Properties

Label 841.2.d.i.190.1
Level $841$
Weight $2$
Character 841.190
Analytic conductor $6.715$
Analytic rank $0$
Dimension $12$
Inner twists $6$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [841,2,Mod(190,841)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(841, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("841.190");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 841 = 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 841.d (of order \(7\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.71541880999\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{7})\)
Coefficient field: 12.0.4413675765625.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} + 2x^{10} - 3x^{9} + 5x^{8} - 8x^{7} + 13x^{6} + 8x^{5} + 5x^{4} + 3x^{3} + 2x^{2} + x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 190.1
Root \(-0.556829 - 0.268155i\) of defining polynomial
Character \(\chi\) \(=\) 841.190
Dual form 841.2.d.i.571.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.556829 - 0.268155i) q^{2} +(-0.385338 + 0.483198i) q^{3} +(-1.00883 - 1.26503i) q^{4} +(-3.47243 - 1.67223i) q^{5} +(0.344139 - 0.165729i) q^{6} +(-1.39417 + 1.74823i) q^{7} +(0.497572 + 2.18001i) q^{8} +(0.582567 + 2.55239i) q^{9} +O(q^{10})\) \(q+(-0.556829 - 0.268155i) q^{2} +(-0.385338 + 0.483198i) q^{3} +(-1.00883 - 1.26503i) q^{4} +(-3.47243 - 1.67223i) q^{5} +(0.344139 - 0.165729i) q^{6} +(-1.39417 + 1.74823i) q^{7} +(0.497572 + 2.18001i) q^{8} +(0.582567 + 2.55239i) q^{9} +(1.48513 + 1.86230i) q^{10} +(0.307516 - 1.34732i) q^{11} +1.00000 q^{12} +(0.0525301 - 0.230149i) q^{13} +(1.24511 - 0.599613i) q^{14} +(2.14608 - 1.03350i) q^{15} +(-0.412577 + 1.80762i) q^{16} -4.38197 q^{17} +(0.360046 - 1.57747i) q^{18} +(-3.02648 - 3.79509i) q^{19} +(1.38766 + 6.07972i) q^{20} +(-0.307516 - 1.34732i) q^{21} +(-0.532524 + 0.667764i) q^{22} +(1.11366 - 0.536310i) q^{23} +(-1.24511 - 0.599613i) q^{24} +(6.14393 + 7.70425i) q^{25} +(-0.0909659 + 0.114068i) q^{26} +(-3.12829 - 1.50650i) q^{27} +3.61803 q^{28} -1.47214 q^{30} +(9.09093 + 4.37796i) q^{31} +(3.50279 - 4.39236i) q^{32} +(0.532524 + 0.667764i) q^{33} +(2.44001 + 1.17505i) q^{34} +(7.76458 - 3.73922i) q^{35} +(2.64115 - 3.31189i) q^{36} +(-1.04767 - 4.59016i) q^{37} +(0.667563 + 2.92478i) q^{38} +(0.0909659 + 0.114068i) q^{39} +(1.91769 - 8.40196i) q^{40} +3.85410 q^{41} +(-0.190056 + 0.832688i) q^{42} +(6.51947 - 3.13961i) q^{43} +(-2.01463 + 0.970194i) q^{44} +(2.24527 - 9.83719i) q^{45} -0.763932 q^{46} +(1.55765 - 6.82450i) q^{47} +(-0.714456 - 0.895899i) q^{48} +(0.445042 + 1.94986i) q^{49} +(-1.35519 - 5.93748i) q^{50} +(1.68854 - 2.11736i) q^{51} +(-0.344139 + 0.165729i) q^{52} +(1.80194 + 0.867767i) q^{53} +(1.33795 + 1.67773i) q^{54} +(-3.32086 + 4.16422i) q^{55} +(-4.50484 - 2.16942i) q^{56} +3.00000 q^{57} +6.09017 q^{59} +(-3.47243 - 1.67223i) q^{60} +(-0.385338 + 0.483198i) q^{61} +(-3.88812 - 4.87555i) q^{62} +(-5.27436 - 2.54000i) q^{63} +(0.212690 - 0.102426i) q^{64} +(-0.567270 + 0.711334i) q^{65} +(-0.117461 - 0.514629i) q^{66} +(0.339982 + 1.48956i) q^{67} +(4.42065 + 5.54332i) q^{68} +(-0.169991 + 0.744779i) q^{69} -5.32624 q^{70} +(-2.33027 + 10.2096i) q^{71} +(-5.27436 + 2.54000i) q^{72} +(12.3507 - 5.94777i) q^{73} +(-0.647498 + 2.83687i) q^{74} -6.09017 q^{75} +(-1.74770 + 7.65718i) q^{76} +(1.92669 + 2.41599i) q^{77} +(-0.0200647 - 0.0879092i) q^{78} +(1.35519 + 5.93748i) q^{79} +(4.45539 - 5.58689i) q^{80} +(-5.14291 + 2.47670i) q^{81} +(-2.14608 - 1.03350i) q^{82} +(-6.20015 - 7.77474i) q^{83} +(-1.39417 + 1.74823i) q^{84} +(15.2161 + 7.32766i) q^{85} -4.47214 q^{86} +3.09017 q^{88} +(-4.24195 - 2.04281i) q^{89} +(-3.88812 + 4.87555i) q^{90} +(0.329118 + 0.412701i) q^{91} +(-1.80194 - 0.867767i) q^{92} +(-5.61850 + 2.70573i) q^{93} +(-2.69737 + 3.38239i) q^{94} +(4.16297 + 18.2392i) q^{95} +(0.772623 + 3.38508i) q^{96} +(2.22106 + 2.78512i) q^{97} +(0.275051 - 1.20508i) q^{98} +3.61803 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + q^{2} - q^{3} + q^{4} - q^{5} + 3 q^{6} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 12 q + q^{2} - q^{3} + q^{4} - q^{5} + 3 q^{6} + 3 q^{9} - 7 q^{10} + 5 q^{11} + 12 q^{12} - 4 q^{13} + 5 q^{14} + 7 q^{15} + 3 q^{16} - 66 q^{17} + q^{18} + 3 q^{19} + 8 q^{20} - 5 q^{21} - 5 q^{22} - 2 q^{23} - 5 q^{24} - 13 q^{25} + 7 q^{26} + 2 q^{27} + 30 q^{28} + 36 q^{30} + 9 q^{31} - 9 q^{32} + 5 q^{33} - 8 q^{34} + 15 q^{35} - 4 q^{36} + 4 q^{37} + 6 q^{38} - 7 q^{39} + 15 q^{40} + 6 q^{41} + 5 q^{42} + 10 q^{43} + 9 q^{45} - 36 q^{46} + 14 q^{47} + 9 q^{48} + 4 q^{49} - q^{50} + 8 q^{51} - 3 q^{52} + 4 q^{53} - 11 q^{54} - 5 q^{55} - 10 q^{56} + 36 q^{57} + 6 q^{59} - q^{60} - q^{61} + 8 q^{62} - 5 q^{63} - 4 q^{64} + 13 q^{65} - 10 q^{66} + 12 q^{67} - 3 q^{68} - 6 q^{69} + 30 q^{70} - 12 q^{71} - 5 q^{72} + 14 q^{73} - 17 q^{74} - 6 q^{75} - 9 q^{76} + 5 q^{77} + 11 q^{78} + q^{79} - 21 q^{80} + 2 q^{81} - 7 q^{82} + 2 q^{83} - 2 q^{85} - 30 q^{88} + 4 q^{89} + 8 q^{90} - 10 q^{91} - 4 q^{92} - 8 q^{93} - 7 q^{94} + 24 q^{95} - 2 q^{96} + 13 q^{97} - 2 q^{98} + 30 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/841\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{7}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.556829 0.268155i −0.393738 0.189614i 0.226530 0.974004i \(-0.427262\pi\)
−0.620268 + 0.784390i \(0.712976\pi\)
\(3\) −0.385338 + 0.483198i −0.222475 + 0.278975i −0.880525 0.473999i \(-0.842810\pi\)
0.658050 + 0.752974i \(0.271381\pi\)
\(4\) −1.00883 1.26503i −0.504414 0.632515i
\(5\) −3.47243 1.67223i −1.55292 0.747845i −0.556374 0.830932i \(-0.687808\pi\)
−0.996542 + 0.0830872i \(0.973522\pi\)
\(6\) 0.344139 0.165729i 0.140494 0.0676585i
\(7\) −1.39417 + 1.74823i −0.526945 + 0.660768i −0.972067 0.234702i \(-0.924589\pi\)
0.445122 + 0.895470i \(0.353160\pi\)
\(8\) 0.497572 + 2.18001i 0.175918 + 0.770748i
\(9\) 0.582567 + 2.55239i 0.194189 + 0.850798i
\(10\) 1.48513 + 1.86230i 0.469640 + 0.588910i
\(11\) 0.307516 1.34732i 0.0927197 0.406231i −0.907175 0.420754i \(-0.861766\pi\)
0.999895 + 0.0145224i \(0.00462277\pi\)
\(12\) 1.00000 0.288675
\(13\) 0.0525301 0.230149i 0.0145692 0.0638319i −0.967121 0.254318i \(-0.918149\pi\)
0.981690 + 0.190486i \(0.0610063\pi\)
\(14\) 1.24511 0.599613i 0.332769 0.160253i
\(15\) 2.14608 1.03350i 0.554115 0.266848i
\(16\) −0.412577 + 1.80762i −0.103144 + 0.451904i
\(17\) −4.38197 −1.06278 −0.531391 0.847126i \(-0.678331\pi\)
−0.531391 + 0.847126i \(0.678331\pi\)
\(18\) 0.360046 1.57747i 0.0848638 0.371812i
\(19\) −3.02648 3.79509i −0.694323 0.870653i 0.302262 0.953225i \(-0.402258\pi\)
−0.996585 + 0.0825715i \(0.973687\pi\)
\(20\) 1.38766 + 6.07972i 0.310289 + 1.35947i
\(21\) −0.307516 1.34732i −0.0671056 0.294009i
\(22\) −0.532524 + 0.667764i −0.113534 + 0.142368i
\(23\) 1.11366 0.536310i 0.232214 0.111828i −0.314159 0.949370i \(-0.601722\pi\)
0.546373 + 0.837542i \(0.316008\pi\)
\(24\) −1.24511 0.599613i −0.254157 0.122395i
\(25\) 6.14393 + 7.70425i 1.22879 + 1.54085i
\(26\) −0.0909659 + 0.114068i −0.0178399 + 0.0223705i
\(27\) −3.12829 1.50650i −0.602039 0.289927i
\(28\) 3.61803 0.683744
\(29\) 0 0
\(30\) −1.47214 −0.268774
\(31\) 9.09093 + 4.37796i 1.63278 + 0.786305i 0.999928 + 0.0120317i \(0.00382990\pi\)
0.632851 + 0.774273i \(0.281884\pi\)
\(32\) 3.50279 4.39236i 0.619211 0.776466i
\(33\) 0.532524 + 0.667764i 0.0927005 + 0.116243i
\(34\) 2.44001 + 1.17505i 0.418458 + 0.201519i
\(35\) 7.76458 3.73922i 1.31245 0.632044i
\(36\) 2.64115 3.31189i 0.440191 0.551982i
\(37\) −1.04767 4.59016i −0.172237 0.754618i −0.985075 0.172128i \(-0.944936\pi\)
0.812838 0.582490i \(-0.197921\pi\)
\(38\) 0.667563 + 2.92478i 0.108293 + 0.474463i
\(39\) 0.0909659 + 0.114068i 0.0145662 + 0.0182654i
\(40\) 1.91769 8.40196i 0.303214 1.32847i
\(41\) 3.85410 0.601910 0.300955 0.953638i \(-0.402695\pi\)
0.300955 + 0.953638i \(0.402695\pi\)
\(42\) −0.190056 + 0.832688i −0.0293262 + 0.128487i
\(43\) 6.51947 3.13961i 0.994210 0.478786i 0.135240 0.990813i \(-0.456819\pi\)
0.858970 + 0.512026i \(0.171105\pi\)
\(44\) −2.01463 + 0.970194i −0.303717 + 0.146262i
\(45\) 2.24527 9.83719i 0.334706 1.46644i
\(46\) −0.763932 −0.112636
\(47\) 1.55765 6.82450i 0.227206 0.995455i −0.724700 0.689065i \(-0.758022\pi\)
0.951906 0.306390i \(-0.0991213\pi\)
\(48\) −0.714456 0.895899i −0.103123 0.129312i
\(49\) 0.445042 + 1.94986i 0.0635774 + 0.278551i
\(50\) −1.35519 5.93748i −0.191653 0.839686i
\(51\) 1.68854 2.11736i 0.236443 0.296490i
\(52\) −0.344139 + 0.165729i −0.0477236 + 0.0229825i
\(53\) 1.80194 + 0.867767i 0.247515 + 0.119197i 0.553529 0.832830i \(-0.313281\pi\)
−0.306013 + 0.952027i \(0.598995\pi\)
\(54\) 1.33795 + 1.67773i 0.182071 + 0.228310i
\(55\) −3.32086 + 4.16422i −0.447784 + 0.561503i
\(56\) −4.50484 2.16942i −0.601985 0.289901i
\(57\) 3.00000 0.397360
\(58\) 0 0
\(59\) 6.09017 0.792873 0.396436 0.918062i \(-0.370247\pi\)
0.396436 + 0.918062i \(0.370247\pi\)
\(60\) −3.47243 1.67223i −0.448288 0.215884i
\(61\) −0.385338 + 0.483198i −0.0493375 + 0.0618672i −0.805888 0.592068i \(-0.798312\pi\)
0.756551 + 0.653935i \(0.226883\pi\)
\(62\) −3.88812 4.87555i −0.493792 0.619196i
\(63\) −5.27436 2.54000i −0.664507 0.320010i
\(64\) 0.212690 0.102426i 0.0265862 0.0128033i
\(65\) −0.567270 + 0.711334i −0.0703612 + 0.0882301i
\(66\) −0.117461 0.514629i −0.0144584 0.0633465i
\(67\) 0.339982 + 1.48956i 0.0415354 + 0.181978i 0.991440 0.130561i \(-0.0416777\pi\)
−0.949905 + 0.312539i \(0.898821\pi\)
\(68\) 4.42065 + 5.54332i 0.536082 + 0.672226i
\(69\) −0.169991 + 0.744779i −0.0204645 + 0.0896608i
\(70\) −5.32624 −0.636607
\(71\) −2.33027 + 10.2096i −0.276552 + 1.21165i 0.625568 + 0.780169i \(0.284867\pi\)
−0.902120 + 0.431484i \(0.857990\pi\)
\(72\) −5.27436 + 2.54000i −0.621590 + 0.299342i
\(73\) 12.3507 5.94777i 1.44554 0.696133i 0.463722 0.885981i \(-0.346514\pi\)
0.981814 + 0.189847i \(0.0607992\pi\)
\(74\) −0.647498 + 2.83687i −0.0752701 + 0.329780i
\(75\) −6.09017 −0.703232
\(76\) −1.74770 + 7.65718i −0.200475 + 0.878339i
\(77\) 1.92669 + 2.41599i 0.219567 + 0.275328i
\(78\) −0.0200647 0.0879092i −0.00227188 0.00995376i
\(79\) 1.35519 + 5.93748i 0.152471 + 0.668018i 0.992162 + 0.124955i \(0.0398786\pi\)
−0.839692 + 0.543064i \(0.817264\pi\)
\(80\) 4.45539 5.58689i 0.498128 0.624633i
\(81\) −5.14291 + 2.47670i −0.571435 + 0.275189i
\(82\) −2.14608 1.03350i −0.236995 0.114131i
\(83\) −6.20015 7.77474i −0.680555 0.853389i 0.314850 0.949141i \(-0.398046\pi\)
−0.995405 + 0.0957523i \(0.969474\pi\)
\(84\) −1.39417 + 1.74823i −0.152116 + 0.190747i
\(85\) 15.2161 + 7.32766i 1.65041 + 0.794797i
\(86\) −4.47214 −0.482243
\(87\) 0 0
\(88\) 3.09017 0.329413
\(89\) −4.24195 2.04281i −0.449645 0.216538i 0.195336 0.980736i \(-0.437420\pi\)
−0.644981 + 0.764199i \(0.723135\pi\)
\(90\) −3.88812 + 4.87555i −0.409844 + 0.513929i
\(91\) 0.329118 + 0.412701i 0.0345009 + 0.0432628i
\(92\) −1.80194 0.867767i −0.187865 0.0904710i
\(93\) −5.61850 + 2.70573i −0.582612 + 0.280571i
\(94\) −2.69737 + 3.38239i −0.278212 + 0.348867i
\(95\) 4.16297 + 18.2392i 0.427111 + 1.87130i
\(96\) 0.772623 + 3.38508i 0.0788555 + 0.345489i
\(97\) 2.22106 + 2.78512i 0.225515 + 0.282786i 0.881697 0.471816i \(-0.156401\pi\)
−0.656183 + 0.754602i \(0.727830\pi\)
\(98\) 0.275051 1.20508i 0.0277843 0.121731i
\(99\) 3.61803 0.363626
\(100\) 3.54793 15.5445i 0.354793 1.55445i
\(101\) 0.556829 0.268155i 0.0554066 0.0266824i −0.405975 0.913884i \(-0.633068\pi\)
0.461382 + 0.887202i \(0.347354\pi\)
\(102\) −1.50801 + 0.726218i −0.149315 + 0.0719063i
\(103\) −2.04282 + 8.95017i −0.201285 + 0.881886i 0.768871 + 0.639404i \(0.220819\pi\)
−0.970156 + 0.242482i \(0.922038\pi\)
\(104\) 0.527864 0.0517613
\(105\) −1.18520 + 5.19270i −0.115664 + 0.506755i
\(106\) −0.770676 0.966397i −0.0748546 0.0938648i
\(107\) −1.50512 6.59435i −0.145505 0.637500i −0.994101 0.108458i \(-0.965409\pi\)
0.848596 0.529042i \(-0.177448\pi\)
\(108\) 1.25013 + 5.47718i 0.120294 + 0.527042i
\(109\) −8.96701 + 11.2443i −0.858884 + 1.07701i 0.137369 + 0.990520i \(0.456135\pi\)
−0.996253 + 0.0864862i \(0.972436\pi\)
\(110\) 2.96581 1.42826i 0.282778 0.136179i
\(111\) 2.62167 + 1.26253i 0.248838 + 0.119834i
\(112\) −2.58493 3.24139i −0.244252 0.306283i
\(113\) 4.95317 6.21108i 0.465955 0.584289i −0.492220 0.870471i \(-0.663815\pi\)
0.958175 + 0.286181i \(0.0923860\pi\)
\(114\) −1.67049 0.804465i −0.156456 0.0753450i
\(115\) −4.76393 −0.444239
\(116\) 0 0
\(117\) 0.618034 0.0571373
\(118\) −3.39119 1.63311i −0.312184 0.150340i
\(119\) 6.10919 7.66068i 0.560028 0.702253i
\(120\) 3.32086 + 4.16422i 0.303151 + 0.380140i
\(121\) 8.18996 + 3.94408i 0.744542 + 0.358552i
\(122\) 0.344139 0.165729i 0.0311569 0.0150044i
\(123\) −1.48513 + 1.86230i −0.133910 + 0.167918i
\(124\) −3.63293 15.9169i −0.326247 1.42938i
\(125\) −4.16297 18.2392i −0.372347 1.63136i
\(126\) 2.25581 + 2.82869i 0.200963 + 0.252000i
\(127\) −3.54793 + 15.5445i −0.314828 + 1.37935i 0.531666 + 0.846954i \(0.321566\pi\)
−0.846494 + 0.532398i \(0.821291\pi\)
\(128\) −11.3820 −1.00603
\(129\) −0.995144 + 4.36001i −0.0876175 + 0.383877i
\(130\) 0.506620 0.243975i 0.0444335 0.0213981i
\(131\) −12.9075 + 6.21592i −1.12773 + 0.543088i −0.902273 0.431165i \(-0.858103\pi\)
−0.225460 + 0.974252i \(0.572388\pi\)
\(132\) 0.307516 1.34732i 0.0267659 0.117269i
\(133\) 10.8541 0.941170
\(134\) 0.210120 0.920597i 0.0181516 0.0795275i
\(135\) 8.34352 + 10.4624i 0.718096 + 0.900464i
\(136\) −2.18034 9.55271i −0.186963 0.819138i
\(137\) −1.59011 6.96674i −0.135852 0.595208i −0.996321 0.0857042i \(-0.972686\pi\)
0.860468 0.509504i \(-0.170171\pi\)
\(138\) 0.294372 0.369131i 0.0250586 0.0314225i
\(139\) −1.16387 + 0.560489i −0.0987180 + 0.0475401i −0.482591 0.875846i \(-0.660304\pi\)
0.383873 + 0.923386i \(0.374590\pi\)
\(140\) −12.5634 6.05019i −1.06180 0.511335i
\(141\) 2.69737 + 3.38239i 0.227159 + 0.284849i
\(142\) 4.03531 5.06012i 0.338636 0.424636i
\(143\) −0.293930 0.141549i −0.0245797 0.0118369i
\(144\) −4.85410 −0.404508
\(145\) 0 0
\(146\) −8.47214 −0.701159
\(147\) −1.11366 0.536310i −0.0918530 0.0442341i
\(148\) −4.74977 + 5.95602i −0.390428 + 0.489582i
\(149\) 5.99675 + 7.51968i 0.491273 + 0.616036i 0.964236 0.265046i \(-0.0853871\pi\)
−0.472963 + 0.881082i \(0.656816\pi\)
\(150\) 3.39119 + 1.63311i 0.276889 + 0.133343i
\(151\) −2.40898 + 1.16010i −0.196040 + 0.0944078i −0.529328 0.848417i \(-0.677556\pi\)
0.333288 + 0.942825i \(0.391842\pi\)
\(152\) 6.76742 8.48608i 0.548910 0.688312i
\(153\) −2.55279 11.1845i −0.206381 0.904214i
\(154\) −0.424977 1.86195i −0.0342456 0.150040i
\(155\) −24.2466 30.4043i −1.94753 2.44213i
\(156\) 0.0525301 0.230149i 0.00420577 0.0184267i
\(157\) 14.5623 1.16220 0.581099 0.813833i \(-0.302623\pi\)
0.581099 + 0.813833i \(0.302623\pi\)
\(158\) 0.837554 3.66956i 0.0666322 0.291935i
\(159\) −1.11366 + 0.536310i −0.0883189 + 0.0425321i
\(160\) −19.5082 + 9.39466i −1.54226 + 0.742713i
\(161\) −0.615033 + 2.69463i −0.0484714 + 0.212367i
\(162\) 3.52786 0.277175
\(163\) 1.34279 5.88315i 0.105175 0.460804i −0.894724 0.446619i \(-0.852628\pi\)
0.999899 0.0141841i \(-0.00451508\pi\)
\(164\) −3.88812 4.87555i −0.303612 0.380717i
\(165\) −0.732494 3.20926i −0.0570245 0.249841i
\(166\) 1.36759 + 5.99181i 0.106146 + 0.465054i
\(167\) 6.56402 8.23102i 0.507939 0.636935i −0.460061 0.887888i \(-0.652172\pi\)
0.967999 + 0.250952i \(0.0807438\pi\)
\(168\) 2.78415 1.34077i 0.214802 0.103443i
\(169\) 11.6624 + 5.61631i 0.897107 + 0.432024i
\(170\) −6.50780 8.16052i −0.499125 0.625883i
\(171\) 7.92344 9.93567i 0.605920 0.759800i
\(172\) −10.5487 5.08000i −0.804333 0.387346i
\(173\) 4.09017 0.310970 0.155485 0.987838i \(-0.450306\pi\)
0.155485 + 0.987838i \(0.450306\pi\)
\(174\) 0 0
\(175\) −22.0344 −1.66565
\(176\) 2.30856 + 1.11174i 0.174014 + 0.0838008i
\(177\) −2.34677 + 2.94276i −0.176394 + 0.221191i
\(178\) 1.81425 + 2.27500i 0.135984 + 0.170518i
\(179\) 14.4155 + 6.94214i 1.07747 + 0.518880i 0.886506 0.462718i \(-0.153126\pi\)
0.190960 + 0.981598i \(0.438840\pi\)
\(180\) −14.7094 + 7.08369i −1.09638 + 0.527987i
\(181\) 3.70619 4.64742i 0.275479 0.345440i −0.624775 0.780805i \(-0.714809\pi\)
0.900254 + 0.435365i \(0.143381\pi\)
\(182\) −0.0725948 0.318058i −0.00538108 0.0235761i
\(183\) −0.0849954 0.372389i −0.00628304 0.0275278i
\(184\) 1.72328 + 2.16093i 0.127042 + 0.159306i
\(185\) −4.03784 + 17.6909i −0.296868 + 1.30066i
\(186\) 3.85410 0.282596
\(187\) −1.34753 + 5.90390i −0.0985409 + 0.431736i
\(188\) −10.2046 + 4.91427i −0.744246 + 0.358410i
\(189\) 6.99506 3.36864i 0.508816 0.245033i
\(190\) 2.57286 11.2724i 0.186655 0.817787i
\(191\) 17.0344 1.23257 0.616284 0.787524i \(-0.288637\pi\)
0.616284 + 0.787524i \(0.288637\pi\)
\(192\) −0.0324654 + 0.142240i −0.00234299 + 0.0102653i
\(193\) 7.77625 + 9.75111i 0.559747 + 0.701900i 0.978511 0.206195i \(-0.0661081\pi\)
−0.418764 + 0.908095i \(0.637537\pi\)
\(194\) −0.489908 2.14643i −0.0351733 0.154104i
\(195\) −0.125125 0.548208i −0.00896038 0.0392580i
\(196\) 2.01766 2.53006i 0.144118 0.180719i
\(197\) 5.66871 2.72991i 0.403879 0.194498i −0.220905 0.975295i \(-0.570901\pi\)
0.624784 + 0.780797i \(0.285187\pi\)
\(198\) −2.01463 0.970194i −0.143173 0.0689487i
\(199\) −3.64997 4.57692i −0.258740 0.324449i 0.635446 0.772145i \(-0.280816\pi\)
−0.894186 + 0.447696i \(0.852245\pi\)
\(200\) −13.7382 + 17.2272i −0.971441 + 1.21815i
\(201\) −0.850760 0.409704i −0.0600080 0.0288983i
\(202\) −0.381966 −0.0268750
\(203\) 0 0
\(204\) −4.38197 −0.306799
\(205\) −13.3831 6.44495i −0.934715 0.450135i
\(206\) 3.53753 4.43593i 0.246472 0.309066i
\(207\) 2.01766 + 2.53006i 0.140237 + 0.175851i
\(208\) 0.394349 + 0.189908i 0.0273432 + 0.0131678i
\(209\) −6.04388 + 2.91058i −0.418064 + 0.201329i
\(210\) 2.05240 2.57363i 0.141629 0.177597i
\(211\) 2.59292 + 11.3603i 0.178504 + 0.782077i 0.982322 + 0.187201i \(0.0599416\pi\)
−0.803818 + 0.594876i \(0.797201\pi\)
\(212\) −0.720093 3.15493i −0.0494562 0.216682i
\(213\) −4.03531 5.06012i −0.276495 0.346714i
\(214\) −0.930213 + 4.07553i −0.0635881 + 0.278597i
\(215\) −27.8885 −1.90198
\(216\) 1.72764 7.56927i 0.117551 0.515024i
\(217\) −20.3279 + 9.78942i −1.37995 + 0.664549i
\(218\) 8.00830 3.85659i 0.542391 0.261202i
\(219\) −1.88523 + 8.25972i −0.127392 + 0.558140i
\(220\) 8.61803 0.581028
\(221\) −0.230185 + 1.00851i −0.0154839 + 0.0678395i
\(222\) −1.12127 1.40603i −0.0752546 0.0943662i
\(223\) −0.594968 2.60673i −0.0398420 0.174559i 0.951092 0.308907i \(-0.0999632\pi\)
−0.990934 + 0.134348i \(0.957106\pi\)
\(224\) 2.79538 + 12.2473i 0.186774 + 0.818310i
\(225\) −16.0850 + 20.1700i −1.07233 + 1.34467i
\(226\) −4.42360 + 2.13030i −0.294254 + 0.141705i
\(227\) 18.8199 + 9.06320i 1.24912 + 0.601546i 0.937276 0.348587i \(-0.113338\pi\)
0.311846 + 0.950133i \(0.399053\pi\)
\(228\) −3.02648 3.79509i −0.200434 0.251336i
\(229\) 1.42891 1.79180i 0.0944251 0.118405i −0.732374 0.680902i \(-0.761588\pi\)
0.826799 + 0.562497i \(0.190159\pi\)
\(230\) 2.65270 + 1.27747i 0.174914 + 0.0842340i
\(231\) −1.90983 −0.125658
\(232\) 0 0
\(233\) 15.2361 0.998148 0.499074 0.866559i \(-0.333674\pi\)
0.499074 + 0.866559i \(0.333674\pi\)
\(234\) −0.344139 0.165729i −0.0224971 0.0108340i
\(235\) −16.8210 + 21.0928i −1.09728 + 1.37594i
\(236\) −6.14393 7.70425i −0.399936 0.501504i
\(237\) −3.39119 1.63311i −0.220281 0.106082i
\(238\) −5.45602 + 2.62748i −0.353661 + 0.170314i
\(239\) −17.2973 + 21.6901i −1.11887 + 1.40301i −0.214255 + 0.976778i \(0.568732\pi\)
−0.904612 + 0.426236i \(0.859839\pi\)
\(240\) 0.982743 + 4.30568i 0.0634358 + 0.277930i
\(241\) 1.03527 + 4.53583i 0.0666878 + 0.292178i 0.997264 0.0739193i \(-0.0235507\pi\)
−0.930576 + 0.366098i \(0.880694\pi\)
\(242\) −3.50279 4.39236i −0.225168 0.282351i
\(243\) 3.10289 13.5947i 0.199051 0.872098i
\(244\) 1.00000 0.0640184
\(245\) 1.71524 7.51494i 0.109582 0.480112i
\(246\) 1.32635 0.638736i 0.0845649 0.0407243i
\(247\) −1.03242 + 0.497187i −0.0656912 + 0.0316352i
\(248\) −5.02059 + 21.9966i −0.318807 + 1.39679i
\(249\) 6.14590 0.389480
\(250\) −2.57286 + 11.2724i −0.162722 + 0.712930i
\(251\) −12.2531 15.3649i −0.773410 0.969825i 0.226581 0.973992i \(-0.427245\pi\)
−0.999991 + 0.00416682i \(0.998674\pi\)
\(252\) 2.10775 + 9.23465i 0.132776 + 0.581728i
\(253\) −0.380111 1.66538i −0.0238974 0.104701i
\(254\) 6.14393 7.70425i 0.385505 0.483407i
\(255\) −9.40404 + 4.52875i −0.588904 + 0.283601i
\(256\) 5.91243 + 2.84728i 0.369527 + 0.177955i
\(257\) −14.4527 18.1231i −0.901535 1.13049i −0.990915 0.134492i \(-0.957060\pi\)
0.0893797 0.995998i \(-0.471512\pi\)
\(258\) 1.72328 2.16093i 0.107287 0.134534i
\(259\) 9.48528 + 4.56787i 0.589386 + 0.283834i
\(260\) 1.47214 0.0912980
\(261\) 0 0
\(262\) 8.85410 0.547008
\(263\) 15.0536 + 7.24942i 0.928243 + 0.447018i 0.836007 0.548719i \(-0.184884\pi\)
0.0922361 + 0.995737i \(0.470599\pi\)
\(264\) −1.19076 + 1.49317i −0.0732862 + 0.0918980i
\(265\) −4.80599 6.02652i −0.295229 0.370206i
\(266\) −6.04388 2.91058i −0.370574 0.178459i
\(267\) 2.62167 1.26253i 0.160443 0.0772655i
\(268\) 1.54135 1.93279i 0.0941530 0.118064i
\(269\) 1.33513 + 5.84957i 0.0814040 + 0.356654i 0.999182 0.0404396i \(-0.0128758\pi\)
−0.917778 + 0.397094i \(0.870019\pi\)
\(270\) −1.84036 8.06315i −0.112001 0.490708i
\(271\) 6.34734 + 7.95931i 0.385573 + 0.483494i 0.936305 0.351189i \(-0.114223\pi\)
−0.550731 + 0.834683i \(0.685651\pi\)
\(272\) 1.80790 7.92091i 0.109620 0.480276i
\(273\) −0.326238 −0.0197448
\(274\) −0.982743 + 4.30568i −0.0593697 + 0.260116i
\(275\) 12.2694 5.90864i 0.739874 0.356305i
\(276\) 1.11366 0.536310i 0.0670344 0.0322821i
\(277\) 4.75794 20.8459i 0.285877 1.25251i −0.604250 0.796795i \(-0.706527\pi\)
0.890127 0.455713i \(-0.150616\pi\)
\(278\) 0.798374 0.0478833
\(279\) −5.87820 + 25.7541i −0.351919 + 1.54186i
\(280\) 12.0150 + 15.0663i 0.718032 + 0.900383i
\(281\) −5.14571 22.5448i −0.306967 1.34491i −0.859379 0.511340i \(-0.829149\pi\)
0.552411 0.833572i \(-0.313708\pi\)
\(282\) −0.594968 2.60673i −0.0354298 0.155228i
\(283\) −3.26463 + 4.09372i −0.194062 + 0.243347i −0.869337 0.494220i \(-0.835454\pi\)
0.675274 + 0.737567i \(0.264025\pi\)
\(284\) 15.2663 7.35184i 0.905886 0.436252i
\(285\) −10.4173 5.01670i −0.617066 0.297163i
\(286\) 0.125712 + 0.157638i 0.00743350 + 0.00932131i
\(287\) −5.37326 + 6.73785i −0.317173 + 0.397723i
\(288\) 13.2516 + 6.38165i 0.780860 + 0.376042i
\(289\) 2.20163 0.129507
\(290\) 0 0
\(291\) −2.20163 −0.129062
\(292\) −19.9838 9.62369i −1.16946 0.563184i
\(293\) 5.31704 6.66735i 0.310625 0.389511i −0.601874 0.798591i \(-0.705579\pi\)
0.912498 + 0.409080i \(0.134150\pi\)
\(294\) 0.476304 + 0.597266i 0.0277786 + 0.0348333i
\(295\) −21.1477 10.1842i −1.23126 0.592946i
\(296\) 9.48528 4.56787i 0.551321 0.265502i
\(297\) −2.99174 + 3.75152i −0.173598 + 0.217685i
\(298\) −1.32272 5.79524i −0.0766234 0.335709i
\(299\) −0.0649307 0.284480i −0.00375504 0.0164519i
\(300\) 6.14393 + 7.70425i 0.354720 + 0.444805i
\(301\) −3.60046 + 15.7747i −0.207527 + 0.909237i
\(302\) 1.65248 0.0950893
\(303\) −0.0849954 + 0.372389i −0.00488286 + 0.0213932i
\(304\) 8.10872 3.90495i 0.465067 0.223964i
\(305\) 2.14608 1.03350i 0.122884 0.0591778i
\(306\) −1.57771 + 6.91240i −0.0901917 + 0.395156i
\(307\) −19.1803 −1.09468 −0.547340 0.836910i \(-0.684360\pi\)
−0.547340 + 0.836910i \(0.684360\pi\)
\(308\) 1.11260 4.87464i 0.0633965 0.277758i
\(309\) −3.53753 4.43593i −0.201243 0.252351i
\(310\) 5.34817 + 23.4318i 0.303755 + 1.33084i
\(311\) −0.465107 2.03777i −0.0263738 0.115551i 0.960028 0.279905i \(-0.0903031\pi\)
−0.986401 + 0.164354i \(0.947446\pi\)
\(312\) −0.203406 + 0.255063i −0.0115156 + 0.0144401i
\(313\) 11.6314 5.60137i 0.657443 0.316608i −0.0752524 0.997165i \(-0.523976\pi\)
0.732695 + 0.680557i \(0.238262\pi\)
\(314\) −8.10872 3.90495i −0.457602 0.220369i
\(315\) 14.0674 + 17.6399i 0.792606 + 0.993897i
\(316\) 6.14393 7.70425i 0.345623 0.433398i
\(317\) −24.9642 12.0221i −1.40213 0.675231i −0.428538 0.903524i \(-0.640971\pi\)
−0.973592 + 0.228293i \(0.926686\pi\)
\(318\) 0.763932 0.0428392
\(319\) 0 0
\(320\) −0.909830 −0.0508610
\(321\) 3.76636 + 1.81378i 0.210217 + 0.101235i
\(322\) 1.06505 1.33553i 0.0593528 0.0744260i
\(323\) 13.2619 + 16.6300i 0.737914 + 0.925315i
\(324\) 8.32141 + 4.00738i 0.462301 + 0.222632i
\(325\) 2.09587 1.00932i 0.116258 0.0559868i
\(326\) −2.32530 + 2.91583i −0.128786 + 0.161493i
\(327\) −1.97789 8.66569i −0.109377 0.479214i
\(328\) 1.91769 + 8.40196i 0.105887 + 0.463921i
\(329\) 9.75916 + 12.2376i 0.538040 + 0.674681i
\(330\) −0.452706 + 1.98343i −0.0249206 + 0.109184i
\(331\) 21.1803 1.16418 0.582088 0.813126i \(-0.302236\pi\)
0.582088 + 0.813126i \(0.302236\pi\)
\(332\) −3.58040 + 15.6868i −0.196500 + 0.860923i
\(333\) 11.1056 5.34815i 0.608581 0.293077i
\(334\) −5.86222 + 2.82310i −0.320767 + 0.154473i
\(335\) 1.31032 5.74091i 0.0715907 0.313659i
\(336\) 2.56231 0.139785
\(337\) 7.58104 33.2147i 0.412966 1.80932i −0.156938 0.987609i \(-0.550162\pi\)
0.569903 0.821712i \(-0.306981\pi\)
\(338\) −4.98792 6.25465i −0.271307 0.340208i
\(339\) 1.09254 + 4.78673i 0.0593386 + 0.259980i
\(340\) −6.08066 26.6411i −0.329770 1.44482i
\(341\) 8.69411 10.9021i 0.470813 0.590380i
\(342\) −7.07630 + 3.40777i −0.382643 + 0.184271i
\(343\) −18.1316 8.73174i −0.979017 0.471470i
\(344\) 10.0883 + 12.6503i 0.543923 + 0.682058i
\(345\) 1.83572 2.30192i 0.0988320 0.123931i
\(346\) −2.27753 1.09680i −0.122441 0.0589643i
\(347\) −32.1246 −1.72454 −0.862270 0.506449i \(-0.830958\pi\)
−0.862270 + 0.506449i \(0.830958\pi\)
\(348\) 0 0
\(349\) 4.52786 0.242371 0.121186 0.992630i \(-0.461330\pi\)
0.121186 + 0.992630i \(0.461330\pi\)
\(350\) 12.2694 + 5.90864i 0.655828 + 0.315830i
\(351\) −0.511050 + 0.640836i −0.0272778 + 0.0342053i
\(352\) −4.84073 6.07009i −0.258012 0.323537i
\(353\) 17.2307 + 8.29786i 0.917097 + 0.441650i 0.832034 0.554725i \(-0.187177\pi\)
0.0850629 + 0.996376i \(0.472891\pi\)
\(354\) 2.09587 1.00932i 0.111394 0.0536446i
\(355\) 25.1645 31.5553i 1.33559 1.67478i
\(356\) 1.69517 + 7.42703i 0.0898439 + 0.393632i
\(357\) 1.34753 + 5.90390i 0.0713187 + 0.312467i
\(358\) −6.16541 7.73117i −0.325852 0.408605i
\(359\) 5.28797 23.1681i 0.279089 1.22277i −0.619860 0.784712i \(-0.712811\pi\)
0.898949 0.438054i \(-0.144332\pi\)
\(360\) 22.5623 1.18914
\(361\) −1.01521 + 4.44792i −0.0534320 + 0.234101i
\(362\) −3.30995 + 1.59399i −0.173967 + 0.0837780i
\(363\) −5.06167 + 2.43757i −0.265669 + 0.127939i
\(364\) 0.190056 0.832688i 0.00996162 0.0436447i
\(365\) −52.8328 −2.76540
\(366\) −0.0525301 + 0.230149i −0.00274579 + 0.0120301i
\(367\) 17.0029 + 21.3209i 0.887543 + 1.11294i 0.992952 + 0.118515i \(0.0378134\pi\)
−0.105409 + 0.994429i \(0.533615\pi\)
\(368\) 0.509973 + 2.23434i 0.0265842 + 0.116473i
\(369\) 2.24527 + 9.83719i 0.116884 + 0.512104i
\(370\) 6.99230 8.76807i 0.363512 0.455830i
\(371\) −4.02926 + 1.94039i −0.209189 + 0.100740i
\(372\) 9.09093 + 4.37796i 0.471343 + 0.226987i
\(373\) 12.8551 + 16.1198i 0.665614 + 0.834653i 0.993941 0.109911i \(-0.0350565\pi\)
−0.328328 + 0.944564i \(0.606485\pi\)
\(374\) 2.33350 2.92612i 0.120662 0.151306i
\(375\) 10.4173 + 5.01670i 0.537946 + 0.259061i
\(376\) 15.6525 0.807215
\(377\) 0 0
\(378\) −4.79837 −0.246802
\(379\) 21.8862 + 10.5398i 1.12422 + 0.541394i 0.901192 0.433419i \(-0.142693\pi\)
0.223024 + 0.974813i \(0.428407\pi\)
\(380\) 18.8734 23.6664i 0.968183 1.21406i
\(381\) −6.14393 7.70425i −0.314763 0.394701i
\(382\) −9.48528 4.56787i −0.485309 0.233713i
\(383\) 25.9966 12.5193i 1.32837 0.639708i 0.371013 0.928628i \(-0.379010\pi\)
0.957353 + 0.288920i \(0.0932961\pi\)
\(384\) 4.38590 5.49975i 0.223817 0.280658i
\(385\) −2.65019 11.6112i −0.135066 0.591763i
\(386\) −1.71524 7.51494i −0.0873033 0.382501i
\(387\) 11.8116 + 14.8112i 0.600415 + 0.752897i
\(388\) 1.28260 5.61942i 0.0651139 0.285283i
\(389\) −19.1246 −0.969656 −0.484828 0.874609i \(-0.661118\pi\)
−0.484828 + 0.874609i \(0.661118\pi\)
\(390\) −0.0773314 + 0.338811i −0.00391583 + 0.0171564i
\(391\) −4.88001 + 2.35009i −0.246793 + 0.118849i
\(392\) −4.02926 + 1.94039i −0.203508 + 0.0980043i
\(393\) 1.97022 8.63211i 0.0993846 0.435432i
\(394\) −3.88854 −0.195902
\(395\) 5.22304 22.8836i 0.262800 1.15140i
\(396\) −3.64997 4.57692i −0.183418 0.229999i
\(397\) 3.12769 + 13.7033i 0.156974 + 0.687750i 0.990756 + 0.135656i \(0.0433141\pi\)
−0.833782 + 0.552094i \(0.813829\pi\)
\(398\) 0.805088 + 3.52732i 0.0403554 + 0.176809i
\(399\) −4.18250 + 5.24469i −0.209387 + 0.262563i
\(400\) −16.4612 + 7.92728i −0.823058 + 0.396364i
\(401\) −22.5863 10.8770i −1.12791 0.543171i −0.225579 0.974225i \(-0.572427\pi\)
−0.902326 + 0.431054i \(0.858142\pi\)
\(402\) 0.363864 + 0.456271i 0.0181479 + 0.0227567i
\(403\) 1.48513 1.86230i 0.0739797 0.0927676i
\(404\) −0.900969 0.433884i −0.0448249 0.0215865i
\(405\) 22.0000 1.09319
\(406\) 0 0
\(407\) −6.50658 −0.322519
\(408\) 5.45602 + 2.62748i 0.270113 + 0.130080i
\(409\) 17.0939 21.4350i 0.845237 1.05989i −0.152201 0.988350i \(-0.548636\pi\)
0.997437 0.0715435i \(-0.0227925\pi\)
\(410\) 5.72385 + 7.17748i 0.282681 + 0.354470i
\(411\) 3.97905 + 1.91621i 0.196272 + 0.0945195i
\(412\) 13.3831 6.44495i 0.659337 0.317520i
\(413\) −8.49071 + 10.6470i −0.417800 + 0.523905i
\(414\) −0.445042 1.94986i −0.0218726 0.0958302i
\(415\) 8.52839 + 37.3653i 0.418642 + 1.83419i
\(416\) −0.826896 1.03689i −0.0405419 0.0508379i
\(417\) 0.177655 0.778357i 0.00869980 0.0381163i
\(418\) 4.14590 0.202783
\(419\) 3.90798 17.1220i 0.190917 0.836464i −0.785204 0.619237i \(-0.787442\pi\)
0.976121 0.217226i \(-0.0697010\pi\)
\(420\) 7.76458 3.73922i 0.378873 0.182455i
\(421\) 27.9611 13.4653i 1.36274 0.656261i 0.397493 0.917605i \(-0.369880\pi\)
0.965246 + 0.261345i \(0.0841659\pi\)
\(422\) 1.60251 7.02107i 0.0780091 0.341780i
\(423\) 18.3262 0.891052
\(424\) −0.995144 + 4.36001i −0.0483285 + 0.211741i
\(425\) −26.9225 33.7597i −1.30593 1.63759i
\(426\) 0.890084 + 3.89971i 0.0431247 + 0.188942i
\(427\) −0.307516 1.34732i −0.0148818 0.0652013i
\(428\) −6.82364 + 8.55658i −0.329833 + 0.413598i
\(429\) 0.181659 0.0874823i 0.00877057 0.00422369i
\(430\) 15.5292 + 7.47845i 0.748883 + 0.360643i
\(431\) 9.10092 + 11.4122i 0.438376 + 0.549706i 0.951114 0.308839i \(-0.0999403\pi\)
−0.512738 + 0.858545i \(0.671369\pi\)
\(432\) 4.01384 5.03319i 0.193116 0.242160i
\(433\) −9.35383 4.50457i −0.449516 0.216476i 0.195408 0.980722i \(-0.437397\pi\)
−0.644924 + 0.764246i \(0.723111\pi\)
\(434\) 13.9443 0.669346
\(435\) 0 0
\(436\) 23.2705 1.11446
\(437\) −5.40581 2.60330i −0.258595 0.124533i
\(438\) 3.26463 4.09372i 0.155990 0.195606i
\(439\) −13.0585 16.3749i −0.623250 0.781531i 0.365548 0.930793i \(-0.380882\pi\)
−0.988798 + 0.149262i \(0.952310\pi\)
\(440\) −10.7304 5.16748i −0.511551 0.246350i
\(441\) −4.71753 + 2.27184i −0.224644 + 0.108183i
\(442\) 0.398610 0.499841i 0.0189599 0.0237750i
\(443\) 0.424977 + 1.86195i 0.0201913 + 0.0884638i 0.984020 0.178060i \(-0.0569821\pi\)
−0.963828 + 0.266524i \(0.914125\pi\)
\(444\) −1.04767 4.59016i −0.0497204 0.217839i
\(445\) 11.3138 + 14.1870i 0.536325 + 0.672530i
\(446\) −0.367710 + 1.61104i −0.0174116 + 0.0762852i
\(447\) −5.94427 −0.281154
\(448\) −0.117461 + 0.514629i −0.00554950 + 0.0243140i
\(449\) 23.5375 11.3350i 1.11080 0.534934i 0.213763 0.976886i \(-0.431428\pi\)
0.897039 + 0.441952i \(0.145714\pi\)
\(450\) 14.3653 6.91796i 0.677186 0.326116i
\(451\) 1.18520 5.19270i 0.0558089 0.244515i
\(452\) −12.8541 −0.604606
\(453\) 0.367710 1.61104i 0.0172765 0.0756935i
\(454\) −8.04915 10.0933i −0.377765 0.473703i
\(455\) −0.452706 1.98343i −0.0212232 0.0929848i
\(456\) 1.49272 + 6.54002i 0.0699028 + 0.306264i
\(457\) 11.6644 14.6267i 0.545636 0.684206i −0.430194 0.902737i \(-0.641555\pi\)
0.975830 + 0.218530i \(0.0701262\pi\)
\(458\) −1.27614 + 0.614556i −0.0596301 + 0.0287163i
\(459\) 13.7080 + 6.60145i 0.639837 + 0.308129i
\(460\) 4.80599 + 6.02652i 0.224080 + 0.280988i
\(461\) −24.3028 + 30.4748i −1.13190 + 1.41935i −0.237893 + 0.971291i \(0.576457\pi\)
−0.894003 + 0.448061i \(0.852115\pi\)
\(462\) 1.06345 + 0.512130i 0.0494761 + 0.0238265i
\(463\) 10.7082 0.497652 0.248826 0.968548i \(-0.419955\pi\)
0.248826 + 0.968548i \(0.419955\pi\)
\(464\) 0 0
\(465\) 24.0344 1.11457
\(466\) −8.48389 4.08563i −0.393009 0.189263i
\(467\) −11.1881 + 14.0294i −0.517722 + 0.649203i −0.970124 0.242611i \(-0.921996\pi\)
0.452401 + 0.891814i \(0.350567\pi\)
\(468\) −0.623490 0.781831i −0.0288208 0.0361402i
\(469\) −3.07808 1.48232i −0.142132 0.0684474i
\(470\) 15.0225 7.23447i 0.692938 0.333701i
\(471\) −5.61141 + 7.03648i −0.258560 + 0.324224i
\(472\) 3.03030 + 13.2766i 0.139481 + 0.611105i
\(473\) −2.22521 9.74928i −0.102315 0.448272i
\(474\) 1.45039 + 1.81873i 0.0666184 + 0.0835369i
\(475\) 10.6438 46.6335i 0.488371 2.13969i
\(476\) −15.8541 −0.726672
\(477\) −1.16513 + 5.10479i −0.0533479 + 0.233732i
\(478\) 15.4479 7.43933i 0.706571 0.340267i
\(479\) 10.0731 4.85097i 0.460253 0.221646i −0.189365 0.981907i \(-0.560643\pi\)
0.649618 + 0.760260i \(0.274929\pi\)
\(480\) 2.97777 13.0465i 0.135916 0.595486i
\(481\) −1.11146 −0.0506780
\(482\) 0.639834 2.80330i 0.0291436 0.127687i
\(483\) −1.06505 1.33553i −0.0484613 0.0607686i
\(484\) −3.27288 14.3394i −0.148767 0.651793i
\(485\) −3.05510 13.3853i −0.138725 0.607793i
\(486\) −5.37326 + 6.73785i −0.243736 + 0.305635i
\(487\) −38.3473 + 18.4671i −1.73768 + 0.836824i −0.754009 + 0.656865i \(0.771882\pi\)
−0.983674 + 0.179959i \(0.942403\pi\)
\(488\) −1.24511 0.599613i −0.0563634 0.0271432i
\(489\) 2.32530 + 2.91583i 0.105154 + 0.131859i
\(490\) −2.97026 + 3.72459i −0.134183 + 0.168260i
\(491\) 13.6268 + 6.56232i 0.614969 + 0.296153i 0.715318 0.698799i \(-0.246282\pi\)
−0.100349 + 0.994952i \(0.531996\pi\)
\(492\) 3.85410 0.173756
\(493\) 0 0
\(494\) 0.708204 0.0318636
\(495\) −12.5634 6.05019i −0.564681 0.271936i
\(496\) −11.6644 + 14.6267i −0.523746 + 0.656757i
\(497\) −14.5999 18.3077i −0.654895 0.821212i
\(498\) −3.42222 1.64805i −0.153353 0.0738510i
\(499\) −22.2421 + 10.7113i −0.995695 + 0.479502i −0.859475 0.511177i \(-0.829210\pi\)
−0.136220 + 0.990679i \(0.543495\pi\)
\(500\) −18.8734 + 23.6664i −0.844042 + 1.05840i
\(501\) 1.44785 + 6.34344i 0.0646852 + 0.283404i
\(502\) 2.70272 + 11.8414i 0.120628 + 0.528506i
\(503\) 8.89752 + 11.1571i 0.396721 + 0.497472i 0.939569 0.342358i \(-0.111226\pi\)
−0.542849 + 0.839831i \(0.682654\pi\)
\(504\) 2.91284 12.7620i 0.129748 0.568463i
\(505\) −2.38197 −0.105996
\(506\) −0.234922 + 1.02926i −0.0104435 + 0.0457561i
\(507\) −7.20775 + 3.47107i −0.320107 + 0.154156i
\(508\) 23.2435 11.1935i 1.03126 0.496631i
\(509\) −7.02327 + 30.7710i −0.311301 + 1.36390i 0.541077 + 0.840973i \(0.318017\pi\)
−0.852378 + 0.522926i \(0.824840\pi\)
\(510\) 6.45085 0.285648
\(511\) −6.82082 + 29.8840i −0.301735 + 1.32199i
\(512\) 11.6644 + 14.6267i 0.515497 + 0.646413i
\(513\) 3.75039 + 16.4315i 0.165584 + 0.725470i
\(514\) 3.18789 + 13.9670i 0.140612 + 0.616060i
\(515\) 22.0603 27.6627i 0.972093 1.21897i
\(516\) 6.51947 3.13961i 0.287004 0.138214i
\(517\) −8.71576 4.19729i −0.383319 0.184597i
\(518\) −4.05678 5.08705i −0.178245 0.223512i
\(519\) −1.57610 + 1.97636i −0.0691830 + 0.0867527i
\(520\) −1.83297 0.882711i −0.0803810 0.0387094i
\(521\) 4.09017 0.179194 0.0895968 0.995978i \(-0.471442\pi\)
0.0895968 + 0.995978i \(0.471442\pi\)
\(522\) 0 0
\(523\) −20.3820 −0.891241 −0.445621 0.895222i \(-0.647017\pi\)
−0.445621 + 0.895222i \(0.647017\pi\)
\(524\) 20.8848 + 10.0576i 0.912355 + 0.439367i
\(525\) 8.49071 10.6470i 0.370565 0.464674i
\(526\) −6.43830 8.07338i −0.280723 0.352016i
\(527\) −39.8361 19.1841i −1.73529 0.835671i
\(528\) −1.42677 + 0.687095i −0.0620921 + 0.0299020i
\(529\) −13.3877 + 16.7876i −0.582072 + 0.729895i
\(530\) 1.06007 + 4.64449i 0.0460467 + 0.201744i
\(531\) 3.54793 + 15.5445i 0.153967 + 0.674575i
\(532\) −10.9499 13.7308i −0.474739 0.595304i
\(533\) 0.202456 0.887019i 0.00876935 0.0384210i
\(534\) −1.79837 −0.0778232
\(535\) −5.80087 + 25.4153i −0.250794 + 1.09880i
\(536\) −3.07808 + 1.48232i −0.132953 + 0.0640266i
\(537\) −8.90927 + 4.29048i −0.384463 + 0.185148i
\(538\) 0.825153 3.61523i 0.0355749 0.155864i
\(539\) 2.76393 0.119051
\(540\) 4.81813 21.1096i 0.207339 0.908413i
\(541\) −9.10092 11.4122i −0.391279 0.490649i 0.546706 0.837325i \(-0.315882\pi\)
−0.937985 + 0.346676i \(0.887310\pi\)
\(542\) −1.40006 6.13405i −0.0601376 0.263480i
\(543\) 0.817489 + 3.58165i 0.0350818 + 0.153703i
\(544\) −15.3491 + 19.2472i −0.658087 + 0.825215i
\(545\) 49.9403 24.0500i 2.13921 1.03019i
\(546\) 0.181659 + 0.0874823i 0.00777428 + 0.00374390i
\(547\) 4.60258 + 5.77145i 0.196792 + 0.246770i 0.870430 0.492292i \(-0.163841\pi\)
−0.673638 + 0.739061i \(0.735269\pi\)
\(548\) −7.20898 + 9.03977i −0.307952 + 0.386160i
\(549\) −1.45780 0.702039i −0.0622173 0.0299623i
\(550\) −8.41641 −0.358877
\(551\) 0 0
\(552\) −1.70820 −0.0727060
\(553\) −12.2694 5.90864i −0.521749 0.251261i
\(554\) −8.23928 + 10.3317i −0.350054 + 0.438953i
\(555\) −6.99230 8.76807i −0.296807 0.372184i
\(556\) 1.88318 + 0.906891i 0.0798645 + 0.0384607i
\(557\) 4.96126 2.38921i 0.210215 0.101234i −0.325814 0.945434i \(-0.605638\pi\)
0.536029 + 0.844200i \(0.319924\pi\)
\(558\) 10.1792 12.7644i 0.430922 0.540359i
\(559\) −0.380111 1.66538i −0.0160770 0.0704379i
\(560\) 3.55560 + 15.5781i 0.150251 + 0.658295i
\(561\) −2.33350 2.92612i −0.0985205 0.123541i
\(562\) −3.18022 + 13.9335i −0.134150 + 0.587748i
\(563\) 28.3951 1.19671 0.598356 0.801230i \(-0.295821\pi\)
0.598356 + 0.801230i \(0.295821\pi\)
\(564\) 1.55765 6.82450i 0.0655888 0.287363i
\(565\) −27.5859 + 13.2847i −1.16055 + 0.558890i
\(566\) 2.91560 1.40408i 0.122552 0.0590178i
\(567\) 2.84024 12.4439i 0.119279 0.522595i
\(568\) −23.4164 −0.982531
\(569\) 0.432641 1.89552i 0.0181373 0.0794645i −0.965049 0.262068i \(-0.915595\pi\)
0.983187 + 0.182604i \(0.0584526\pi\)
\(570\) 4.45539 + 5.58689i 0.186616 + 0.234009i
\(571\) 7.67844 + 33.6414i 0.321333 + 1.40785i 0.835184 + 0.549971i \(0.185361\pi\)
−0.513851 + 0.857879i \(0.671782\pi\)
\(572\) 0.117461 + 0.514629i 0.00491128 + 0.0215177i
\(573\) −6.56402 + 8.23102i −0.274216 + 0.343856i
\(574\) 4.79877 2.31097i 0.200297 0.0964579i
\(575\) 10.9741 + 5.28485i 0.457652 + 0.220394i
\(576\) 0.385338 + 0.483198i 0.0160557 + 0.0201333i
\(577\) −1.72328 + 2.16093i −0.0717412 + 0.0899607i −0.816407 0.577477i \(-0.804037\pi\)
0.744666 + 0.667437i \(0.232609\pi\)
\(578\) −1.22593 0.590377i −0.0509920 0.0245564i
\(579\) −7.70820 −0.320342
\(580\) 0 0
\(581\) 22.2361 0.922508
\(582\) 1.22593 + 0.590377i 0.0508164 + 0.0244719i
\(583\) 1.72328 2.16093i 0.0713711 0.0894965i
\(584\) 19.1115 + 23.9651i 0.790840 + 0.991682i
\(585\) −2.14608 1.03350i −0.0887294 0.0427298i
\(586\) −4.74857 + 2.28679i −0.196161 + 0.0944664i
\(587\) 29.0659 36.4474i 1.19968 1.50435i 0.386542 0.922272i \(-0.373669\pi\)
0.813135 0.582075i \(-0.197759\pi\)
\(588\) 0.445042 + 1.94986i 0.0183532 + 0.0804107i
\(589\) −10.8988 47.7507i −0.449077 1.96753i
\(590\) 9.04470 + 11.3417i 0.372365 + 0.466930i
\(591\) −0.865282 + 3.79105i −0.0355930 + 0.155943i
\(592\) 8.72949 0.358780
\(593\) 3.21269 14.0757i 0.131929 0.578020i −0.865141 0.501529i \(-0.832771\pi\)
0.997070 0.0764913i \(-0.0243717\pi\)
\(594\) 2.67188 1.28671i 0.109628 0.0527942i
\(595\) −34.0241 + 16.3852i −1.39485 + 0.671726i
\(596\) 3.46294 15.1721i 0.141848 0.621475i
\(597\) 3.61803 0.148076
\(598\) −0.0401294 + 0.175818i −0.00164101 + 0.00718975i
\(599\) 8.14832 + 10.2177i 0.332931 + 0.417482i 0.919916 0.392115i \(-0.128257\pi\)
−0.586985 + 0.809598i \(0.699685\pi\)
\(600\) −3.03030 13.2766i −0.123711 0.542015i
\(601\) −6.48850 28.4280i −0.264671 1.15960i −0.916119 0.400907i \(-0.868695\pi\)
0.651447 0.758694i \(-0.274162\pi\)
\(602\) 6.23490 7.81831i 0.254115 0.318651i
\(603\) −3.60388 + 1.73553i −0.146761 + 0.0706764i
\(604\) 3.89781 + 1.87708i 0.158599 + 0.0763775i
\(605\) −21.8436 27.3910i −0.888069 1.11360i
\(606\) 0.147186 0.184565i 0.00597902 0.00749746i
\(607\) −9.89148 4.76349i −0.401483 0.193344i 0.222236 0.974993i \(-0.428665\pi\)
−0.623718 + 0.781649i \(0.714379\pi\)
\(608\) −27.2705 −1.10597
\(609\) 0 0
\(610\) −1.47214 −0.0596050
\(611\) −1.48883 0.716982i −0.0602316 0.0290060i
\(612\) −11.5734 + 14.5126i −0.467827 + 0.586637i
\(613\) 17.1715 + 21.5324i 0.693552 + 0.869687i 0.996523 0.0833128i \(-0.0265501\pi\)
−0.302971 + 0.953000i \(0.597979\pi\)
\(614\) 10.6802 + 5.14330i 0.431017 + 0.207567i
\(615\) 8.27120 3.98320i 0.333527 0.160618i
\(616\) −4.30821 + 5.40232i −0.173583 + 0.217666i
\(617\) 3.15542 + 13.8248i 0.127033 + 0.556566i 0.997884 + 0.0650196i \(0.0207110\pi\)
−0.870851 + 0.491546i \(0.836432\pi\)
\(618\) 0.780287 + 3.41866i 0.0313877 + 0.137519i
\(619\) 4.39917 + 5.51639i 0.176818 + 0.221722i 0.862341 0.506329i \(-0.168998\pi\)
−0.685523 + 0.728051i \(0.740426\pi\)
\(620\) −14.0017 + 61.3454i −0.562321 + 2.46369i
\(621\) −4.29180 −0.172224
\(622\) −0.287452 + 1.25941i −0.0115258 + 0.0504977i
\(623\) 9.48528 4.56787i 0.380020 0.183008i
\(624\) −0.243721 + 0.117370i −0.00975665 + 0.00469855i
\(625\) −5.08078 + 22.2603i −0.203231 + 0.890414i
\(626\) −7.97871 −0.318894
\(627\) 0.922549 4.04195i 0.0368431 0.161420i
\(628\) −14.6909 18.4218i −0.586229 0.735108i
\(629\) 4.59087 + 20.1139i 0.183050 + 0.801995i
\(630\) −3.10289 13.5947i −0.123622 0.541624i
\(631\) −17.5916 + 22.0592i −0.700312 + 0.878163i −0.997047 0.0767968i \(-0.975531\pi\)
0.296735 + 0.954960i \(0.404102\pi\)
\(632\) −12.2694 + 5.90864i −0.488052 + 0.235033i
\(633\) −6.48844 3.12467i −0.257892 0.124194i
\(634\) 10.6770 + 13.3886i 0.424039 + 0.531728i
\(635\) 38.3140 48.0442i 1.52044 1.90658i
\(636\) 1.80194 + 0.867767i 0.0714515 + 0.0344092i
\(637\) 0.472136 0.0187067
\(638\) 0 0
\(639\) −27.4164 −1.08458
\(640\) 39.5230 + 19.0333i 1.56229 + 0.752357i
\(641\) 6.89313 8.64372i 0.272262 0.341406i −0.626837 0.779150i \(-0.715651\pi\)
0.899100 + 0.437744i \(0.144222\pi\)
\(642\) −1.61084 2.01993i −0.0635749 0.0797204i
\(643\) 33.7110 + 16.2344i 1.32943 + 0.640221i 0.957606 0.288081i \(-0.0930173\pi\)
0.371827 + 0.928302i \(0.378732\pi\)
\(644\) 4.02926 1.94039i 0.158775 0.0764620i
\(645\) 10.7465 13.4757i 0.423144 0.530605i
\(646\) −2.92524 12.8163i −0.115092 0.504251i
\(647\) 6.79309 + 29.7625i 0.267064 + 1.17008i 0.913411 + 0.407039i \(0.133439\pi\)
−0.646347 + 0.763044i \(0.723704\pi\)
\(648\) −7.95818 9.97924i −0.312627 0.392022i
\(649\) 1.87283 8.20539i 0.0735149 0.322090i
\(650\) −1.43769 −0.0563910
\(651\) 3.10289 13.5947i 0.121612 0.532817i
\(652\) −8.79700 + 4.23641i −0.344517 + 0.165911i
\(653\) −43.2584 + 20.8321i −1.69283 + 0.815224i −0.697729 + 0.716362i \(0.745806\pi\)
−0.995101 + 0.0988626i \(0.968480\pi\)
\(654\) −1.22240 + 5.35569i −0.0477997 + 0.209424i
\(655\) 55.2148 2.15742
\(656\) −1.59011 + 6.96674i −0.0620834 + 0.272005i
\(657\) 22.3761 + 28.0588i 0.872976 + 1.09468i
\(658\) −2.15261 9.43122i −0.0839177 0.367667i
\(659\) 1.57005 + 6.87883i 0.0611604 + 0.267961i 0.996258 0.0864291i \(-0.0275456\pi\)
−0.935098 + 0.354390i \(0.884688\pi\)
\(660\) −3.32086 + 4.16422i −0.129264 + 0.162092i
\(661\) 33.7420 16.2493i 1.31241 0.632025i 0.358900 0.933376i \(-0.383152\pi\)
0.953513 + 0.301351i \(0.0974375\pi\)
\(662\) −11.7938 5.67961i −0.458380 0.220744i
\(663\) −0.398610 0.499841i −0.0154807 0.0194122i
\(664\) 13.8640 17.3849i 0.538026 0.674663i
\(665\) −37.6901 18.1506i −1.46156 0.703849i
\(666\) −7.61803 −0.295193
\(667\) 0 0
\(668\) −17.0344 −0.659082
\(669\) 1.48883 + 0.716982i 0.0575615 + 0.0277201i
\(670\) −2.26908 + 2.84534i −0.0876622 + 0.109925i
\(671\) 0.532524 + 0.667764i 0.0205579 + 0.0257787i
\(672\) −6.99506 3.36864i −0.269840 0.129948i
\(673\) 5.83119 2.80815i 0.224776 0.108246i −0.318107 0.948055i \(-0.603047\pi\)
0.542883 + 0.839808i \(0.317333\pi\)
\(674\) −13.1280 + 16.4620i −0.505673 + 0.634094i
\(675\) −7.61351 33.3569i −0.293044 1.28391i
\(676\) −4.66054 20.4192i −0.179251 0.785352i
\(677\) −25.4588 31.9244i −0.978463 1.22695i −0.973903 0.226964i \(-0.927120\pi\)
−0.00455972 0.999990i \(-0.501451\pi\)
\(678\) 0.675227 2.95836i 0.0259319 0.113615i
\(679\) −7.96556 −0.305690
\(680\) −8.40327 + 36.8171i −0.322251 + 1.41187i
\(681\) −11.6314 + 5.60137i −0.445714 + 0.214645i
\(682\) −7.76458 + 3.73922i −0.297321 + 0.143182i
\(683\) −4.64047 + 20.3312i −0.177563 + 0.777954i 0.805188 + 0.593019i \(0.202064\pi\)
−0.982751 + 0.184934i \(0.940793\pi\)
\(684\) −20.5623 −0.786219
\(685\) −6.12845 + 26.8505i −0.234156 + 1.02591i
\(686\) 7.75478 + 9.72418i 0.296079 + 0.371271i
\(687\) 0.315180 + 1.38090i 0.0120249 + 0.0526845i
\(688\) 2.98543 + 13.0800i 0.113819 + 0.498671i
\(689\) 0.294372 0.369131i 0.0112147 0.0140628i
\(690\) −1.63946 + 0.789521i −0.0624131 + 0.0300565i
\(691\) −10.6610 5.13407i −0.405563 0.195309i 0.219970 0.975507i \(-0.429404\pi\)
−0.625533 + 0.780198i \(0.715118\pi\)
\(692\) −4.12628 5.17419i −0.156858 0.196693i
\(693\) −5.04414 + 6.32515i −0.191611 + 0.240273i
\(694\) 17.8879 + 8.61437i 0.679016 + 0.326997i
\(695\) 4.97871 0.188853
\(696\) 0 0
\(697\) −16.8885 −0.639699
\(698\) −2.52125 1.21417i −0.0954306 0.0459570i
\(699\) −5.87103 + 7.36204i −0.222063 + 0.278458i
\(700\) 22.2290 + 27.8742i 0.840176 + 1.05355i
\(701\) 18.9706 + 9.13574i 0.716508 + 0.345052i 0.756362 0.654153i \(-0.226975\pi\)
−0.0398539 + 0.999206i \(0.512689\pi\)
\(702\) 0.456411 0.219796i 0.0172261 0.00829566i
\(703\) −14.2493 + 17.8681i −0.537423 + 0.673907i
\(704\) −0.0725948 0.318058i −0.00273602 0.0119873i
\(705\) −3.71026 16.2557i −0.139737 0.612226i
\(706\) −7.36944 9.24098i −0.277352 0.347789i
\(707\) −0.307516 + 1.34732i −0.0115653 + 0.0506711i
\(708\) 6.09017 0.228883
\(709\) 9.23608 40.4659i 0.346868 1.51973i −0.437377 0.899278i \(-0.644092\pi\)
0.784245 0.620451i \(-0.213051\pi\)
\(710\) −22.4740 + 10.8229i −0.843435 + 0.406177i
\(711\) −14.3653 + 6.91796i −0.538741 + 0.259444i
\(712\) 2.34267 10.2639i 0.0877953 0.384656i
\(713\) 12.4721 0.467085
\(714\) 0.832817 3.64881i 0.0311674 0.136553i
\(715\) 0.783948 + 0.983039i 0.0293180 + 0.0367636i
\(716\) −5.76074 25.2395i −0.215289 0.943243i
\(717\) −3.81532 16.7160i −0.142486 0.624271i
\(718\) −9.15714 + 11.4827i −0.341742 + 0.428530i
\(719\) −7.66416 + 3.69087i −0.285825 + 0.137646i −0.571303 0.820739i \(-0.693562\pi\)
0.285478 + 0.958385i \(0.407848\pi\)
\(720\) 16.8555 + 8.11719i 0.628168 + 0.302510i
\(721\) −12.7989 16.0493i −0.476656 0.597708i
\(722\) 1.75803 2.20450i 0.0654271 0.0820430i
\(723\) −2.59064 1.24758i −0.0963468 0.0463982i
\(724\) −9.61803 −0.357451
\(725\) 0 0
\(726\) 3.47214 0.128863
\(727\) −25.2773 12.1729i −0.937485 0.451469i −0.0982034 0.995166i \(-0.531310\pi\)
−0.839281 + 0.543698i \(0.817024\pi\)
\(728\) −0.735930 + 0.922827i −0.0272754 + 0.0342022i
\(729\) −5.30376 6.65071i −0.196436 0.246323i
\(730\) 29.4189 + 14.1674i 1.08884 + 0.524358i
\(731\) −28.5681 + 13.7577i −1.05663 + 0.508846i
\(732\) −0.385338 + 0.483198i −0.0142425 + 0.0178595i
\(733\) −3.29768 14.4481i −0.121803 0.533653i −0.998605 0.0528016i \(-0.983185\pi\)
0.876802 0.480851i \(-0.159672\pi\)
\(734\) −3.75039 16.4315i −0.138429 0.606499i
\(735\) 2.97026 + 3.72459i 0.109560 + 0.137384i
\(736\) 1.54525 6.77016i 0.0569585 0.249552i
\(737\) 2.11146 0.0777765
\(738\) 1.38766 6.07972i 0.0510803 0.223797i
\(739\) 45.1105 21.7241i 1.65942 0.799133i 0.660588 0.750749i \(-0.270307\pi\)
0.998829 0.0483844i \(-0.0154072\pi\)
\(740\) 26.4531 12.7391i 0.972434 0.468299i
\(741\) 0.157590 0.690448i 0.00578922 0.0253642i
\(742\) 2.76393 0.101467
\(743\) −7.84076 + 34.3526i −0.287650 + 1.26028i 0.600091 + 0.799932i \(0.295131\pi\)
−0.887741 + 0.460344i \(0.847726\pi\)
\(744\) −8.69411 10.9021i −0.318742 0.399689i
\(745\) −8.24860 36.1395i −0.302205 1.32405i
\(746\) −2.83551 12.4232i −0.103815 0.454844i
\(747\) 16.2322 20.3545i 0.593905 0.744734i
\(748\) 8.82803 4.25136i 0.322785 0.155445i
\(749\) 13.6268 + 6.56232i 0.497913 + 0.239782i
\(750\) −4.45539 5.58689i −0.162688 0.204004i
\(751\) −11.5519 + 14.4857i −0.421536 + 0.528590i −0.946573 0.322490i \(-0.895480\pi\)
0.525037 + 0.851080i \(0.324052\pi\)
\(752\) 11.6934 + 5.63125i 0.426415 + 0.205351i
\(753\) 12.1459 0.442621
\(754\) 0 0
\(755\) 10.3050 0.375036
\(756\) −11.3182 5.45058i −0.411641 0.198236i
\(757\) −0.0132718 + 0.0166422i −0.000482370 + 0.000604873i −0.782073 0.623187i \(-0.785837\pi\)
0.781590 + 0.623792i \(0.214409\pi\)
\(758\) −9.36055 11.7378i −0.339990 0.426335i
\(759\) 0.951178 + 0.458063i 0.0345256 + 0.0166266i
\(760\) −37.6901 + 18.1506i −1.36716 + 0.658391i
\(761\) 15.7130 19.7034i 0.569594 0.714249i −0.410705 0.911768i \(-0.634717\pi\)
0.980299 + 0.197520i \(0.0632887\pi\)
\(762\) 1.35519 + 5.93748i 0.0490934 + 0.215092i
\(763\) −7.15606 31.3528i −0.259067 1.13505i
\(764\) −17.1848 21.5491i −0.621725 0.779618i
\(765\) −9.83871 + 43.1062i −0.355719 + 1.55851i
\(766\) −17.8328 −0.644326
\(767\) 0.319917 1.40165i 0.0115515 0.0506106i