Properties

Label 841.2.d.g.645.2
Level $841$
Weight $2$
Character 841.645
Analytic conductor $6.715$
Analytic rank $0$
Dimension $12$
Inner twists $6$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [841,2,Mod(190,841)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(841, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("841.190");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 841 = 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 841.d (of order \(7\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.71541880999\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{7})\)
Coefficient field: 12.0.4413675765625.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} + 2x^{10} - 3x^{9} + 5x^{8} - 8x^{7} + 13x^{6} + 8x^{5} + 5x^{4} + 3x^{3} + 2x^{2} + x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 645.2
Root \(-0.137526 - 0.602539i\) of defining polynomial
Character \(\chi\) \(=\) 841.645
Dual form 841.2.d.g.605.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.137526 + 0.602539i) q^{2} +(-0.556829 - 0.268155i) q^{3} +(1.45780 - 0.702039i) q^{4} +(-0.857618 - 3.75747i) q^{5} +(0.0849954 - 0.372389i) q^{6} +(2.01463 + 0.970194i) q^{7} +(1.39417 + 1.74823i) q^{8} +(-1.63232 - 2.04686i) q^{9} +O(q^{10})\) \(q+(0.137526 + 0.602539i) q^{2} +(-0.556829 - 0.268155i) q^{3} +(1.45780 - 0.702039i) q^{4} +(-0.857618 - 3.75747i) q^{5} +(0.0849954 - 0.372389i) q^{6} +(2.01463 + 0.970194i) q^{7} +(1.39417 + 1.74823i) q^{8} +(-1.63232 - 2.04686i) q^{9} +(2.14608 - 1.03350i) q^{10} +(0.861642 - 1.08046i) q^{11} -1.00000 q^{12} +(-0.147186 + 0.184565i) q^{13} +(-0.307516 + 1.34732i) q^{14} +(-0.530037 + 2.32225i) q^{15} +(1.15601 - 1.44960i) q^{16} +4.38197 q^{17} +(1.00883 - 1.26503i) q^{18} +(-4.37339 + 2.10612i) q^{19} +(-3.88812 - 4.87555i) q^{20} +(-0.861642 - 1.08046i) q^{21} +(0.769519 + 0.370581i) q^{22} +(0.275051 - 1.20508i) q^{23} +(-0.307516 - 1.34732i) q^{24} +(-8.87824 + 4.27553i) q^{25} +(-0.131450 - 0.0633028i) q^{26} +(0.772623 + 3.38508i) q^{27} +3.61803 q^{28} -1.47214 q^{30} +(-2.24527 - 9.83719i) q^{31} +(5.06167 + 2.43757i) q^{32} +(-0.769519 + 0.370581i) q^{33} +(0.602632 + 2.64030i) q^{34} +(1.91769 - 8.40196i) q^{35} +(-3.81657 - 1.83796i) q^{36} +(-2.93552 - 3.68102i) q^{37} +(-1.87047 - 2.34549i) q^{38} +(0.131450 - 0.0633028i) q^{39} +(5.37326 - 6.73785i) q^{40} -3.85410 q^{41} +(0.532524 - 0.667764i) q^{42} +(-1.61018 + 7.05464i) q^{43} +(0.497572 - 2.18001i) q^{44} +(-6.29112 + 7.88881i) q^{45} +0.763932 q^{46} +(4.36443 - 5.47282i) q^{47} +(-1.03242 + 0.497187i) q^{48} +(-1.24698 - 1.56366i) q^{49} +(-3.79716 - 4.76149i) q^{50} +(-2.44001 - 1.17505i) q^{51} +(-0.0849954 + 0.372389i) q^{52} +(0.445042 + 1.94986i) q^{53} +(-1.93339 + 0.931070i) q^{54} +(-4.79877 - 2.31097i) q^{55} +(1.11260 + 4.87464i) q^{56} +3.00000 q^{57} +6.09017 q^{59} +(0.857618 + 3.75747i) q^{60} +(-0.556829 - 0.268155i) q^{61} +(5.61850 - 2.70573i) q^{62} +(-1.30266 - 5.70733i) q^{63} +(0.0525301 - 0.230149i) q^{64} +(0.819729 + 0.394760i) q^{65} +(-0.329118 - 0.412701i) q^{66} +(-0.952608 - 1.19453i) q^{67} +(6.38802 - 3.07631i) q^{68} +(-0.476304 + 0.597266i) q^{69} +5.32624 q^{70} +(6.52927 - 8.18745i) q^{71} +(1.30266 - 5.70733i) q^{72} +(-3.05036 + 13.3645i) q^{73} +(1.81425 - 2.27500i) q^{74} +6.09017 q^{75} +(-4.89695 + 6.14058i) q^{76} +(2.78415 - 1.34077i) q^{77} +(0.0562200 + 0.0704977i) q^{78} +(3.79716 + 4.76149i) q^{79} +(-6.43823 - 3.10049i) q^{80} +(-1.27019 + 5.56509i) q^{81} +(-0.530037 - 2.32225i) q^{82} +(8.95948 - 4.31466i) q^{83} +(-2.01463 - 0.970194i) q^{84} +(-3.75805 - 16.4651i) q^{85} -4.47214 q^{86} +3.09017 q^{88} +(1.04767 + 4.59016i) q^{89} +(-5.61850 - 2.70573i) q^{90} +(-0.475589 + 0.229032i) q^{91} +(-0.445042 - 1.94986i) q^{92} +(-1.38766 + 6.07972i) q^{93} +(3.89781 + 1.87708i) q^{94} +(11.6644 + 14.6267i) q^{95} +(-2.16484 - 2.71463i) q^{96} +(3.20953 - 1.54563i) q^{97} +(0.770676 - 0.966397i) q^{98} -3.61803 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - q^{2} + q^{3} + q^{4} - q^{5} + 3 q^{6} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 12 q - q^{2} + q^{3} + q^{4} - q^{5} + 3 q^{6} + 3 q^{9} + 7 q^{10} - 5 q^{11} - 12 q^{12} - 4 q^{13} - 5 q^{14} - 7 q^{15} + 3 q^{16} + 66 q^{17} - q^{18} - 3 q^{19} + 8 q^{20} + 5 q^{21} - 5 q^{22} - 2 q^{23} - 5 q^{24} - 13 q^{25} - 7 q^{26} - 2 q^{27} + 30 q^{28} + 36 q^{30} - 9 q^{31} + 9 q^{32} + 5 q^{33} - 8 q^{34} + 15 q^{35} - 4 q^{36} - 4 q^{37} + 6 q^{38} + 7 q^{39} - 15 q^{40} - 6 q^{41} + 5 q^{42} - 10 q^{43} + 9 q^{45} + 36 q^{46} - 14 q^{47} - 9 q^{48} + 4 q^{49} + q^{50} + 8 q^{51} - 3 q^{52} + 4 q^{53} - 11 q^{54} + 5 q^{55} + 10 q^{56} + 36 q^{57} + 6 q^{59} + q^{60} + q^{61} + 8 q^{62} - 5 q^{63} - 4 q^{64} + 13 q^{65} + 10 q^{66} + 12 q^{67} + 3 q^{68} + 6 q^{69} - 30 q^{70} - 12 q^{71} + 5 q^{72} - 14 q^{73} - 17 q^{74} + 6 q^{75} + 9 q^{76} - 5 q^{77} + 11 q^{78} - q^{79} - 21 q^{80} + 2 q^{81} - 7 q^{82} + 2 q^{83} + 2 q^{85} - 30 q^{88} - 4 q^{89} - 8 q^{90} - 10 q^{91} - 4 q^{92} - 8 q^{93} - 7 q^{94} - 24 q^{95} - 2 q^{96} - 13 q^{97} + 2 q^{98} - 30 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/841\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{3}{7}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.137526 + 0.602539i 0.0972452 + 0.426059i 0.999992 0.00411419i \(-0.00130959\pi\)
−0.902746 + 0.430173i \(0.858452\pi\)
\(3\) −0.556829 0.268155i −0.321486 0.154819i 0.266180 0.963923i \(-0.414239\pi\)
−0.587665 + 0.809104i \(0.699953\pi\)
\(4\) 1.45780 0.702039i 0.728899 0.351019i
\(5\) −0.857618 3.75747i −0.383539 1.68039i −0.686294 0.727324i \(-0.740764\pi\)
0.302756 0.953068i \(-0.402093\pi\)
\(6\) 0.0849954 0.372389i 0.0346992 0.152027i
\(7\) 2.01463 + 0.970194i 0.761458 + 0.366699i 0.773969 0.633223i \(-0.218268\pi\)
−0.0125117 + 0.999922i \(0.503983\pi\)
\(8\) 1.39417 + 1.74823i 0.492912 + 0.618092i
\(9\) −1.63232 2.04686i −0.544106 0.682287i
\(10\) 2.14608 1.03350i 0.678649 0.326820i
\(11\) 0.861642 1.08046i 0.259795 0.325772i −0.634778 0.772694i \(-0.718908\pi\)
0.894573 + 0.446922i \(0.147480\pi\)
\(12\) −1.00000 −0.288675
\(13\) −0.147186 + 0.184565i −0.0408220 + 0.0511892i −0.801823 0.597561i \(-0.796137\pi\)
0.761001 + 0.648750i \(0.224708\pi\)
\(14\) −0.307516 + 1.34732i −0.0821872 + 0.360086i
\(15\) −0.530037 + 2.32225i −0.136855 + 0.599601i
\(16\) 1.15601 1.44960i 0.289003 0.362399i
\(17\) 4.38197 1.06278 0.531391 0.847126i \(-0.321669\pi\)
0.531391 + 0.847126i \(0.321669\pi\)
\(18\) 1.00883 1.26503i 0.237783 0.298170i
\(19\) −4.37339 + 2.10612i −1.00333 + 0.483176i −0.862066 0.506796i \(-0.830830\pi\)
−0.141260 + 0.989973i \(0.545115\pi\)
\(20\) −3.88812 4.87555i −0.869411 1.09021i
\(21\) −0.861642 1.08046i −0.188026 0.235777i
\(22\) 0.769519 + 0.370581i 0.164062 + 0.0790081i
\(23\) 0.275051 1.20508i 0.0573521 0.251276i −0.938123 0.346303i \(-0.887437\pi\)
0.995475 + 0.0950275i \(0.0302939\pi\)
\(24\) −0.307516 1.34732i −0.0627715 0.275020i
\(25\) −8.87824 + 4.27553i −1.77565 + 0.855107i
\(26\) −0.131450 0.0633028i −0.0257794 0.0124147i
\(27\) 0.772623 + 3.38508i 0.148691 + 0.651459i
\(28\) 3.61803 0.683744
\(29\) 0 0
\(30\) −1.47214 −0.268774
\(31\) −2.24527 9.83719i −0.403263 1.76681i −0.614038 0.789277i \(-0.710456\pi\)
0.210775 0.977535i \(-0.432401\pi\)
\(32\) 5.06167 + 2.43757i 0.894786 + 0.430906i
\(33\) −0.769519 + 0.370581i −0.133956 + 0.0645099i
\(34\) 0.602632 + 2.64030i 0.103351 + 0.452808i
\(35\) 1.91769 8.40196i 0.324149 1.42019i
\(36\) −3.81657 1.83796i −0.636094 0.306327i
\(37\) −2.93552 3.68102i −0.482596 0.605156i 0.479609 0.877482i \(-0.340779\pi\)
−0.962205 + 0.272326i \(0.912207\pi\)
\(38\) −1.87047 2.34549i −0.303430 0.380489i
\(39\) 0.131450 0.0633028i 0.0210488 0.0101366i
\(40\) 5.37326 6.73785i 0.849586 1.06535i
\(41\) −3.85410 −0.601910 −0.300955 0.953638i \(-0.597305\pi\)
−0.300955 + 0.953638i \(0.597305\pi\)
\(42\) 0.532524 0.667764i 0.0821702 0.103038i
\(43\) −1.61018 + 7.05464i −0.245550 + 1.07582i 0.690328 + 0.723497i \(0.257466\pi\)
−0.935877 + 0.352326i \(0.885391\pi\)
\(44\) 0.497572 2.18001i 0.0750118 0.328648i
\(45\) −6.29112 + 7.88881i −0.937825 + 1.17599i
\(46\) 0.763932 0.112636
\(47\) 4.36443 5.47282i 0.636617 0.798293i −0.353958 0.935261i \(-0.615164\pi\)
0.990575 + 0.136968i \(0.0437359\pi\)
\(48\) −1.03242 + 0.497187i −0.149017 + 0.0717627i
\(49\) −1.24698 1.56366i −0.178140 0.223380i
\(50\) −3.79716 4.76149i −0.536999 0.673376i
\(51\) −2.44001 1.17505i −0.341669 0.164539i
\(52\) −0.0849954 + 0.372389i −0.0117867 + 0.0516411i
\(53\) 0.445042 + 1.94986i 0.0611312 + 0.267833i 0.996252 0.0864950i \(-0.0275667\pi\)
−0.935121 + 0.354328i \(0.884710\pi\)
\(54\) −1.93339 + 0.931070i −0.263101 + 0.126703i
\(55\) −4.79877 2.31097i −0.647067 0.311611i
\(56\) 1.11260 + 4.87464i 0.148678 + 0.651401i
\(57\) 3.00000 0.397360
\(58\) 0 0
\(59\) 6.09017 0.792873 0.396436 0.918062i \(-0.370247\pi\)
0.396436 + 0.918062i \(0.370247\pi\)
\(60\) 0.857618 + 3.75747i 0.110718 + 0.485087i
\(61\) −0.556829 0.268155i −0.0712947 0.0343337i 0.397897 0.917430i \(-0.369740\pi\)
−0.469191 + 0.883097i \(0.655455\pi\)
\(62\) 5.61850 2.70573i 0.713551 0.343628i
\(63\) −1.30266 5.70733i −0.164120 0.719056i
\(64\) 0.0525301 0.230149i 0.00656626 0.0287687i
\(65\) 0.819729 + 0.394760i 0.101675 + 0.0489640i
\(66\) −0.329118 0.412701i −0.0405116 0.0507999i
\(67\) −0.952608 1.19453i −0.116380 0.145935i 0.720229 0.693736i \(-0.244037\pi\)
−0.836609 + 0.547801i \(0.815465\pi\)
\(68\) 6.38802 3.07631i 0.774662 0.373057i
\(69\) −0.476304 + 0.597266i −0.0573402 + 0.0719024i
\(70\) 5.32624 0.636607
\(71\) 6.52927 8.18745i 0.774882 0.971671i −0.225115 0.974332i \(-0.572276\pi\)
0.999996 + 0.00266125i \(0.000847104\pi\)
\(72\) 1.30266 5.70733i 0.153520 0.672615i
\(73\) −3.05036 + 13.3645i −0.357018 + 1.56420i 0.403561 + 0.914953i \(0.367772\pi\)
−0.760579 + 0.649245i \(0.775085\pi\)
\(74\) 1.81425 2.27500i 0.210902 0.264463i
\(75\) 6.09017 0.703232
\(76\) −4.89695 + 6.14058i −0.561719 + 0.704373i
\(77\) 2.78415 1.34077i 0.317283 0.152795i
\(78\) 0.0562200 + 0.0704977i 0.00636567 + 0.00798229i
\(79\) 3.79716 + 4.76149i 0.427214 + 0.535709i 0.948123 0.317903i \(-0.102979\pi\)
−0.520910 + 0.853612i \(0.674407\pi\)
\(80\) −6.43823 3.10049i −0.719816 0.346645i
\(81\) −1.27019 + 5.56509i −0.141133 + 0.618343i
\(82\) −0.530037 2.32225i −0.0585328 0.256449i
\(83\) 8.95948 4.31466i 0.983431 0.473595i 0.128147 0.991755i \(-0.459097\pi\)
0.855284 + 0.518160i \(0.173383\pi\)
\(84\) −2.01463 0.970194i −0.219814 0.105857i
\(85\) −3.75805 16.4651i −0.407618 1.78589i
\(86\) −4.47214 −0.482243
\(87\) 0 0
\(88\) 3.09017 0.329413
\(89\) 1.04767 + 4.59016i 0.111053 + 0.486556i 0.999614 + 0.0277963i \(0.00884897\pi\)
−0.888560 + 0.458760i \(0.848294\pi\)
\(90\) −5.61850 2.70573i −0.592242 0.285209i
\(91\) −0.475589 + 0.229032i −0.0498553 + 0.0240090i
\(92\) −0.445042 1.94986i −0.0463988 0.203287i
\(93\) −1.38766 + 6.07972i −0.143893 + 0.630437i
\(94\) 3.89781 + 1.87708i 0.402028 + 0.193606i
\(95\) 11.6644 + 14.6267i 1.19674 + 1.50066i
\(96\) −2.16484 2.71463i −0.220948 0.277060i
\(97\) 3.20953 1.54563i 0.325878 0.156935i −0.263790 0.964580i \(-0.584973\pi\)
0.589668 + 0.807645i \(0.299258\pi\)
\(98\) 0.770676 0.966397i 0.0778500 0.0976208i
\(99\) −3.61803 −0.363626
\(100\) −9.94109 + 12.4657i −0.994109 + 1.24657i
\(101\) −0.137526 + 0.602539i −0.0136843 + 0.0599548i −0.981309 0.192438i \(-0.938360\pi\)
0.967625 + 0.252393i \(0.0812176\pi\)
\(102\) 0.372447 1.63180i 0.0368778 0.161572i
\(103\) 5.72385 7.17748i 0.563988 0.707218i −0.415302 0.909684i \(-0.636324\pi\)
0.979289 + 0.202466i \(0.0648955\pi\)
\(104\) −0.527864 −0.0517613
\(105\) −3.32086 + 4.16422i −0.324082 + 0.406386i
\(106\) −1.11366 + 0.536310i −0.108168 + 0.0520910i
\(107\) 4.21724 + 5.28826i 0.407696 + 0.511235i 0.942712 0.333607i \(-0.108266\pi\)
−0.535016 + 0.844842i \(0.679694\pi\)
\(108\) 3.50279 + 4.39236i 0.337056 + 0.422655i
\(109\) 12.9577 + 6.24010i 1.24112 + 0.597693i 0.935118 0.354337i \(-0.115293\pi\)
0.306005 + 0.952030i \(0.401008\pi\)
\(110\) 0.732494 3.20926i 0.0698405 0.305991i
\(111\) 0.647498 + 2.83687i 0.0614578 + 0.269264i
\(112\) 3.73533 1.79884i 0.352955 0.169974i
\(113\) 7.15754 + 3.44689i 0.673325 + 0.324256i 0.739117 0.673577i \(-0.235243\pi\)
−0.0657920 + 0.997833i \(0.520957\pi\)
\(114\) 0.412577 + 1.80762i 0.0386413 + 0.169299i
\(115\) −4.76393 −0.444239
\(116\) 0 0
\(117\) 0.618034 0.0571373
\(118\) 0.837554 + 3.66956i 0.0771031 + 0.337811i
\(119\) 8.82803 + 4.25136i 0.809264 + 0.389721i
\(120\) −4.79877 + 2.31097i −0.438066 + 0.210962i
\(121\) 2.02275 + 8.86226i 0.183887 + 0.805660i
\(122\) 0.0849954 0.372389i 0.00769512 0.0337145i
\(123\) 2.14608 + 1.03350i 0.193505 + 0.0931872i
\(124\) −10.1792 12.7644i −0.914123 1.14627i
\(125\) 11.6644 + 14.6267i 1.04329 + 1.30825i
\(126\) 3.25974 1.56981i 0.290400 0.139849i
\(127\) −9.94109 + 12.4657i −0.882129 + 1.10615i 0.111534 + 0.993761i \(0.464423\pi\)
−0.993664 + 0.112394i \(0.964148\pi\)
\(128\) 11.3820 1.00603
\(129\) 2.78833 3.49646i 0.245499 0.307846i
\(130\) −0.125125 + 0.548208i −0.0109742 + 0.0480810i
\(131\) 3.18789 13.9670i 0.278527 1.22031i −0.621129 0.783708i \(-0.713326\pi\)
0.899656 0.436599i \(-0.143817\pi\)
\(132\) −0.861642 + 1.08046i −0.0749963 + 0.0940424i
\(133\) −10.8541 −0.941170
\(134\) 0.588744 0.738262i 0.0508597 0.0637761i
\(135\) 12.0567 5.80622i 1.03768 0.499720i
\(136\) 6.10919 + 7.66068i 0.523858 + 0.656898i
\(137\) −4.45539 5.58689i −0.380650 0.477320i 0.554189 0.832391i \(-0.313028\pi\)
−0.934840 + 0.355070i \(0.884457\pi\)
\(138\) −0.425380 0.204852i −0.0362107 0.0174382i
\(139\) −0.287452 + 1.25941i −0.0243813 + 0.106822i −0.985654 0.168776i \(-0.946019\pi\)
0.961273 + 0.275598i \(0.0888757\pi\)
\(140\) −3.10289 13.5947i −0.262242 1.14896i
\(141\) −3.89781 + 1.87708i −0.328254 + 0.158079i
\(142\) 5.83119 + 2.80815i 0.489343 + 0.235655i
\(143\) 0.0725948 + 0.318058i 0.00607068 + 0.0265974i
\(144\) −4.85410 −0.404508
\(145\) 0 0
\(146\) −8.47214 −0.701159
\(147\) 0.275051 + 1.20508i 0.0226858 + 0.0993931i
\(148\) −6.86361 3.30534i −0.564185 0.271697i
\(149\) −8.66555 + 4.17311i −0.709909 + 0.341874i −0.753747 0.657164i \(-0.771756\pi\)
0.0438379 + 0.999039i \(0.486041\pi\)
\(150\) 0.837554 + 3.66956i 0.0683860 + 0.299619i
\(151\) −0.594968 + 2.60673i −0.0484178 + 0.212132i −0.993350 0.115134i \(-0.963270\pi\)
0.944932 + 0.327266i \(0.106127\pi\)
\(152\) −9.77921 4.70942i −0.793199 0.381984i
\(153\) −7.15276 8.96928i −0.578266 0.725123i
\(154\) 1.19076 + 1.49317i 0.0959541 + 0.120323i
\(155\) −35.0374 + 16.8731i −2.81427 + 1.35528i
\(156\) 0.147186 0.184565i 0.0117843 0.0147771i
\(157\) −14.5623 −1.16220 −0.581099 0.813833i \(-0.697377\pi\)
−0.581099 + 0.813833i \(0.697377\pi\)
\(158\) −2.34677 + 2.94276i −0.186699 + 0.234113i
\(159\) 0.275051 1.20508i 0.0218130 0.0955688i
\(160\) 4.81813 21.1096i 0.380907 1.66886i
\(161\) 1.72328 2.16093i 0.135814 0.170305i
\(162\) −3.52786 −0.277175
\(163\) 3.76241 4.71792i 0.294695 0.369536i −0.612338 0.790596i \(-0.709771\pi\)
0.907032 + 0.421061i \(0.138342\pi\)
\(164\) −5.61850 + 2.70573i −0.438731 + 0.211282i
\(165\) 2.05240 + 2.57363i 0.159779 + 0.200357i
\(166\) 3.83190 + 4.80506i 0.297413 + 0.372945i
\(167\) −9.48528 4.56787i −0.733993 0.353472i 0.0292604 0.999572i \(-0.490685\pi\)
−0.763253 + 0.646100i \(0.776399\pi\)
\(168\) 0.687628 3.01269i 0.0530516 0.232434i
\(169\) 2.88037 + 12.6197i 0.221567 + 0.970749i
\(170\) 9.40404 4.52875i 0.721257 0.347339i
\(171\) 11.4497 + 5.51388i 0.875580 + 0.421657i
\(172\) 2.60532 + 11.4147i 0.198654 + 0.870359i
\(173\) 4.09017 0.310970 0.155485 0.987838i \(-0.450306\pi\)
0.155485 + 0.987838i \(0.450306\pi\)
\(174\) 0 0
\(175\) −22.0344 −1.66565
\(176\) −0.570167 2.49806i −0.0429779 0.188299i
\(177\) −3.39119 1.63311i −0.254897 0.122752i
\(178\) −2.62167 + 1.26253i −0.196502 + 0.0946305i
\(179\) 3.56033 + 15.5988i 0.266112 + 1.16591i 0.914495 + 0.404598i \(0.132589\pi\)
−0.648383 + 0.761315i \(0.724554\pi\)
\(180\) −3.63293 + 15.9169i −0.270783 + 1.18638i
\(181\) −5.35560 2.57912i −0.398079 0.191705i 0.224124 0.974561i \(-0.428048\pi\)
−0.622203 + 0.782856i \(0.713762\pi\)
\(182\) −0.203406 0.255063i −0.0150775 0.0189065i
\(183\) 0.238152 + 0.298633i 0.0176047 + 0.0220756i
\(184\) 2.49022 1.19923i 0.183581 0.0884081i
\(185\) −11.3138 + 14.1870i −0.831806 + 1.04305i
\(186\) −3.85410 −0.282596
\(187\) 3.77568 4.73456i 0.276105 0.346225i
\(188\) 2.52033 11.0423i 0.183814 0.805340i
\(189\) −1.72764 + 7.56927i −0.125667 + 0.550584i
\(190\) −7.20898 + 9.03977i −0.522994 + 0.655814i
\(191\) −17.0344 −1.23257 −0.616284 0.787524i \(-0.711363\pi\)
−0.616284 + 0.787524i \(0.711363\pi\)
\(192\) −0.0909659 + 0.114068i −0.00656490 + 0.00823213i
\(193\) 11.2370 5.41146i 0.808857 0.389525i 0.0167141 0.999860i \(-0.494679\pi\)
0.792143 + 0.610335i \(0.208965\pi\)
\(194\) 1.37269 + 1.72130i 0.0985535 + 0.123582i
\(195\) −0.350592 0.439628i −0.0251064 0.0314824i
\(196\) −2.91560 1.40408i −0.208257 0.100291i
\(197\) 1.40006 6.13405i 0.0997499 0.437033i −0.900249 0.435376i \(-0.856615\pi\)
0.999999 0.00165687i \(-0.000527397\pi\)
\(198\) −0.497572 2.18001i −0.0353609 0.154926i
\(199\) 5.27436 2.54000i 0.373890 0.180056i −0.237496 0.971389i \(-0.576327\pi\)
0.611386 + 0.791333i \(0.290612\pi\)
\(200\) −19.8523 9.56039i −1.40377 0.676021i
\(201\) 0.210120 + 0.920597i 0.0148207 + 0.0649339i
\(202\) −0.381966 −0.0268750
\(203\) 0 0
\(204\) −4.38197 −0.306799
\(205\) 3.30535 + 14.4817i 0.230856 + 1.01144i
\(206\) 5.11188 + 2.46175i 0.356162 + 0.171518i
\(207\) −2.91560 + 1.40408i −0.202648 + 0.0975901i
\(208\) 0.0973961 + 0.426720i 0.00675320 + 0.0295877i
\(209\) −1.49272 + 6.54002i −0.103253 + 0.452382i
\(210\) −2.96581 1.42826i −0.204660 0.0985591i
\(211\) 7.26520 + 9.11027i 0.500157 + 0.627177i 0.966265 0.257551i \(-0.0829155\pi\)
−0.466108 + 0.884728i \(0.654344\pi\)
\(212\) 2.01766 + 2.53006i 0.138573 + 0.173765i
\(213\) −5.83119 + 2.80815i −0.399547 + 0.192412i
\(214\) −2.60640 + 3.26832i −0.178170 + 0.223418i
\(215\) 27.8885 1.90198
\(216\) −4.84073 + 6.07009i −0.329370 + 0.413017i
\(217\) 5.02059 21.9966i 0.340820 1.49323i
\(218\) −1.97789 + 8.66569i −0.133959 + 0.586915i
\(219\) 5.28229 6.62378i 0.356944 0.447594i
\(220\) −8.61803 −0.581028
\(221\) −0.644964 + 0.808759i −0.0433850 + 0.0544030i
\(222\) −1.62028 + 0.780285i −0.108746 + 0.0523693i
\(223\) 1.66706 + 2.09043i 0.111635 + 0.139986i 0.834510 0.550993i \(-0.185751\pi\)
−0.722875 + 0.690979i \(0.757180\pi\)
\(224\) 7.83247 + 9.82161i 0.523329 + 0.656234i
\(225\) 23.2435 + 11.1935i 1.54957 + 0.746233i
\(226\) −1.09254 + 4.78673i −0.0726747 + 0.318409i
\(227\) 4.64814 + 20.3648i 0.308508 + 1.35166i 0.856919 + 0.515452i \(0.172376\pi\)
−0.548411 + 0.836209i \(0.684767\pi\)
\(228\) 4.37339 2.10612i 0.289635 0.139481i
\(229\) 2.06484 + 0.994373i 0.136448 + 0.0657100i 0.500862 0.865527i \(-0.333016\pi\)
−0.364414 + 0.931237i \(0.618731\pi\)
\(230\) −0.655162 2.87045i −0.0432001 0.189272i
\(231\) −1.90983 −0.125658
\(232\) 0 0
\(233\) 15.2361 0.998148 0.499074 0.866559i \(-0.333674\pi\)
0.499074 + 0.866559i \(0.333674\pi\)
\(234\) 0.0849954 + 0.372389i 0.00555633 + 0.0243439i
\(235\) −24.3070 11.7056i −1.58561 0.763591i
\(236\) 8.87824 4.27553i 0.577924 0.278314i
\(237\) −0.837554 3.66956i −0.0544050 0.238364i
\(238\) −1.34753 + 5.90390i −0.0873472 + 0.382693i
\(239\) 24.9953 + 12.0371i 1.61681 + 0.778614i 0.999964 0.00847060i \(-0.00269631\pi\)
0.616845 + 0.787085i \(0.288411\pi\)
\(240\) 2.75359 + 3.45289i 0.177743 + 0.222883i
\(241\) −2.90077 3.63745i −0.186855 0.234309i 0.679577 0.733605i \(-0.262164\pi\)
−0.866432 + 0.499296i \(0.833592\pi\)
\(242\) −5.06167 + 2.43757i −0.325377 + 0.156693i
\(243\) 8.69411 10.9021i 0.557728 0.699368i
\(244\) −1.00000 −0.0640184
\(245\) −4.80599 + 6.02652i −0.307043 + 0.385020i
\(246\) −0.327581 + 1.43523i −0.0208858 + 0.0915067i
\(247\) 0.254986 1.11717i 0.0162244 0.0710837i
\(248\) 14.0674 17.6399i 0.893279 1.12014i
\(249\) −6.14590 −0.389480
\(250\) −7.20898 + 9.03977i −0.455936 + 0.571726i
\(251\) −17.7063 + 8.52689i −1.11761 + 0.538213i −0.899153 0.437634i \(-0.855817\pi\)
−0.218457 + 0.975847i \(0.570102\pi\)
\(252\) −5.90578 7.40561i −0.372029 0.466510i
\(253\) −1.06505 1.33553i −0.0669590 0.0839639i
\(254\) −8.87824 4.27553i −0.557070 0.268271i
\(255\) −2.32261 + 10.1760i −0.145447 + 0.637246i
\(256\) 1.46025 + 6.39778i 0.0912657 + 0.399861i
\(257\) 20.8848 10.0576i 1.30276 0.627374i 0.351619 0.936143i \(-0.385631\pi\)
0.951137 + 0.308769i \(0.0999170\pi\)
\(258\) 2.49022 + 1.19923i 0.155034 + 0.0746605i
\(259\) −2.34267 10.2639i −0.145566 0.637768i
\(260\) 1.47214 0.0912980
\(261\) 0 0
\(262\) 8.85410 0.547008
\(263\) −3.71793 16.2893i −0.229257 1.00444i −0.950248 0.311496i \(-0.899170\pi\)
0.720990 0.692945i \(-0.243687\pi\)
\(264\) −1.72070 0.828644i −0.105902 0.0509995i
\(265\) 6.94485 3.34446i 0.426619 0.205449i
\(266\) −1.49272 6.54002i −0.0915243 0.400994i
\(267\) 0.647498 2.83687i 0.0396262 0.173614i
\(268\) −2.22732 1.07262i −0.136055 0.0655207i
\(269\) 3.74094 + 4.69099i 0.228089 + 0.286015i 0.882686 0.469964i \(-0.155733\pi\)
−0.654597 + 0.755978i \(0.727162\pi\)
\(270\) 5.15658 + 6.46614i 0.313819 + 0.393517i
\(271\) 9.17217 4.41708i 0.557170 0.268319i −0.134037 0.990976i \(-0.542794\pi\)
0.691206 + 0.722658i \(0.257080\pi\)
\(272\) 5.06561 6.35208i 0.307148 0.385151i
\(273\) 0.326238 0.0197448
\(274\) 2.75359 3.45289i 0.166350 0.208597i
\(275\) −3.03030 + 13.2766i −0.182734 + 0.800609i
\(276\) −0.275051 + 1.20508i −0.0165561 + 0.0725371i
\(277\) −13.3314 + 16.7171i −0.801008 + 1.00443i 0.198695 + 0.980061i \(0.436330\pi\)
−0.999703 + 0.0243714i \(0.992242\pi\)
\(278\) −0.798374 −0.0478833
\(279\) −16.4704 + 20.6532i −0.986055 + 1.23647i
\(280\) 17.3621 8.36116i 1.03759 0.499675i
\(281\) 14.4180 + 18.0795i 0.860103 + 1.07854i 0.996135 + 0.0878311i \(0.0279936\pi\)
−0.136032 + 0.990704i \(0.543435\pi\)
\(282\) −1.66706 2.09043i −0.0992722 0.124483i
\(283\) 4.71753 + 2.27184i 0.280428 + 0.135047i 0.568811 0.822468i \(-0.307403\pi\)
−0.288383 + 0.957515i \(0.593118\pi\)
\(284\) 3.77046 16.5194i 0.223735 0.980249i
\(285\) −2.57286 11.2724i −0.152403 0.667720i
\(286\) −0.181659 + 0.0874823i −0.0107417 + 0.00517294i
\(287\) −7.76458 3.73922i −0.458329 0.220719i
\(288\) −3.27288 14.3394i −0.192856 0.844960i
\(289\) 2.20163 0.129507
\(290\) 0 0
\(291\) −2.20163 −0.129062
\(292\) 4.93559 + 21.6242i 0.288834 + 1.26546i
\(293\) 7.68334 + 3.70010i 0.448866 + 0.216162i 0.644639 0.764487i \(-0.277008\pi\)
−0.195774 + 0.980649i \(0.562722\pi\)
\(294\) −0.688279 + 0.331458i −0.0401412 + 0.0193310i
\(295\) −5.22304 22.8836i −0.304097 1.33234i
\(296\) 2.34267 10.2639i 0.136165 0.596578i
\(297\) 4.32319 + 2.08194i 0.250857 + 0.120806i
\(298\) −3.70619 4.64742i −0.214694 0.269218i
\(299\) 0.181932 + 0.228135i 0.0105214 + 0.0131934i
\(300\) 8.87824 4.27553i 0.512585 0.246848i
\(301\) −10.0883 + 12.6503i −0.581479 + 0.729151i
\(302\) −1.65248 −0.0950893
\(303\) 0.238152 0.298633i 0.0136815 0.0171560i
\(304\) −2.00269 + 8.77435i −0.114862 + 0.503244i
\(305\) −0.530037 + 2.32225i −0.0303498 + 0.132971i
\(306\) 4.42065 5.54332i 0.252712 0.316890i
\(307\) 19.1803 1.09468 0.547340 0.836910i \(-0.315640\pi\)
0.547340 + 0.836910i \(0.315640\pi\)
\(308\) 3.11745 3.90916i 0.177633 0.222745i
\(309\) −5.11188 + 2.46175i −0.290805 + 0.140044i
\(310\) −14.9852 18.7909i −0.851104 1.06725i
\(311\) −1.30320 1.63416i −0.0738977 0.0926647i 0.743509 0.668726i \(-0.233160\pi\)
−0.817406 + 0.576062i \(0.804589\pi\)
\(312\) 0.293930 + 0.141549i 0.0166405 + 0.00801365i
\(313\) 2.87271 12.5862i 0.162375 0.711411i −0.826534 0.562887i \(-0.809691\pi\)
0.988909 0.148524i \(-0.0474523\pi\)
\(314\) −2.00269 8.77435i −0.113018 0.495165i
\(315\) −20.3279 + 9.78942i −1.14535 + 0.551571i
\(316\) 8.87824 + 4.27553i 0.499440 + 0.240518i
\(317\) 6.16566 + 27.0135i 0.346298 + 1.51723i 0.785512 + 0.618847i \(0.212400\pi\)
−0.439214 + 0.898383i \(0.644743\pi\)
\(318\) 0.763932 0.0428392
\(319\) 0 0
\(320\) −0.909830 −0.0508610
\(321\) −0.930213 4.07553i −0.0519194 0.227474i
\(322\) 1.53904 + 0.741162i 0.0857673 + 0.0413033i
\(323\) −19.1641 + 9.22893i −1.06632 + 0.513511i
\(324\) 2.05522 + 9.00450i 0.114179 + 0.500250i
\(325\) 0.517637 2.26791i 0.0287133 0.125801i
\(326\) 3.36015 + 1.61817i 0.186102 + 0.0896219i
\(327\) −5.54192 6.94934i −0.306469 0.384300i
\(328\) −5.37326 6.73785i −0.296688 0.372036i
\(329\) 14.1024 6.79135i 0.777490 0.374420i
\(330\) −1.26845 + 1.59059i −0.0698261 + 0.0875591i
\(331\) −21.1803 −1.16418 −0.582088 0.813126i \(-0.697764\pi\)
−0.582088 + 0.813126i \(0.697764\pi\)
\(332\) 10.0321 12.5798i 0.550581 0.690406i
\(333\) −2.74285 + 12.0172i −0.150307 + 0.658538i
\(334\) 1.44785 6.34344i 0.0792228 0.347098i
\(335\) −3.67145 + 4.60385i −0.200593 + 0.251535i
\(336\) −2.56231 −0.139785
\(337\) 21.2416 26.6361i 1.15710 1.45096i 0.287111 0.957897i \(-0.407305\pi\)
0.869992 0.493065i \(-0.164124\pi\)
\(338\) −7.20775 + 3.47107i −0.392050 + 0.188801i
\(339\) −3.06123 3.83866i −0.166263 0.208487i
\(340\) −17.0376 21.3645i −0.923995 1.15865i
\(341\) −12.5634 6.05019i −0.680344 0.327636i
\(342\) −1.74770 + 7.65718i −0.0945049 + 0.414053i
\(343\) −4.47815 19.6200i −0.241797 1.05938i
\(344\) −14.5780 + 7.02039i −0.785992 + 0.378514i
\(345\) 2.65270 + 1.27747i 0.142816 + 0.0687768i
\(346\) 0.562503 + 2.46449i 0.0302403 + 0.132492i
\(347\) −32.1246 −1.72454 −0.862270 0.506449i \(-0.830958\pi\)
−0.862270 + 0.506449i \(0.830958\pi\)
\(348\) 0 0
\(349\) 4.52786 0.242371 0.121186 0.992630i \(-0.461330\pi\)
0.121186 + 0.992630i \(0.461330\pi\)
\(350\) −3.03030 13.2766i −0.161976 0.709664i
\(351\) −0.738488 0.355637i −0.0394176 0.0189825i
\(352\) 6.99506 3.36864i 0.372838 0.179549i
\(353\) 4.25563 + 18.6451i 0.226504 + 0.992379i 0.952466 + 0.304645i \(0.0985377\pi\)
−0.725962 + 0.687735i \(0.758605\pi\)
\(354\) 0.517637 2.26791i 0.0275121 0.120538i
\(355\) −36.3637 17.5118i −1.92999 0.929432i
\(356\) 4.74977 + 5.95602i 0.251737 + 0.315668i
\(357\) −3.77568 4.73456i −0.199830 0.250579i
\(358\) −8.90927 + 4.29048i −0.470870 + 0.226759i
\(359\) 14.8166 18.5794i 0.781989 0.980583i −0.218001 0.975949i \(-0.569953\pi\)
0.999989 0.00463409i \(-0.00147508\pi\)
\(360\) −22.5623 −1.18914
\(361\) 2.84455 3.56695i 0.149713 0.187734i
\(362\) 0.817489 3.58165i 0.0429663 0.188248i
\(363\) 1.25013 5.47718i 0.0656148 0.287477i
\(364\) −0.532524 + 0.667764i −0.0279118 + 0.0350003i
\(365\) 52.8328 2.76540
\(366\) −0.147186 + 0.184565i −0.00769353 + 0.00964739i
\(367\) 24.5699 11.8322i 1.28254 0.617637i 0.336496 0.941685i \(-0.390758\pi\)
0.946041 + 0.324047i \(0.105044\pi\)
\(368\) −1.42891 1.79180i −0.0744872 0.0934039i
\(369\) 6.29112 + 7.88881i 0.327503 + 0.410675i
\(370\) −10.1042 4.86591i −0.525291 0.252967i
\(371\) −0.995144 + 4.36001i −0.0516653 + 0.226360i
\(372\) 2.24527 + 9.83719i 0.116412 + 0.510034i
\(373\) −18.5762 + 8.94583i −0.961840 + 0.463198i −0.847822 0.530281i \(-0.822086\pi\)
−0.114018 + 0.993479i \(0.536372\pi\)
\(374\) 3.37201 + 1.62387i 0.174362 + 0.0839685i
\(375\) −2.57286 11.2724i −0.132862 0.582105i
\(376\) 15.6525 0.807215
\(377\) 0 0
\(378\) −4.79837 −0.246802
\(379\) −5.40543 23.6828i −0.277658 1.21650i −0.900745 0.434348i \(-0.856979\pi\)
0.623087 0.782153i \(-0.285878\pi\)
\(380\) 27.2728 + 13.1339i 1.39906 + 0.673754i
\(381\) 8.87824 4.27553i 0.454846 0.219042i
\(382\) −2.34267 10.2639i −0.119861 0.525147i
\(383\) 6.42064 28.1307i 0.328079 1.43741i −0.494707 0.869060i \(-0.664725\pi\)
0.822787 0.568350i \(-0.192418\pi\)
\(384\) −6.33781 3.05213i −0.323425 0.155753i
\(385\) −7.42566 9.31148i −0.378447 0.474557i
\(386\) 4.80599 + 6.02652i 0.244618 + 0.306742i
\(387\) 17.0682 8.21961i 0.867625 0.417826i
\(388\) 3.59375 4.50642i 0.182445 0.228779i
\(389\) 19.1246 0.969656 0.484828 0.874609i \(-0.338882\pi\)
0.484828 + 0.874609i \(0.338882\pi\)
\(390\) 0.216678 0.271705i 0.0109719 0.0137583i
\(391\) 1.20526 5.28061i 0.0609528 0.267052i
\(392\) 0.995144 4.36001i 0.0502624 0.220214i
\(393\) −5.52044 + 6.92242i −0.278469 + 0.349190i
\(394\) 3.88854 0.195902
\(395\) 14.6346 18.3513i 0.736349 0.923352i
\(396\) −5.27436 + 2.54000i −0.265047 + 0.127640i
\(397\) −8.76360 10.9892i −0.439833 0.551533i 0.511666 0.859184i \(-0.329028\pi\)
−0.951499 + 0.307651i \(0.900457\pi\)
\(398\) 2.25581 + 2.82869i 0.113073 + 0.141790i
\(399\) 6.04388 + 2.91058i 0.302573 + 0.145711i
\(400\) −4.06557 + 17.8124i −0.203279 + 0.890622i
\(401\) −5.57835 24.4404i −0.278570 1.22049i −0.899603 0.436709i \(-0.856144\pi\)
0.621033 0.783784i \(-0.286713\pi\)
\(402\) −0.525798 + 0.253211i −0.0262244 + 0.0126290i
\(403\) 2.14608 + 1.03350i 0.106904 + 0.0514821i
\(404\) 0.222521 + 0.974928i 0.0110708 + 0.0485045i
\(405\) 22.0000 1.09319
\(406\) 0 0
\(407\) −6.50658 −0.322519
\(408\) −1.34753 5.90390i −0.0667125 0.292287i
\(409\) 24.7013 + 11.8955i 1.22140 + 0.588196i 0.929702 0.368313i \(-0.120065\pi\)
0.291700 + 0.956510i \(0.405779\pi\)
\(410\) −8.27120 + 3.98320i −0.408485 + 0.196716i
\(411\) 0.982743 + 4.30568i 0.0484751 + 0.212383i
\(412\) 3.30535 14.4817i 0.162843 0.713461i
\(413\) 12.2694 + 5.90864i 0.603739 + 0.290745i
\(414\) −1.24698 1.56366i −0.0612857 0.0768498i
\(415\) −23.8960 29.9647i −1.17301 1.47091i
\(416\) −1.19490 + 0.575433i −0.0585847 + 0.0282129i
\(417\) 0.497778 0.624194i 0.0243763 0.0305669i
\(418\) −4.14590 −0.202783
\(419\) −10.9499 + 13.7308i −0.534939 + 0.670792i −0.973706 0.227809i \(-0.926844\pi\)
0.438767 + 0.898601i \(0.355415\pi\)
\(420\) −1.91769 + 8.40196i −0.0935738 + 0.409974i
\(421\) −6.90581 + 30.2563i −0.336569 + 1.47460i 0.469579 + 0.882890i \(0.344406\pi\)
−0.806148 + 0.591714i \(0.798452\pi\)
\(422\) −4.49014 + 5.63046i −0.218577 + 0.274086i
\(423\) −18.3262 −0.891052
\(424\) −2.78833 + 3.49646i −0.135413 + 0.169803i
\(425\) −38.9041 + 18.7352i −1.88713 + 0.908793i
\(426\) −2.49396 3.12733i −0.120833 0.151519i
\(427\) −0.861642 1.08046i −0.0416978 0.0522873i
\(428\) 9.86045 + 4.74854i 0.476623 + 0.229529i
\(429\) 0.0448660 0.196571i 0.00216615 0.00949053i
\(430\) 3.83539 + 16.8039i 0.184959 + 0.810357i
\(431\) −13.1512 + 6.33329i −0.633472 + 0.305064i −0.722924 0.690927i \(-0.757203\pi\)
0.0894526 + 0.995991i \(0.471488\pi\)
\(432\) 5.80016 + 2.79321i 0.279060 + 0.134388i
\(433\) 2.31020 + 10.1217i 0.111021 + 0.486416i 0.999616 + 0.0277224i \(0.00882544\pi\)
−0.888594 + 0.458694i \(0.848317\pi\)
\(434\) 13.9443 0.669346
\(435\) 0 0
\(436\) 23.2705 1.11446
\(437\) 1.33513 + 5.84957i 0.0638677 + 0.279823i
\(438\) 4.71753 + 2.27184i 0.225413 + 0.108553i
\(439\) 18.8701 9.08738i 0.900622 0.433717i 0.0745088 0.997220i \(-0.476261\pi\)
0.826114 + 0.563503i \(0.190547\pi\)
\(440\) −2.65019 11.6112i −0.126343 0.553543i
\(441\) −1.16513 + 5.10479i −0.0554826 + 0.243085i
\(442\) −0.576008 0.277391i −0.0273979 0.0131941i
\(443\) 1.19076 + 1.49317i 0.0565747 + 0.0709424i 0.809314 0.587377i \(-0.199839\pi\)
−0.752739 + 0.658319i \(0.771268\pi\)
\(444\) 2.93552 + 3.68102i 0.139313 + 0.174694i
\(445\) 16.3489 7.87321i 0.775012 0.373226i
\(446\) −1.03030 + 1.29196i −0.0487862 + 0.0611760i
\(447\) 5.94427 0.281154
\(448\) 0.329118 0.412701i 0.0155494 0.0194983i
\(449\) −5.81327 + 25.4696i −0.274345 + 1.20199i 0.630481 + 0.776205i \(0.282858\pi\)
−0.904826 + 0.425781i \(0.859999\pi\)
\(450\) −3.54793 + 15.5445i −0.167251 + 0.732775i
\(451\) −3.32086 + 4.16422i −0.156373 + 0.196085i
\(452\) 12.8541 0.604606
\(453\) 1.03030 1.29196i 0.0484078 0.0607015i
\(454\) −11.6314 + 5.60137i −0.545887 + 0.262885i
\(455\) 1.26845 + 1.59059i 0.0594660 + 0.0745680i
\(456\) 4.18250 + 5.24469i 0.195863 + 0.245605i
\(457\) −16.8555 8.11719i −0.788467 0.379706i −0.00409151 0.999992i \(-0.501302\pi\)
−0.784376 + 0.620286i \(0.787017\pi\)
\(458\) −0.315180 + 1.38090i −0.0147274 + 0.0645250i
\(459\) 3.38561 + 14.8333i 0.158027 + 0.692360i
\(460\) −6.94485 + 3.34446i −0.323805 + 0.155936i
\(461\) −35.1186 16.9122i −1.63564 0.787681i −0.999875 0.0157954i \(-0.994972\pi\)
−0.635761 0.771886i \(-0.719314\pi\)
\(462\) −0.262650 1.15075i −0.0122196 0.0535376i
\(463\) 10.7082 0.497652 0.248826 0.968548i \(-0.419955\pi\)
0.248826 + 0.968548i \(0.419955\pi\)
\(464\) 0 0
\(465\) 24.0344 1.11457
\(466\) 2.09535 + 9.18032i 0.0970651 + 0.425270i
\(467\) −16.1672 7.78573i −0.748130 0.360281i 0.0206558 0.999787i \(-0.493425\pi\)
−0.768786 + 0.639506i \(0.779139\pi\)
\(468\) 0.900969 0.433884i 0.0416473 0.0200563i
\(469\) −0.760222 3.33075i −0.0351038 0.153800i
\(470\) 3.71026 16.2557i 0.171142 0.749820i
\(471\) 8.10872 + 3.90495i 0.373630 + 0.179931i
\(472\) 8.49071 + 10.6470i 0.390816 + 0.490068i
\(473\) 6.23490 + 7.81831i 0.286681 + 0.359486i
\(474\) 2.09587 1.00932i 0.0962664 0.0463595i
\(475\) 29.8233 37.3972i 1.36839 1.71590i
\(476\) 15.8541 0.726672
\(477\) 3.26463 4.09372i 0.149477 0.187439i
\(478\) −3.81532 + 16.7160i −0.174509 + 0.764573i
\(479\) −2.48786 + 10.9000i −0.113673 + 0.498035i 0.885753 + 0.464157i \(0.153643\pi\)
−0.999426 + 0.0338776i \(0.989214\pi\)
\(480\) −8.34352 + 10.4624i −0.380828 + 0.477543i
\(481\) 1.11146 0.0506780
\(482\) 1.79278 2.24807i 0.0816587 0.102397i
\(483\) −1.53904 + 0.741162i −0.0700287 + 0.0337240i
\(484\) 9.17042 + 11.4993i 0.416837 + 0.522697i
\(485\) −8.56020 10.7341i −0.388699 0.487413i
\(486\) 7.76458 + 3.73922i 0.352209 + 0.169615i
\(487\) −9.47100 + 41.4952i −0.429172 + 1.88033i 0.0434408 + 0.999056i \(0.486168\pi\)
−0.472613 + 0.881270i \(0.656689\pi\)
\(488\) −0.307516 1.34732i −0.0139206 0.0609902i
\(489\) −3.36015 + 1.61817i −0.151951 + 0.0731760i
\(490\) −4.29215 2.06699i −0.193900 0.0933772i
\(491\) −3.36554 14.7454i −0.151885 0.665451i −0.992337 0.123564i \(-0.960567\pi\)
0.840452 0.541886i \(-0.182290\pi\)
\(492\) 3.85410 0.173756
\(493\) 0 0
\(494\) 0.708204 0.0318636
\(495\) 3.10289 + 13.5947i 0.139465 + 0.611035i
\(496\) −16.8555 8.11719i −0.756835 0.364472i
\(497\) 21.0975 10.1600i 0.946350 0.455738i
\(498\) −0.845218 3.70314i −0.0378751 0.165942i
\(499\) −5.49336 + 24.0680i −0.245916 + 1.07743i 0.689612 + 0.724179i \(0.257781\pi\)
−0.935529 + 0.353251i \(0.885076\pi\)
\(500\) 27.2728 + 13.1339i 1.21968 + 0.587365i
\(501\) 4.05678 + 5.08705i 0.181244 + 0.227273i
\(502\) −7.57284 9.49605i −0.337993 0.423829i
\(503\) 12.8573 6.19174i 0.573278 0.276076i −0.124701 0.992194i \(-0.539797\pi\)
0.697979 + 0.716118i \(0.254083\pi\)
\(504\) 8.16159 10.2343i 0.363546 0.455872i
\(505\) 2.38197 0.105996
\(506\) 0.658236 0.825401i 0.0292621 0.0366936i
\(507\) 1.78017 7.79942i 0.0790600 0.346385i
\(508\) −5.74068 + 25.1516i −0.254701 + 1.11592i
\(509\) 19.6788 24.6764i 0.872246 1.09376i −0.122609 0.992455i \(-0.539126\pi\)
0.994855 0.101307i \(-0.0323025\pi\)
\(510\) −6.45085 −0.285648
\(511\) −19.1115 + 23.9651i −0.845443 + 1.06015i
\(512\) 16.8555 8.11719i 0.744915 0.358732i
\(513\) −10.5084 13.1771i −0.463955 0.581782i
\(514\) 8.93226 + 11.2007i 0.393985 + 0.494042i
\(515\) −31.8780 15.3517i −1.40471 0.676475i
\(516\) 1.61018 7.05464i 0.0708841 0.310563i
\(517\) −2.15261 9.43122i −0.0946719 0.414785i
\(518\) 5.86222 2.82310i 0.257571 0.124040i
\(519\) −2.27753 1.09680i −0.0999723 0.0481441i
\(520\) 0.452706 + 1.98343i 0.0198525 + 0.0869793i
\(521\) 4.09017 0.179194 0.0895968 0.995978i \(-0.471442\pi\)
0.0895968 + 0.995978i \(0.471442\pi\)
\(522\) 0 0
\(523\) −20.3820 −0.891241 −0.445621 0.895222i \(-0.647017\pi\)
−0.445621 + 0.895222i \(0.647017\pi\)
\(524\) −5.15811 22.5992i −0.225333 0.987249i
\(525\) 12.2694 + 5.90864i 0.535482 + 0.257874i
\(526\) 9.30362 4.48039i 0.405657 0.195354i
\(527\) −9.83871 43.1062i −0.428581 1.87774i
\(528\) −0.352382 + 1.54389i −0.0153355 + 0.0671891i
\(529\) 19.3457 + 9.31641i 0.841119 + 0.405061i
\(530\) 2.97026 + 3.72459i 0.129020 + 0.161786i
\(531\) −9.94109 12.4657i −0.431407 0.540967i
\(532\) −15.8231 + 7.62000i −0.686018 + 0.330369i
\(533\) 0.567270 0.711334i 0.0245712 0.0308113i
\(534\) 1.79837 0.0778232
\(535\) 16.2537 20.3815i 0.702708 0.881168i
\(536\) 0.760222 3.33075i 0.0328366 0.143867i
\(537\) 2.20041 9.64062i 0.0949546 0.416023i
\(538\) −2.31203 + 2.89919i −0.0996786 + 0.124993i
\(539\) −2.76393 −0.119051
\(540\) 13.5001 16.9286i 0.580952 0.728490i
\(541\) −13.1512 + 6.33329i −0.565415 + 0.272289i −0.694678 0.719321i \(-0.744453\pi\)
0.129263 + 0.991610i \(0.458739\pi\)
\(542\) 3.92287 + 4.91912i 0.168502 + 0.211294i
\(543\) 2.29055 + 2.87226i 0.0982970 + 0.123261i
\(544\) 22.1801 + 10.6814i 0.950963 + 0.457960i
\(545\) 12.3342 54.0398i 0.528341 2.31481i
\(546\) 0.0448660 + 0.196571i 0.00192009 + 0.00841246i
\(547\) −6.65092 + 3.20292i −0.284373 + 0.136947i −0.570633 0.821205i \(-0.693302\pi\)
0.286260 + 0.958152i \(0.407588\pi\)
\(548\) −10.4173 5.01670i −0.445004 0.214303i
\(549\) 0.360046 + 1.57747i 0.0153664 + 0.0673246i
\(550\) −8.41641 −0.358877
\(551\) 0 0
\(552\) −1.70820 −0.0727060
\(553\) 3.03030 + 13.2766i 0.128861 + 0.564579i
\(554\) −11.9061 5.73368i −0.505842 0.243601i
\(555\) 10.1042 4.86591i 0.428898 0.206546i
\(556\) 0.465107 + 2.03777i 0.0197249 + 0.0864205i
\(557\) 1.22533 5.36852i 0.0519188 0.227471i −0.942312 0.334737i \(-0.891352\pi\)
0.994230 + 0.107266i \(0.0342096\pi\)
\(558\) −14.7094 7.08369i −0.622700 0.299876i
\(559\) −1.06505 1.33553i −0.0450467 0.0564868i
\(560\) −9.96257 12.4927i −0.420995 0.527911i
\(561\) −3.37201 + 1.62387i −0.142366 + 0.0685600i
\(562\) −8.91079 + 11.1738i −0.375879 + 0.471337i
\(563\) −28.3951 −1.19671 −0.598356 0.801230i \(-0.704179\pi\)
−0.598356 + 0.801230i \(0.704179\pi\)
\(564\) −4.36443 + 5.47282i −0.183776 + 0.230447i
\(565\) 6.81315 29.8504i 0.286632 1.25581i
\(566\) −0.720093 + 3.15493i −0.0302678 + 0.132612i
\(567\) −7.95818 + 9.97924i −0.334212 + 0.419089i
\(568\) 23.4164 0.982531
\(569\) 1.21223 1.52009i 0.0508195 0.0637256i −0.755772 0.654835i \(-0.772738\pi\)
0.806592 + 0.591109i \(0.201310\pi\)
\(570\) 6.43823 3.10049i 0.269668 0.129865i
\(571\) −21.5145 26.9783i −0.900354 1.12901i −0.991098 0.133134i \(-0.957496\pi\)
0.0907443 0.995874i \(-0.471075\pi\)
\(572\) 0.329118 + 0.412701i 0.0137611 + 0.0172559i
\(573\) 9.48528 + 4.56787i 0.396253 + 0.190825i
\(574\) 1.18520 5.19270i 0.0494693 0.216739i
\(575\) 2.71038 + 11.8750i 0.113031 + 0.495220i
\(576\) −0.556829 + 0.268155i −0.0232012 + 0.0111731i
\(577\) −2.49022 1.19923i −0.103669 0.0499244i 0.381331 0.924439i \(-0.375466\pi\)
−0.485000 + 0.874514i \(0.661180\pi\)
\(578\) 0.302780 + 1.32656i 0.0125940 + 0.0551778i
\(579\) −7.70820 −0.320342
\(580\) 0 0
\(581\) 22.2361 0.922508
\(582\) −0.302780 1.32656i −0.0125506 0.0549879i
\(583\) 2.49022 + 1.19923i 0.103134 + 0.0496668i
\(584\) −27.6169 + 13.2996i −1.14280 + 0.550342i
\(585\) −0.530037 2.32225i −0.0219143 0.0960130i
\(586\) −1.17280 + 5.13837i −0.0484479 + 0.212264i
\(587\) −42.0014 20.2268i −1.73358 0.834850i −0.985162 0.171626i \(-0.945098\pi\)
−0.748421 0.663224i \(-0.769188\pi\)
\(588\) 1.24698 + 1.56366i 0.0514246 + 0.0644844i
\(589\) 30.5377 + 38.2931i 1.25829 + 1.57784i
\(590\) 13.0700 6.29417i 0.538082 0.259127i
\(591\) −2.42447 + 3.04019i −0.0997293 + 0.125057i
\(592\) −8.72949 −0.358780
\(593\) −9.00176 + 11.2878i −0.369658 + 0.463536i −0.931518 0.363696i \(-0.881515\pi\)
0.561860 + 0.827232i \(0.310086\pi\)
\(594\) −0.659899 + 2.89121i −0.0270760 + 0.118628i
\(595\) 8.40327 36.8171i 0.344500 1.50935i
\(596\) −9.70294 + 12.1671i −0.397448 + 0.498384i
\(597\) −3.61803 −0.148076
\(598\) −0.112440 + 0.140995i −0.00459802 + 0.00576573i
\(599\) 11.7747 5.67038i 0.481099 0.231685i −0.177584 0.984106i \(-0.556828\pi\)
0.658683 + 0.752420i \(0.271114\pi\)
\(600\) 8.49071 + 10.6470i 0.346632 + 0.434662i
\(601\) −18.1804 22.7975i −0.741593 0.929928i 0.257749 0.966212i \(-0.417019\pi\)
−0.999342 + 0.0362840i \(0.988448\pi\)
\(602\) −9.00969 4.33884i −0.367207 0.176838i
\(603\) −0.890084 + 3.89971i −0.0362470 + 0.158809i
\(604\) 0.962679 + 4.21777i 0.0391708 + 0.171619i
\(605\) 31.5649 15.2009i 1.28330 0.618003i
\(606\) 0.212690 + 0.102426i 0.00863994 + 0.00416077i
\(607\) 2.44299 + 10.7035i 0.0991581 + 0.434440i 1.00000 0.000292533i \(9.31161e-5\pi\)
−0.900842 + 0.434147i \(0.857050\pi\)
\(608\) −27.2705 −1.10597
\(609\) 0 0
\(610\) −1.47214 −0.0596050
\(611\) 0.367710 + 1.61104i 0.0148760 + 0.0651759i
\(612\) −16.7241 8.05388i −0.676030 0.325559i
\(613\) −24.8136 + 11.9496i −1.00221 + 0.482640i −0.861689 0.507438i \(-0.830593\pi\)
−0.140523 + 0.990077i \(0.544879\pi\)
\(614\) 2.63779 + 11.5569i 0.106452 + 0.466398i
\(615\) 2.04282 8.95017i 0.0823744 0.360906i
\(616\) 6.22554 + 2.99806i 0.250834 + 0.120795i
\(617\) 8.84130 + 11.0866i 0.355937 + 0.446331i 0.927273 0.374385i \(-0.122146\pi\)
−0.571336 + 0.820716i \(0.693575\pi\)
\(618\) −2.18632 2.74155i −0.0879465 0.110281i
\(619\) 6.35699 3.06137i 0.255509 0.123047i −0.301745 0.953389i \(-0.597569\pi\)
0.557254 + 0.830342i \(0.311855\pi\)
\(620\) −39.2318 + 49.1952i −1.57559 + 1.97573i
\(621\) 4.29180 0.172224
\(622\) 0.805422 1.00997i 0.0322945 0.0404960i
\(623\) −2.34267 + 10.2639i −0.0938571 + 0.411215i
\(624\) 0.0601941 0.263728i 0.00240969 0.0105576i
\(625\) 14.2360 17.8514i 0.569441 0.714057i
\(626\) 7.97871 0.318894
\(627\) 2.58493 3.24139i 0.103232 0.129449i
\(628\) −21.2289 + 10.2233i −0.847125 + 0.407954i
\(629\) −12.8633 16.1301i −0.512895 0.643150i
\(630\) −8.69411 10.9021i −0.346382 0.434349i
\(631\) 25.4206 + 12.2419i 1.01198 + 0.487344i 0.864987 0.501794i \(-0.167326\pi\)
0.146992 + 0.989138i \(0.453041\pi\)
\(632\) −3.03030 + 13.2766i −0.120539 + 0.528115i
\(633\) −1.60251 7.02107i −0.0636942 0.279062i
\(634\) −15.4287 + 7.43009i −0.612754 + 0.295087i
\(635\) 55.3653 + 26.6625i 2.19711 + 1.05807i
\(636\) −0.445042 1.94986i −0.0176471 0.0773168i
\(637\) 0.472136 0.0187067
\(638\) 0 0
\(639\) −27.4164 −1.08458
\(640\) −9.76138 42.7674i −0.385853 1.69053i
\(641\) 9.96087 + 4.79690i 0.393431 + 0.189466i 0.620131 0.784498i \(-0.287079\pi\)
−0.226700 + 0.973965i \(0.572794\pi\)
\(642\) 2.32774 1.12098i 0.0918684 0.0442415i
\(643\) 8.32593 + 36.4783i 0.328343 + 1.43856i 0.822288 + 0.569071i \(0.192697\pi\)
−0.493946 + 0.869493i \(0.664446\pi\)
\(644\) 0.995144 4.36001i 0.0392142 0.171808i
\(645\) −15.5292 7.47845i −0.611460 0.294464i
\(646\) −8.19633 10.2779i −0.322480 0.404378i
\(647\) −19.0338 23.8676i −0.748296 0.938334i 0.251266 0.967918i \(-0.419153\pi\)
−0.999562 + 0.0295841i \(0.990582\pi\)
\(648\) −11.4999 + 5.53806i −0.451759 + 0.217556i
\(649\) 5.24754 6.58021i 0.205984 0.258296i
\(650\) 1.43769 0.0563910
\(651\) −8.69411 + 10.9021i −0.340749 + 0.427286i
\(652\) 2.17268 9.51913i 0.0850887 0.372798i
\(653\) 10.6839 46.8094i 0.418095 1.83179i −0.125047 0.992151i \(-0.539908\pi\)
0.543141 0.839641i \(-0.317235\pi\)
\(654\) 3.42509 4.29493i 0.133932 0.167945i
\(655\) −55.2148 −2.15742
\(656\) −4.45539 + 5.58689i −0.173954 + 0.218131i
\(657\) 32.3345 15.5715i 1.26149 0.607500i
\(658\) 6.03149 + 7.56325i 0.235132 + 0.294846i
\(659\) 4.39917 + 5.51639i 0.171368 + 0.214888i 0.860097 0.510130i \(-0.170403\pi\)
−0.688730 + 0.725018i \(0.741831\pi\)
\(660\) 4.79877 + 2.31097i 0.186792 + 0.0899543i
\(661\) 8.33360 36.5119i 0.324139 1.42015i −0.505972 0.862550i \(-0.668866\pi\)
0.830111 0.557598i \(-0.188277\pi\)
\(662\) −2.91284 12.7620i −0.113211 0.496008i
\(663\) 0.576008 0.277391i 0.0223703 0.0107730i
\(664\) 20.0340 + 9.64787i 0.777470 + 0.374410i
\(665\) 9.30868 + 40.7840i 0.360975 + 1.58153i
\(666\) −7.61803 −0.295193
\(667\) 0 0
\(668\) −17.0344 −0.659082
\(669\) −0.367710 1.61104i −0.0142165 0.0622866i
\(670\) −3.27891 1.57904i −0.126676 0.0610037i
\(671\) −0.769519 + 0.370581i −0.0297070 + 0.0143061i
\(672\) −1.72764 7.56927i −0.0666451 0.291991i
\(673\) 1.44019 6.30987i 0.0555151 0.243227i −0.939556 0.342397i \(-0.888761\pi\)
0.995071 + 0.0991692i \(0.0316185\pi\)
\(674\) 18.9706 + 9.13574i 0.730718 + 0.351895i
\(675\) −21.3326 26.7502i −0.821091 1.02962i
\(676\) 13.0585 + 16.3749i 0.502252 + 0.629804i
\(677\) −36.7891 + 17.7167i −1.41392 + 0.680908i −0.975932 0.218073i \(-0.930023\pi\)
−0.437987 + 0.898981i \(0.644309\pi\)
\(678\) 1.89194 2.37242i 0.0726597 0.0911123i
\(679\) 7.96556 0.305690
\(680\) 23.5454 29.5250i 0.902926 1.13223i
\(681\) 2.87271 12.5862i 0.110082 0.482302i
\(682\) 1.91769 8.40196i 0.0734323 0.321728i
\(683\) 13.0023 16.3044i 0.497520 0.623870i −0.468148 0.883650i \(-0.655079\pi\)
0.965668 + 0.259780i \(0.0836500\pi\)
\(684\) 20.5623 0.786219
\(685\) −17.1715 + 21.5324i −0.656091 + 0.822712i
\(686\) 11.2060 5.39651i 0.427846 0.206040i
\(687\) −0.883116 1.10739i −0.0336930 0.0422496i
\(688\) 8.36499 + 10.4894i 0.318912 + 0.399903i
\(689\) −0.425380 0.204852i −0.0162057 0.00780424i
\(690\) −0.404912 + 1.77404i −0.0154148 + 0.0675365i
\(691\) −2.63305 11.5361i −0.100166 0.438856i −0.999997 0.00261618i \(-0.999167\pi\)
0.899831 0.436239i \(-0.143690\pi\)
\(692\) 5.96264 2.87146i 0.226666 0.109156i
\(693\) −7.28899 3.51019i −0.276886 0.133341i
\(694\) −4.41795 19.3563i −0.167703 0.734756i
\(695\) 4.97871 0.188853
\(696\) 0 0
\(697\) −16.8885 −0.639699
\(698\) 0.622697 + 2.72821i 0.0235694 + 0.103264i
\(699\) −8.48389 4.08563i −0.320890 0.154533i
\(700\) −32.1218 + 15.4690i −1.21409 + 0.584674i
\(701\) 4.68534 + 20.5278i 0.176963 + 0.775325i 0.983022 + 0.183490i \(0.0587393\pi\)
−0.806059 + 0.591835i \(0.798404\pi\)
\(702\) 0.112724 0.493877i 0.00425450 0.0186402i
\(703\) 20.5908 + 9.91602i 0.776598 + 0.373990i
\(704\) −0.203406 0.255063i −0.00766615 0.00961305i
\(705\) 10.3959 + 13.0361i 0.391533 + 0.490967i
\(706\) −10.6491 + 5.12836i −0.400786 + 0.193008i
\(707\) −0.861642 + 1.08046i −0.0324054 + 0.0406351i
\(708\) −6.09017 −0.228883
\(709\) −25.8789 + 32.4511i −0.971904 + 1.21873i 0.00388053 + 0.999992i \(0.498765\pi\)
−0.975784 + 0.218736i \(0.929807\pi\)
\(710\) 5.55062 24.3189i 0.208311 0.912671i
\(711\) 3.54793 15.5445i 0.133058 0.582965i
\(712\) −6.56402 + 8.23102i −0.245997 + 0.308470i
\(713\) −12.4721 −0.467085
\(714\) 2.33350 2.92612i 0.0873291 0.109507i
\(715\) 1.13284 0.545546i 0.0423657 0.0204022i
\(716\) 16.1412 + 20.2405i 0.603227 + 0.756422i
\(717\) −10.6903 13.4052i −0.399236 0.500626i
\(718\) 13.2325 + 6.37241i 0.493831 + 0.237816i
\(719\) −1.89289 + 8.29330i −0.0705929 + 0.309288i −0.997881 0.0650598i \(-0.979276\pi\)
0.927288 + 0.374348i \(0.122133\pi\)
\(720\) 4.16297 + 18.2392i 0.155145 + 0.679733i
\(721\) 18.4950 8.90671i 0.688789 0.331703i
\(722\) 2.54043 + 1.22340i 0.0945449 + 0.0455304i
\(723\) 0.639834 + 2.80330i 0.0237957 + 0.104256i
\(724\) −9.61803 −0.357451
\(725\) 0 0
\(726\) 3.47214 0.128863
\(727\) 6.24299 + 27.3523i 0.231540 + 1.01444i 0.948363 + 0.317187i \(0.102738\pi\)
−0.716824 + 0.697255i \(0.754405\pi\)
\(728\) −1.06345 0.512130i −0.0394141 0.0189808i
\(729\) 7.66416 3.69087i 0.283858 0.136699i
\(730\) 7.26586 + 31.8338i 0.268922 + 1.17822i
\(731\) −7.05574 + 30.9132i −0.260966 + 1.14337i
\(732\) 0.556829 + 0.268155i 0.0205810 + 0.00991129i
\(733\) −9.23991 11.5865i −0.341284 0.427956i 0.581338 0.813662i \(-0.302529\pi\)
−0.922622 + 0.385706i \(0.873958\pi\)
\(734\) 10.5084 + 13.1771i 0.387871 + 0.486374i
\(735\) 4.29215 2.06699i 0.158319 0.0762422i
\(736\) 4.32968 5.42925i 0.159594 0.200125i
\(737\) −2.11146 −0.0777765
\(738\) −3.88812 + 4.87555i −0.143124 + 0.179472i
\(739\) −11.1414 + 48.8136i −0.409842 + 1.79564i 0.175089 + 0.984553i \(0.443979\pi\)
−0.584931 + 0.811083i \(0.698878\pi\)
\(740\) −6.53337 + 28.6245i −0.240171 + 1.05226i
\(741\) −0.441558 + 0.553696i −0.0162210 + 0.0203405i
\(742\) −2.76393 −0.101467
\(743\) −21.9693 + 27.5487i −0.805977 + 1.01066i 0.193586 + 0.981083i \(0.437988\pi\)
−0.999562 + 0.0295793i \(0.990583\pi\)
\(744\) −12.5634 + 6.05019i −0.460595 + 0.221811i
\(745\) 23.1121 + 28.9816i 0.846761 + 1.06180i
\(746\) −7.94491 9.96260i −0.290884 0.364757i
\(747\) −23.4562 11.2959i −0.858218 0.413296i
\(748\) 2.18034 9.55271i 0.0797212 0.349282i
\(749\) 3.36554 + 14.7454i 0.122974 + 0.538785i
\(750\) 6.43823 3.10049i 0.235091 0.113214i
\(751\) −16.6930 8.03894i −0.609137 0.293345i 0.103772 0.994601i \(-0.466909\pi\)
−0.712910 + 0.701256i \(0.752623\pi\)
\(752\) −2.88804 12.6533i −0.105316 0.461419i
\(753\) 12.1459 0.442621
\(754\) 0 0
\(755\) 10.3050 0.375036
\(756\) 2.79538 + 12.2473i 0.101667 + 0.445432i
\(757\) −0.0191782 0.00923575i −0.000697045 0.000335679i 0.433535 0.901137i \(-0.357266\pi\)
−0.434232 + 0.900801i \(0.642980\pi\)
\(758\) 13.5264 6.51396i 0.491300 0.236598i
\(759\) 0.234922 + 1.02926i 0.00852711 + 0.0373597i
\(760\) −9.30868 + 40.7840i −0.337661 + 1.47939i
\(761\) −22.7059 10.9346i −0.823088 0.396378i −0.0255694 0.999673i \(-0.508140\pi\)
−0.797518 + 0.603295i \(0.793854\pi\)
\(762\) 3.79716 + 4.76149i 0.137557 + 0.172490i
\(763\) 20.0508 + 25.1430i 0.725889 + 0.910236i
\(764\) −24.8328 + 11.9588i −0.898418 + 0.432656i
\(765\) −27.5675 + 34.5685i −0.996704 + 1.24983i
\(766\) 17.8328 0.644326
\(767\) −0.896388 + 1.12403i −0.0323667 + 0.0405865i
\(768\) 0.902484