112i \(0.720699\pi\)
\(888\) 4.05678 + 5.08705i 0.136137 + 0.170710i
\(889\) 32.1218 + 15.4690i 1.07733 + 0.518815i
\(890\) 6.99230 8.76807i 0.234382 0.293906i
\(891\) −4.91843 + 6.16751i −0.164773 + 0.206619i
\(892\) 3.89781 1.87708i 0.130508 0.0628494i
\(893\) −7.56098 33.1268i −0.253018 1.10855i
\(894\) 0.817489 3.58165i 0.0273409 0.119788i
\(895\) 55.5588 + 26.7557i 1.85713 + 0.894345i
\(896\) −22.9304 + 11.0427i −0.766052 + 0.368911i
\(897\) 0.0401294 0.175818i 0.00133988 0.00587041i
\(898\) −16.1459 −0.538796
\(899\) 0 0
\(900\) 41.7426 1.39142
\(901\) −1.95016 + 8.54420i −0.0649692 + 0.284649i
\(902\) 2.96581 1.42826i 0.0987505 0.0475557i
\(903\) 9.00969 + 4.33884i 0.299824 + 0.144387i
\(904\) 3.95285 17.3186i 0.131470 0.576007i
\(905\) −5.09792 22.3354i −0.169460 0.742455i
\(906\) 0.920147 0.443119i 0.0305698 0.0147217i
\(907\) 6.08771 7.63375i 0.202139 0.253474i −0.670421 0.741981i \(-0.733887\pi\)
0.872560 + 0.488506i \(0.162458\pi\)
\(908\) 21.0729 26.4246i 0.699330 0.876932i
\(909\) −1.45780 0.702039i −0.0483521 0.0232852i
\(910\) 0.783948 + 0.983039i 0.0259876 + 0.0325874i
\(911\) −10.9443 −0.362600 −0.181300 0.983428i \(-0.558030\pi\)
−0.181300 + 0.983428i \(0.558030\pi\)
\(912\) 3.46804 + 4.34879i 0.114838 + 0.144003i
\(913\) −3.05803 13.3981i −0.101206 0.443412i
\(914\) −2.57286 11.2724i −0.0851025 0.372858i
\(915\) 0.917862 + 1.15096i 0.0303436 + 0.0380496i
\(916\) −3.70820 −0.122523
\(917\) −19.9731 25.0455i −0.659571 0.827076i
\(918\) 8.47204 + 4.07992i 0.279619 + 0.134657i
\(919\) 19.5183 24.4752i 0.643850 0.807362i −0.347629 0.937632i \(-0.613013\pi\)
0.991479 + 0.130270i \(0.0415844\pi\)
\(920\) 6.64171 8.32844i 0.218971 0.274581i
\(921\) −10.6802 + 5.14330i −0.351924 + 0.169478i
\(922\) 5.36057 + 23.4862i 0.176541 + 0.773476i
\(923\) 0.550102 2.41015i 0.0181068 0.0793312i
\(924\) −2.78415 1.34077i −0.0915917 0.0441082i
\(925\) −41.8006 + 20.1301i −1.37439 + 0.661873i
\(926\) −1.47265 + 6.45211i −0.0483943 + 0.212029i
\(927\) −24.0344 −0.789395
\(928\) 0 0
\(929\) −3.65248 −0.119834 −0.0599169 0.998203i \(-0.519084\pi\)
−0.0599169 + 0.998203i \(0.519084\pi\)
\(930\) −3.30535 + 14.4817i −0.108387 + 0.474873i
\(931\) −8.74679 + 4.21223i −0.286664 + 0.138050i
\(932\) 22.2111 + 10.6963i 0.727549 + 0.350369i
\(933\) 0.287452 1.25941i 0.00941075 0.0412312i
\(934\) 2.46779 + 10.8121i 0.0807487 + 0.353783i
\(935\) −21.0281 + 10.1266i −0.687691 + 0.331175i
\(936\) −0.861642 + 1.08046i −0.0281636 + 0.0353161i
\(937\) 4.14775 5.20112i 0.135501 0.169913i −0.709451 0.704754i \(-0.751057\pi\)
0.844952 + 0.534841i \(0.179629\pi\)
\(938\) −1.90236 0.916127i −0.0621141 0.0299126i
\(939\) 4.97465 + 6.23801i 0.162341 + 0.203570i
\(940\) 43.6525 1.42379
\(941\) −21.7527 27.2770i −0.709116 0.889204i 0.288551 0.957464i \(-0.406826\pi\)
−0.997668 + 0.0682609i \(0.978255\pi\)
\(942\) 1.23773 + 5.42285i 0.0403274 + 0.176686i
\(943\) 1.06007 + 4.64449i 0.0345208 + 0.151245i
\(944\) 7.04032 + 8.82828i 0.229143 + 0.287336i
\(945\) −29.9230 −0.973395
\(946\) 3.85338 + 4.83198i 0.125284 + 0.157101i
\(947\) −38.7727 18.6719i −1.25994 0.606757i −0.319783 0.947491i \(-0.603610\pi\)
−0.940160 + 0.340734i \(0.889324\pi\)
\(948\) −3.79716 + 4.76149i −0.123326 + 0.154646i
\(949\) 2.01766 2.53006i 0.0654959 0.0821292i
\(950\) 26.6347 12.8266i 0.864144 0.416150i
\(951\) 3.81058 + 16.6953i 0.123567 + 0.541381i
\(952\) 4.87540 21.3605i 0.158012 0.692298i
\(953\) −38.4094 18.4970i −1.24420 0.599176i −0.308250 0.951305i \(-0.599743\pi\)
−0.935951 + 0.352129i \(0.885458\pi\)
\(954\) −2.91560 + 1.40408i −0.0943959 + 0.0454587i
\(955\) −14.6091 + 64.0064i −0.472738 + 2.07120i
\(956\) 44.8885 1.45180
\(957\) 0 0
\(958\) −6.90983 −0.223246
\(959\) 3.55560 15.5781i 0.114816 0.503043i
\(960\) −0.506620 + 0.243975i −0.0163511 + 0.00787427i
\(961\) −63.7990 30.7240i −2.05803 0.991096i
\(962\) 0.152854 0.669695i 0.00492820 0.0215918i
\(963\) 3.94045 + 17.2642i 0.126979 + 0.556332i
\(964\) −6.78237 + 3.26622i −0.218445 + 0.105198i
\(965\) 29.9705 37.5818i 0.964783 1.20980i
\(966\) −0.658236 + 0.825401i −0.0211784 + 0.0265569i
\(967\) −3.20953 1.54563i −0.103211 0.0497040i 0.381566 0.924342i \(-0.375385\pi\)
−0.484777 + 0.874638i \(0.661099\pi\)
\(968\) 12.6732 + 15.8917i 0.407332 + 0.510778i
\(969\) −13.1459 −0.422307
\(970\) 5.29049 + 6.63407i 0.169867 + 0.213007i
\(971\) 4.34062 + 19.0175i 0.139297 + 0.610301i 0.995590 + 0.0938103i \(0.0299047\pi\)
−0.856293 + 0.516491i \(0.827238\pi\)
\(972\) −5.02059 21.9966i −0.161035 0.705542i
\(973\) −1.80098 2.25835i −0.0577367 0.0723995i
\(974\) 26.3050 0.842865
\(975\) 0.896388 + 1.12403i 0.0287074 + 0.0359979i
\(976\) 1.03242 + 0.497187i 0.0330469 + 0.0159146i
\(977\) −28.1910 + 35.3503i −0.901909 + 1.13096i 0.0889478 + 0.996036i \(0.471650\pi\)
−0.990856 + 0.134921i \(0.956922\pi\)
\(978\) 1.43711 1.80208i 0.0459538 0.0576243i
\(979\) 5.86222 2.82310i 0.187357 0.0902266i
\(980\) −2.77531 12.1594i −0.0886541 0.388419i
\(981\) −8.37846 + 36.7084i −0.267504 + 1.17201i
\(982\) 8.42183 + 4.05574i 0.268751 + 0.129424i
\(983\) 9.86045 4.74854i 0.314499 0.151455i −0.269974 0.962868i \(-0.587015\pi\)
0.584474 + 0.811413i \(0.301301\pi\)
\(984\) −1.18520 + 5.19270i −0.0377828 + 0.165537i
\(985\) −24.2492 −0.772645
\(986\) 0 0
\(987\) −9.67376 −0.307919
\(988\) 0.412577 1.80762i 0.0131258 0.0575079i
\(989\) −8.05851 + 3.88077i −0.256246 + 0.123401i
\(990\) −7.76458 3.73922i −0.246775 0.118840i
\(991\) −1.63498 + 7.16331i −0.0519368 + 0.227550i −0.994235 0.107226i \(-0.965803\pi\)
0.942298 + 0.334775i \(0.108660\pi\)
\(992\) 12.6140 + 55.2657i 0.400496 + 1.75469i
\(993\) 11.7938 5.67961i 0.374266 0.180237i
\(994\) −9.02323 + 11.3148i −0.286199 + 0.358883i
\(995\) −14.0674 + 17.6399i −0.445966 + 0.559223i
\(996\) 8.95948 + 4.31466i 0.283892 + 0.136715i
\(997\) 10.5431 + 13.2206i 0.333904 + 0.418702i 0.920233 0.391371i \(-0.127999\pi\)
−0.586330 + 0.810073i \(0.699428\pi\)
\(998\) 15.2574 0.482963
\(999\) 10.1925 + 12.7810i 0.322477 + 0.404373i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 841.2.d.i.605.1 12
29.2 odd 28 841.2.e.j.651.2 24
29.3 odd 28 841.2.e.j.196.2 24
29.4 even 14 841.2.d.g.574.1 12
29.5 even 14 841.2.d.g.190.2 12
29.6 even 14 841.2.a.c.1.1 yes 2
29.7 even 7 inner 841.2.d.i.645.1 12
29.8 odd 28 841.2.e.j.63.2 24
29.9 even 14 841.2.d.g.778.1 12
29.10 odd 28 841.2.e.j.267.3 24
29.11 odd 28 841.2.e.j.270.3 24
29.12 odd 4 841.2.e.j.236.2 24
29.13 even 14 841.2.d.g.571.2 12
29.14 odd 28 841.2.b.b.840.2 4
29.15 odd 28 841.2.b.b.840.3 4
29.16 even 7 inner 841.2.d.i.571.1 12
29.17 odd 4 841.2.e.j.236.3 24
29.18 odd 28 841.2.e.j.270.2 24
29.19 odd 28 841.2.e.j.267.2 24
29.20 even 7 inner 841.2.d.i.778.2 12
29.21 odd 28 841.2.e.j.63.3 24
29.22 even 14 841.2.d.g.645.2 12
29.23 even 7 841.2.a.a.1.2 2
29.24 even 7 inner 841.2.d.i.190.1 12
29.25 even 7 inner 841.2.d.i.574.2 12
29.26 odd 28 841.2.e.j.196.3 24
29.27 odd 28 841.2.e.j.651.3 24
29.28 even 2 841.2.d.g.605.2 12
87.23 odd 14 7569.2.a.l.1.1 2
87.35 odd 14 7569.2.a.d.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
841.2.a.a.1.2 2 29.23 even 7
841.2.a.c.1.1 yes 2 29.6 even 14
841.2.b.b.840.2 4 29.14 odd 28
841.2.b.b.840.3 4 29.15 odd 28
841.2.d.g.190.2 12 29.5 even 14
841.2.d.g.571.2 12 29.13 even 14
841.2.d.g.574.1 12 29.4 even 14
841.2.d.g.605.2 12 29.28 even 2
841.2.d.g.645.2 12 29.22 even 14
841.2.d.g.778.1 12 29.9 even 14
841.2.d.i.190.1 12 29.24 even 7 inner
841.2.d.i.571.1 12 29.16 even 7 inner
841.2.d.i.574.2 12 29.25 even 7 inner
841.2.d.i.605.1 12 1.1 even 1 trivial
841.2.d.i.645.1 12 29.7 even 7 inner
841.2.d.i.778.2 12 29.20 even 7 inner
841.2.e.j.63.2 24 29.8 odd 28
841.2.e.j.63.3 24 29.21 odd 28
841.2.e.j.196.2 24 29.3 odd 28
841.2.e.j.196.3 24 29.26 odd 28
841.2.e.j.236.2 24 29.12 odd 4
841.2.e.j.236.3 24 29.17 odd 4
841.2.e.j.267.2 24 29.19 odd 28
841.2.e.j.267.3 24 29.10 odd 28
841.2.e.j.270.2 24 29.18 odd 28
841.2.e.j.270.3 24 29.11 odd 28
841.2.e.j.651.2 24 29.2 odd 28
841.2.e.j.651.3 24 29.27 odd 28
7569.2.a.d.1.2 2 87.35 odd 14
7569.2.a.l.1.1 2 87.23 odd 14