Properties

Label 841.2.d.g.574.1
Level $841$
Weight $2$
Character 841.574
Analytic conductor $6.715$
Analytic rank $0$
Dimension $12$
Inner twists $6$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [841,2,Mod(190,841)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(841, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("841.190");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 841 = 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 841.d (of order \(7\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.71541880999\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{7})\)
Coefficient field: 12.0.4413675765625.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} + 2x^{10} - 3x^{9} + 5x^{8} - 8x^{7} + 13x^{6} + 8x^{5} + 5x^{4} + 3x^{3} + 2x^{2} + x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 574.1
Root \(0.385338 - 0.483198i\) of defining polynomial
Character \(\chi\) \(=\) 841.574
Dual form 841.2.d.g.778.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.385338 + 0.483198i) q^{2} +(-0.137526 + 0.602539i) q^{3} +(0.360046 + 1.57747i) q^{4} +(2.40299 - 3.01326i) q^{5} +(-0.238152 - 0.298633i) q^{6} +(0.497572 - 2.18001i) q^{7} +(-2.01463 - 0.970194i) q^{8} +(2.35877 + 1.13592i) q^{9} +O(q^{10})\) \(q+(-0.385338 + 0.483198i) q^{2} +(-0.137526 + 0.602539i) q^{3} +(0.360046 + 1.57747i) q^{4} +(2.40299 - 3.01326i) q^{5} +(-0.238152 - 0.298633i) q^{6} +(0.497572 - 2.18001i) q^{7} +(-2.01463 - 0.970194i) q^{8} +(2.35877 + 1.13592i) q^{9} +(0.530037 + 2.32225i) q^{10} +(-1.24511 + 0.599613i) q^{11} -1.00000 q^{12} +(0.212690 - 0.102426i) q^{13} +(0.861642 + 1.08046i) q^{14} +(1.48513 + 1.86230i) q^{15} +(-1.67049 + 0.804465i) q^{16} +4.38197 q^{17} +(-1.45780 + 0.702039i) q^{18} +(-1.08014 - 4.73240i) q^{19} +(5.61850 + 2.70573i) q^{20} +(1.24511 + 0.599613i) q^{21} +(0.190056 - 0.832688i) q^{22} +(-0.770676 - 0.966397i) q^{23} +(0.861642 - 1.08046i) q^{24} +(-2.19274 - 9.60704i) q^{25} +(-0.0324654 + 0.142240i) q^{26} +(-2.16484 + 2.71463i) q^{27} +3.61803 q^{28} -1.47214 q^{30} +(6.29112 - 7.88881i) q^{31} +(1.25013 - 5.47718i) q^{32} +(-0.190056 - 0.832688i) q^{33} +(-1.68854 + 2.11736i) q^{34} +(-5.37326 - 6.73785i) q^{35} +(-0.942614 + 4.12986i) q^{36} +(4.24195 + 2.04281i) q^{37} +(2.70291 + 1.30165i) q^{38} +(0.0324654 + 0.142240i) q^{39} +(-7.76458 + 3.73922i) q^{40} -3.85410 q^{41} +(-0.769519 + 0.370581i) q^{42} +(4.51161 + 5.65739i) q^{43} +(-1.39417 - 1.74823i) q^{44} +(9.09093 - 4.37796i) q^{45} +0.763932 q^{46} +(-6.30678 + 3.03719i) q^{47} +(-0.254986 - 1.11717i) q^{48} +(1.80194 + 0.867767i) q^{49} +(5.48705 + 2.64243i) q^{50} +(-0.602632 + 2.64030i) q^{51} +(0.238152 + 0.298633i) q^{52} +(-1.24698 + 1.56366i) q^{53} +(-0.477507 - 2.09210i) q^{54} +(-1.18520 + 5.19270i) q^{55} +(-3.11745 + 3.90916i) q^{56} +3.00000 q^{57} +6.09017 q^{59} +(-2.40299 + 3.01326i) q^{60} +(-0.137526 + 0.602539i) q^{61} +(1.38766 + 6.07972i) q^{62} +(3.64997 - 4.57692i) q^{63} +(-0.147186 - 0.184565i) q^{64} +(0.202456 - 0.887019i) q^{65} +(0.475589 + 0.229032i) q^{66} +(1.37656 + 0.662915i) q^{67} +(1.57771 + 6.91240i) q^{68} +(0.688279 - 0.331458i) q^{69} +5.32624 q^{70} +(-9.43507 + 4.54369i) q^{71} +(-3.64997 - 4.57692i) q^{72} +(8.54693 + 10.7175i) q^{73} +(-2.62167 + 1.26253i) q^{74} +6.09017 q^{75} +(7.07630 - 3.40777i) q^{76} +(0.687628 + 3.01269i) q^{77} +(-0.0812403 - 0.0391233i) q^{78} +(-5.48705 - 2.64243i) q^{79} +(-1.59011 + 6.96674i) q^{80} +(3.55901 + 4.46285i) q^{81} +(1.48513 - 1.86230i) q^{82} +(2.21281 + 9.69495i) q^{83} +(-0.497572 + 2.18001i) q^{84} +(10.5298 - 13.2040i) q^{85} -4.47214 q^{86} +3.09017 q^{88} +(-2.93552 + 3.68102i) q^{89} +(-1.38766 + 6.07972i) q^{90} +(-0.117461 - 0.514629i) q^{91} +(1.24698 - 1.56366i) q^{92} +(3.88812 + 4.87555i) q^{93} +(0.962679 - 4.21777i) q^{94} +(-16.8555 - 8.11719i) q^{95} +(3.12829 + 1.50650i) q^{96} +(0.792688 + 3.47299i) q^{97} +(-1.11366 + 0.536310i) q^{98} -3.61803 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - q^{2} + q^{3} + q^{4} - q^{5} + 3 q^{6} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 12 q - q^{2} + q^{3} + q^{4} - q^{5} + 3 q^{6} + 3 q^{9} + 7 q^{10} - 5 q^{11} - 12 q^{12} - 4 q^{13} - 5 q^{14} - 7 q^{15} + 3 q^{16} + 66 q^{17} - q^{18} - 3 q^{19} + 8 q^{20} + 5 q^{21} - 5 q^{22} - 2 q^{23} - 5 q^{24} - 13 q^{25} - 7 q^{26} - 2 q^{27} + 30 q^{28} + 36 q^{30} - 9 q^{31} + 9 q^{32} + 5 q^{33} - 8 q^{34} + 15 q^{35} - 4 q^{36} - 4 q^{37} + 6 q^{38} + 7 q^{39} - 15 q^{40} - 6 q^{41} + 5 q^{42} - 10 q^{43} + 9 q^{45} + 36 q^{46} - 14 q^{47} - 9 q^{48} + 4 q^{49} + q^{50} + 8 q^{51} - 3 q^{52} + 4 q^{53} - 11 q^{54} + 5 q^{55} + 10 q^{56} + 36 q^{57} + 6 q^{59} + q^{60} + q^{61} + 8 q^{62} - 5 q^{63} - 4 q^{64} + 13 q^{65} + 10 q^{66} + 12 q^{67} + 3 q^{68} + 6 q^{69} - 30 q^{70} - 12 q^{71} + 5 q^{72} - 14 q^{73} - 17 q^{74} + 6 q^{75} + 9 q^{76} - 5 q^{77} + 11 q^{78} - q^{79} - 21 q^{80} + 2 q^{81} - 7 q^{82} + 2 q^{83} + 2 q^{85} - 30 q^{88} - 4 q^{89} - 8 q^{90} - 10 q^{91} - 4 q^{92} - 8 q^{93} - 7 q^{94} - 24 q^{95} - 2 q^{96} - 13 q^{97} + 2 q^{98} - 30 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/841\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{5}{7}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.385338 + 0.483198i −0.272475 + 0.341673i −0.899176 0.437587i \(-0.855833\pi\)
0.626701 + 0.779260i \(0.284405\pi\)
\(3\) −0.137526 + 0.602539i −0.0794004 + 0.347876i −0.998986 0.0450129i \(-0.985667\pi\)
0.919586 + 0.392889i \(0.128524\pi\)
\(4\) 0.360046 + 1.57747i 0.180023 + 0.788733i
\(5\) 2.40299 3.01326i 1.07465 1.34757i 0.140748 0.990046i \(-0.455049\pi\)
0.933904 0.357525i \(-0.116379\pi\)
\(6\) −0.238152 0.298633i −0.0972251 0.121916i
\(7\) 0.497572 2.18001i 0.188065 0.823964i −0.789571 0.613659i \(-0.789697\pi\)
0.977636 0.210306i \(-0.0674459\pi\)
\(8\) −2.01463 0.970194i −0.712278 0.343015i
\(9\) 2.35877 + 1.13592i 0.786256 + 0.378641i
\(10\) 0.530037 + 2.32225i 0.167613 + 0.734358i
\(11\) −1.24511 + 0.599613i −0.375414 + 0.180790i −0.612070 0.790804i \(-0.709663\pi\)
0.236656 + 0.971594i \(0.423949\pi\)
\(12\) −1.00000 −0.288675
\(13\) 0.212690 0.102426i 0.0589896 0.0284079i −0.404156 0.914690i \(-0.632435\pi\)
0.463146 + 0.886282i \(0.346721\pi\)
\(14\) 0.861642 + 1.08046i 0.230283 + 0.288766i
\(15\) 1.48513 + 1.86230i 0.383459 + 0.480843i
\(16\) −1.67049 + 0.804465i −0.417622 + 0.201116i
\(17\) 4.38197 1.06278 0.531391 0.847126i \(-0.321669\pi\)
0.531391 + 0.847126i \(0.321669\pi\)
\(18\) −1.45780 + 0.702039i −0.343606 + 0.165472i
\(19\) −1.08014 4.73240i −0.247801 1.08569i −0.933719 0.358008i \(-0.883456\pi\)
0.685918 0.727679i \(-0.259401\pi\)
\(20\) 5.61850 + 2.70573i 1.25634 + 0.605019i
\(21\) 1.24511 + 0.599613i 0.271705 + 0.130846i
\(22\) 0.190056 0.832688i 0.0405200 0.177530i
\(23\) −0.770676 0.966397i −0.160697 0.201508i 0.694964 0.719045i \(-0.255420\pi\)
−0.855661 + 0.517537i \(0.826849\pi\)
\(24\) 0.861642 1.08046i 0.175882 0.220549i
\(25\) −2.19274 9.60704i −0.438549 1.92141i
\(26\) −0.0324654 + 0.142240i −0.00636698 + 0.0278956i
\(27\) −2.16484 + 2.71463i −0.416624 + 0.522430i
\(28\) 3.61803 0.683744
\(29\) 0 0
\(30\) −1.47214 −0.268774
\(31\) 6.29112 7.88881i 1.12992 1.41687i 0.234235 0.972180i \(-0.424742\pi\)
0.895683 0.444693i \(-0.146687\pi\)
\(32\) 1.25013 5.47718i 0.220994 0.968237i
\(33\) −0.190056 0.832688i −0.0330844 0.144952i
\(34\) −1.68854 + 2.11736i −0.289582 + 0.363124i
\(35\) −5.37326 6.73785i −0.908246 1.13890i
\(36\) −0.942614 + 4.12986i −0.157102 + 0.688310i
\(37\) 4.24195 + 2.04281i 0.697371 + 0.335836i 0.748759 0.662842i \(-0.230650\pi\)
−0.0513875 + 0.998679i \(0.516364\pi\)
\(38\) 2.70291 + 1.30165i 0.438469 + 0.211156i
\(39\) 0.0324654 + 0.142240i 0.00519862 + 0.0227766i
\(40\) −7.76458 + 3.73922i −1.22769 + 0.591223i
\(41\) −3.85410 −0.601910 −0.300955 0.953638i \(-0.597305\pi\)
−0.300955 + 0.953638i \(0.597305\pi\)
\(42\) −0.769519 + 0.370581i −0.118739 + 0.0571819i
\(43\) 4.51161 + 5.65739i 0.688015 + 0.862743i 0.996065 0.0886269i \(-0.0282479\pi\)
−0.308050 + 0.951370i \(0.599676\pi\)
\(44\) −1.39417 1.74823i −0.210178 0.263555i
\(45\) 9.09093 4.37796i 1.35520 0.652628i
\(46\) 0.763932 0.112636
\(47\) −6.30678 + 3.03719i −0.919939 + 0.443019i −0.833049 0.553199i \(-0.813407\pi\)
−0.0868895 + 0.996218i \(0.527693\pi\)
\(48\) −0.254986 1.11717i −0.0368041 0.161249i
\(49\) 1.80194 + 0.867767i 0.257420 + 0.123967i
\(50\) 5.48705 + 2.64243i 0.775987 + 0.373695i
\(51\) −0.602632 + 2.64030i −0.0843854 + 0.369716i
\(52\) 0.238152 + 0.298633i 0.0330257 + 0.0414130i
\(53\) −1.24698 + 1.56366i −0.171286 + 0.214786i −0.860064 0.510187i \(-0.829576\pi\)
0.688778 + 0.724973i \(0.258148\pi\)
\(54\) −0.477507 2.09210i −0.0649805 0.284698i
\(55\) −1.18520 + 5.19270i −0.159812 + 0.700183i
\(56\) −3.11745 + 3.90916i −0.416587 + 0.522383i
\(57\) 3.00000 0.397360
\(58\) 0 0
\(59\) 6.09017 0.792873 0.396436 0.918062i \(-0.370247\pi\)
0.396436 + 0.918062i \(0.370247\pi\)
\(60\) −2.40299 + 3.01326i −0.310225 + 0.389010i
\(61\) −0.137526 + 0.602539i −0.0176083 + 0.0771472i −0.982969 0.183773i \(-0.941169\pi\)
0.965360 + 0.260920i \(0.0840260\pi\)
\(62\) 1.38766 + 6.07972i 0.176232 + 0.772125i
\(63\) 3.64997 4.57692i 0.459853 0.576638i
\(64\) −0.147186 0.184565i −0.0183982 0.0230707i
\(65\) 0.202456 0.887019i 0.0251116 0.110021i
\(66\) 0.475589 + 0.229032i 0.0585410 + 0.0281918i
\(67\) 1.37656 + 0.662915i 0.168173 + 0.0809880i 0.516077 0.856542i \(-0.327392\pi\)
−0.347903 + 0.937530i \(0.613106\pi\)
\(68\) 1.57771 + 6.91240i 0.191326 + 0.838252i
\(69\) 0.688279 0.331458i 0.0828591 0.0399028i
\(70\) 5.32624 0.636607
\(71\) −9.43507 + 4.54369i −1.11974 + 0.539237i −0.899811 0.436280i \(-0.856296\pi\)
−0.219926 + 0.975517i \(0.570581\pi\)
\(72\) −3.64997 4.57692i −0.430153 0.539395i
\(73\) 8.54693 + 10.7175i 1.00034 + 1.25439i 0.966955 + 0.254947i \(0.0820579\pi\)
0.0333868 + 0.999443i \(0.489371\pi\)
\(74\) −2.62167 + 1.26253i −0.304763 + 0.146766i
\(75\) 6.09017 0.703232
\(76\) 7.07630 3.40777i 0.811707 0.390898i
\(77\) 0.687628 + 3.01269i 0.0783624 + 0.343328i
\(78\) −0.0812403 0.0391233i −0.00919865 0.00442984i
\(79\) −5.48705 2.64243i −0.617342 0.297296i 0.0989550 0.995092i \(-0.468450\pi\)
−0.716297 + 0.697796i \(0.754164\pi\)
\(80\) −1.59011 + 6.96674i −0.177780 + 0.778905i
\(81\) 3.55901 + 4.46285i 0.395445 + 0.495873i
\(82\) 1.48513 1.86230i 0.164005 0.205656i
\(83\) 2.21281 + 9.69495i 0.242887 + 1.06416i 0.938374 + 0.345620i \(0.112331\pi\)
−0.695487 + 0.718539i \(0.744811\pi\)
\(84\) −0.497572 + 2.18001i −0.0542895 + 0.237858i
\(85\) 10.5298 13.2040i 1.14212 1.43217i
\(86\) −4.47214 −0.482243
\(87\) 0 0
\(88\) 3.09017 0.329413
\(89\) −2.93552 + 3.68102i −0.311164 + 0.390188i −0.912681 0.408673i \(-0.865992\pi\)
0.601517 + 0.798860i \(0.294563\pi\)
\(90\) −1.38766 + 6.07972i −0.146272 + 0.640858i
\(91\) −0.117461 0.514629i −0.0123132 0.0539478i
\(92\) 1.24698 1.56366i 0.130007 0.163023i
\(93\) 3.88812 + 4.87555i 0.403180 + 0.505571i
\(94\) 0.962679 4.21777i 0.0992927 0.435030i
\(95\) −16.8555 8.11719i −1.72934 0.832806i
\(96\) 3.12829 + 1.50650i 0.319279 + 0.153757i
\(97\) 0.792688 + 3.47299i 0.0804852 + 0.352629i 0.999095 0.0425373i \(-0.0135441\pi\)
−0.918610 + 0.395166i \(0.870687\pi\)
\(98\) −1.11366 + 0.536310i −0.112497 + 0.0541755i
\(99\) −3.61803 −0.363626
\(100\) 14.3653 6.91796i 1.43653 0.691796i
\(101\) 0.385338 + 0.483198i 0.0383426 + 0.0480800i 0.800633 0.599155i \(-0.204497\pi\)
−0.762291 + 0.647235i \(0.775925\pi\)
\(102\) −1.04357 1.30860i −0.103329 0.129571i
\(103\) −8.27120 + 3.98320i −0.814986 + 0.392476i −0.794463 0.607313i \(-0.792247\pi\)
−0.0205229 + 0.999789i \(0.506533\pi\)
\(104\) −0.527864 −0.0517613
\(105\) 4.79877 2.31097i 0.468312 0.225527i
\(106\) −0.275051 1.20508i −0.0267153 0.117047i
\(107\) −6.09409 2.93476i −0.589138 0.283714i 0.115470 0.993311i \(-0.463163\pi\)
−0.704608 + 0.709597i \(0.748877\pi\)
\(108\) −5.06167 2.43757i −0.487060 0.234556i
\(109\) 3.20029 14.0214i 0.306532 1.34300i −0.553536 0.832825i \(-0.686722\pi\)
0.860068 0.510179i \(-0.170421\pi\)
\(110\) −2.05240 2.57363i −0.195689 0.245386i
\(111\) −1.81425 + 2.27500i −0.172201 + 0.215933i
\(112\) 0.922549 + 4.04195i 0.0871727 + 0.381929i
\(113\) 1.76777 7.74509i 0.166298 0.728597i −0.821158 0.570701i \(-0.806672\pi\)
0.987456 0.157896i \(-0.0504712\pi\)
\(114\) −1.15601 + 1.44960i −0.108271 + 0.135767i
\(115\) −4.76393 −0.444239
\(116\) 0 0
\(117\) 0.618034 0.0571373
\(118\) −2.34677 + 2.94276i −0.216038 + 0.270903i
\(119\) 2.18034 9.55271i 0.199872 0.875695i
\(120\) −1.18520 5.19270i −0.108193 0.474026i
\(121\) −5.66763 + 7.10698i −0.515239 + 0.646089i
\(122\) −0.238152 0.298633i −0.0215613 0.0270370i
\(123\) 0.530037 2.32225i 0.0477919 0.209390i
\(124\) 14.7094 + 7.08369i 1.32095 + 0.636134i
\(125\) −16.8555 8.11719i −1.50760 0.726023i
\(126\) 0.805088 + 3.52732i 0.0717230 + 0.314239i
\(127\) 14.3653 6.91796i 1.27471 0.613870i 0.330687 0.943740i \(-0.392719\pi\)
0.944026 + 0.329871i \(0.107005\pi\)
\(128\) 11.3820 1.00603
\(129\) −4.02926 + 1.94039i −0.354756 + 0.170842i
\(130\) 0.350592 + 0.439628i 0.0307490 + 0.0385580i
\(131\) −8.93226 11.2007i −0.780415 0.978610i −0.999995 0.00301554i \(-0.999040\pi\)
0.219580 0.975594i \(-0.429531\pi\)
\(132\) 1.24511 0.599613i 0.108373 0.0521896i
\(133\) −10.8541 −0.941170
\(134\) −0.850760 + 0.409704i −0.0734944 + 0.0353931i
\(135\) 2.97777 + 13.0465i 0.256285 + 1.12286i
\(136\) −8.82803 4.25136i −0.756997 0.364551i
\(137\) 6.43823 + 3.10049i 0.550055 + 0.264893i 0.688202 0.725519i \(-0.258400\pi\)
−0.138147 + 0.990412i \(0.544115\pi\)
\(138\) −0.105060 + 0.460299i −0.00894331 + 0.0391832i
\(139\) 0.805422 + 1.00997i 0.0683150 + 0.0856643i 0.814815 0.579721i \(-0.196839\pi\)
−0.746500 + 0.665386i \(0.768267\pi\)
\(140\) 8.69411 10.9021i 0.734787 0.921393i
\(141\) −0.962679 4.21777i −0.0810722 0.355200i
\(142\) 1.44019 6.30987i 0.120858 0.529512i
\(143\) −0.203406 + 0.255063i −0.0170097 + 0.0213294i
\(144\) −4.85410 −0.404508
\(145\) 0 0
\(146\) −8.47214 −0.701159
\(147\) −0.770676 + 0.966397i −0.0635643 + 0.0797071i
\(148\) −1.69517 + 7.42703i −0.139342 + 0.610498i
\(149\) −2.14021 9.37689i −0.175333 0.768185i −0.983746 0.179568i \(-0.942530\pi\)
0.808412 0.588617i \(-0.200327\pi\)
\(150\) −2.34677 + 2.94276i −0.191613 + 0.240275i
\(151\) 1.66706 + 2.09043i 0.135664 + 0.170117i 0.845023 0.534731i \(-0.179587\pi\)
−0.709359 + 0.704847i \(0.751015\pi\)
\(152\) −2.41526 + 10.5820i −0.195904 + 0.858311i
\(153\) 10.3360 + 4.97757i 0.835619 + 0.402413i
\(154\) −1.72070 0.828644i −0.138658 0.0667741i
\(155\) −8.65352 37.9135i −0.695067 3.04529i
\(156\) −0.212690 + 0.102426i −0.0170288 + 0.00820065i
\(157\) −14.5623 −1.16220 −0.581099 0.813833i \(-0.697377\pi\)
−0.581099 + 0.813833i \(0.697377\pi\)
\(158\) 3.39119 1.63311i 0.269788 0.129923i
\(159\) −0.770676 0.966397i −0.0611186 0.0766403i
\(160\) −13.5001 16.9286i −1.06728 1.33832i
\(161\) −2.49022 + 1.19923i −0.196257 + 0.0945122i
\(162\) −3.52786 −0.277175
\(163\) −5.43684 + 2.61825i −0.425847 + 0.205077i −0.634517 0.772909i \(-0.718801\pi\)
0.208670 + 0.977986i \(0.433087\pi\)
\(164\) −1.38766 6.07972i −0.108358 0.474746i
\(165\) −2.96581 1.42826i −0.230888 0.111190i
\(166\) −5.53726 2.66661i −0.429775 0.206969i
\(167\) −2.34267 + 10.2639i −0.181281 + 0.794245i 0.799740 + 0.600346i \(0.204971\pi\)
−0.981022 + 0.193899i \(0.937887\pi\)
\(168\) −1.92669 2.41599i −0.148647 0.186398i
\(169\) −8.07062 + 10.1202i −0.620817 + 0.778480i
\(170\) 2.32261 + 10.1760i 0.178136 + 0.780464i
\(171\) 2.82784 12.3896i 0.216250 0.947455i
\(172\) −7.29995 + 9.15384i −0.556616 + 0.697974i
\(173\) 4.09017 0.310970 0.155485 0.987838i \(-0.450306\pi\)
0.155485 + 0.987838i \(0.450306\pi\)
\(174\) 0 0
\(175\) −22.0344 −1.66565
\(176\) 1.59757 2.00329i 0.120421 0.151004i
\(177\) −0.837554 + 3.66956i −0.0629544 + 0.275821i
\(178\) −0.647498 2.83687i −0.0485320 0.212633i
\(179\) −9.97584 + 12.5093i −0.745629 + 0.934989i −0.999480 0.0322542i \(-0.989731\pi\)
0.253851 + 0.967243i \(0.418303\pi\)
\(180\) 10.1792 + 12.7644i 0.758716 + 0.951400i
\(181\) −1.32272 + 5.79524i −0.0983174 + 0.430757i −0.999999 0.00164474i \(-0.999476\pi\)
0.901681 + 0.432401i \(0.142334\pi\)
\(182\) 0.293930 + 0.141549i 0.0217876 + 0.0104923i
\(183\) −0.344139 0.165729i −0.0254395 0.0122510i
\(184\) 0.615033 + 2.69463i 0.0453408 + 0.198651i
\(185\) 16.3489 7.87321i 1.20199 0.578850i
\(186\) −3.85410 −0.282596
\(187\) −5.45602 + 2.62748i −0.398984 + 0.192141i
\(188\) −7.06179 8.85521i −0.515034 0.645833i
\(189\) 4.84073 + 6.07009i 0.352111 + 0.441534i
\(190\) 10.4173 5.01670i 0.755749 0.363949i
\(191\) −17.0344 −1.23257 −0.616284 0.787524i \(-0.711363\pi\)
−0.616284 + 0.787524i \(0.711363\pi\)
\(192\) 0.131450 0.0633028i 0.00948656 0.00456848i
\(193\) 2.77531 + 12.1594i 0.199771 + 0.875255i 0.971072 + 0.238785i \(0.0767491\pi\)
−0.771301 + 0.636470i \(0.780394\pi\)
\(194\) −1.98360 0.955250i −0.142414 0.0685829i
\(195\) 0.506620 + 0.243975i 0.0362798 + 0.0174714i
\(196\) −0.720093 + 3.15493i −0.0514352 + 0.225352i
\(197\) −3.92287 4.91912i −0.279493 0.350473i 0.622194 0.782863i \(-0.286242\pi\)
−0.901687 + 0.432390i \(0.857670\pi\)
\(198\) 1.39417 1.74823i 0.0990790 0.124241i
\(199\) 1.30266 + 5.70733i 0.0923431 + 0.404582i 0.999882 0.0153872i \(-0.00489810\pi\)
−0.907538 + 0.419969i \(0.862041\pi\)
\(200\) −4.90312 + 21.4820i −0.346703 + 1.51901i
\(201\) −0.588744 + 0.738262i −0.0415268 + 0.0520730i
\(202\) −0.381966 −0.0268750
\(203\) 0 0
\(204\) −4.38197 −0.306799
\(205\) −9.26138 + 11.6134i −0.646843 + 0.811115i
\(206\) 1.26253 5.53151i 0.0879647 0.385398i
\(207\) −0.720093 3.15493i −0.0500499 0.219283i
\(208\) −0.272898 + 0.342203i −0.0189221 + 0.0237275i
\(209\) 4.18250 + 5.24469i 0.289309 + 0.362782i
\(210\) −0.732494 + 3.20926i −0.0505469 + 0.221460i
\(211\) −10.4985 5.05582i −0.722748 0.348057i 0.0360795 0.999349i \(-0.488513\pi\)
−0.758827 + 0.651292i \(0.774227\pi\)
\(212\) −2.91560 1.40408i −0.200244 0.0964324i
\(213\) −1.44019 6.30987i −0.0986799 0.432345i
\(214\) 3.76636 1.81378i 0.257463 0.123988i
\(215\) 27.8885 1.90198
\(216\) 6.99506 3.36864i 0.475954 0.229207i
\(217\) −14.0674 17.6399i −0.954955 1.19748i
\(218\) 5.54192 + 6.94934i 0.375346 + 0.470669i
\(219\) −7.63313 + 3.67592i −0.515799 + 0.248396i
\(220\) −8.61803 −0.581028
\(221\) 0.932000 0.448827i 0.0626931 0.0301914i
\(222\) −0.400176 1.75328i −0.0268580 0.117673i
\(223\) −2.40898 1.16010i −0.161317 0.0776862i 0.351483 0.936194i \(-0.385677\pi\)
−0.512800 + 0.858508i \(0.671392\pi\)
\(224\) −11.3182 5.45058i −0.756232 0.364182i
\(225\) 5.74068 25.1516i 0.382712 1.67677i
\(226\) 3.06123 + 3.83866i 0.203630 + 0.255344i
\(227\) −13.0238 + 16.3313i −0.864420 + 1.08395i 0.131284 + 0.991345i \(0.458090\pi\)
−0.995703 + 0.0926030i \(0.970481\pi\)
\(228\) 1.08014 + 4.73240i 0.0715340 + 0.313411i
\(229\) 0.509973 2.23434i 0.0336999 0.147649i −0.955279 0.295707i \(-0.904445\pi\)
0.988979 + 0.148058i \(0.0473021\pi\)
\(230\) 1.83572 2.30192i 0.121044 0.151784i
\(231\) −1.90983 −0.125658
\(232\) 0 0
\(233\) 15.2361 0.998148 0.499074 0.866559i \(-0.333674\pi\)
0.499074 + 0.866559i \(0.333674\pi\)
\(234\) −0.238152 + 0.298633i −0.0155685 + 0.0195223i
\(235\) −6.00333 + 26.3023i −0.391614 + 1.71577i
\(236\) 2.19274 + 9.60704i 0.142735 + 0.625365i
\(237\) 2.34677 2.94276i 0.152439 0.191153i
\(238\) 3.77568 + 4.73456i 0.244741 + 0.306896i
\(239\) 6.17332 27.0471i 0.399319 1.74953i −0.230771 0.973008i \(-0.574125\pi\)
0.630090 0.776522i \(-0.283018\pi\)
\(240\) −3.97905 1.91621i −0.256846 0.123691i
\(241\) 4.19174 + 2.01863i 0.270013 + 0.130032i 0.563992 0.825781i \(-0.309265\pi\)
−0.293978 + 0.955812i \(0.594979\pi\)
\(242\) −1.25013 5.47718i −0.0803614 0.352086i
\(243\) −12.5634 + 6.05019i −0.805940 + 0.388120i
\(244\) −1.00000 −0.0640184
\(245\) 6.94485 3.34446i 0.443690 0.213670i
\(246\) 0.917862 + 1.15096i 0.0585207 + 0.0733827i
\(247\) −0.714456 0.895899i −0.0454597 0.0570047i
\(248\) −20.3279 + 9.78942i −1.29083 + 0.621629i
\(249\) −6.14590 −0.389480
\(250\) 10.4173 5.01670i 0.658846 0.317284i
\(251\) −4.37309 19.1597i −0.276027 1.20935i −0.902769 0.430126i \(-0.858469\pi\)
0.626742 0.779227i \(-0.284388\pi\)
\(252\) 8.53410 + 4.10981i 0.537598 + 0.258893i
\(253\) 1.53904 + 0.741162i 0.0967585 + 0.0465965i
\(254\) −2.19274 + 9.60704i −0.137585 + 0.602799i
\(255\) 6.50780 + 8.16052i 0.407534 + 0.511031i
\(256\) −4.09153 + 5.13062i −0.255721 + 0.320664i
\(257\) 5.15811 + 22.5992i 0.321754 + 1.40970i 0.834430 + 0.551114i \(0.185797\pi\)
−0.512676 + 0.858582i \(0.671346\pi\)
\(258\) 0.615033 2.69463i 0.0382903 0.167761i
\(259\) 6.56402 8.23102i 0.407868 0.511450i
\(260\) 1.47214 0.0912980
\(261\) 0 0
\(262\) 8.85410 0.547008
\(263\) 10.4174 13.0630i 0.642364 0.805499i −0.348932 0.937148i \(-0.613456\pi\)
0.991296 + 0.131649i \(0.0420271\pi\)
\(264\) −0.424977 + 1.86195i −0.0261555 + 0.114595i
\(265\) 1.71524 + 7.51494i 0.105366 + 0.461639i
\(266\) 4.18250 5.24469i 0.256445 0.321572i
\(267\) −1.81425 2.27500i −0.111030 0.139228i
\(268\) −0.550102 + 2.41015i −0.0336028 + 0.147224i
\(269\) −5.40581 2.60330i −0.329598 0.158726i 0.261765 0.965132i \(-0.415696\pi\)
−0.591363 + 0.806406i \(0.701410\pi\)
\(270\) −7.45147 3.58844i −0.453482 0.218385i
\(271\) 2.26534 + 9.92510i 0.137610 + 0.602907i 0.995956 + 0.0898370i \(0.0286346\pi\)
−0.858347 + 0.513070i \(0.828508\pi\)
\(272\) −7.32002 + 3.52514i −0.443842 + 0.213743i
\(273\) 0.326238 0.0197448
\(274\) −3.97905 + 1.91621i −0.240383 + 0.115762i
\(275\) 8.49071 + 10.6470i 0.512009 + 0.642039i
\(276\) 0.770676 + 0.966397i 0.0463892 + 0.0581703i
\(277\) 19.2645 9.27729i 1.15749 0.557418i 0.246215 0.969215i \(-0.420813\pi\)
0.911276 + 0.411797i \(0.135099\pi\)
\(278\) −0.798374 −0.0478833
\(279\) 23.8004 11.4616i 1.42489 0.686191i
\(280\) 4.28809 + 18.7874i 0.256263 + 1.12276i
\(281\) −20.8346 10.0334i −1.24289 0.598542i −0.307290 0.951616i \(-0.599422\pi\)
−0.935595 + 0.353074i \(0.885136\pi\)
\(282\) 2.40898 + 1.16010i 0.143452 + 0.0690831i
\(283\) 1.16513 5.10479i 0.0692601 0.303448i −0.928419 0.371534i \(-0.878832\pi\)
0.997679 + 0.0680857i \(0.0216891\pi\)
\(284\) −10.5646 13.2476i −0.626893 0.786098i
\(285\) 7.20898 9.03977i 0.427023 0.535470i
\(286\) −0.0448660 0.196571i −0.00265298 0.0116235i
\(287\) −1.91769 + 8.40196i −0.113198 + 0.495952i
\(288\) 9.17042 11.4993i 0.540372 0.677605i
\(289\) 2.20163 0.129507
\(290\) 0 0
\(291\) −2.20163 −0.129062
\(292\) −13.8292 + 17.3413i −0.809294 + 1.01482i
\(293\) 1.89763 8.31405i 0.110861 0.485712i −0.888765 0.458363i \(-0.848436\pi\)
0.999626 0.0273496i \(-0.00870673\pi\)
\(294\) −0.169991 0.744779i −0.00991407 0.0434364i
\(295\) 14.6346 18.3513i 0.852062 1.06845i
\(296\) −6.56402 8.23102i −0.381526 0.478418i
\(297\) 1.06774 4.67807i 0.0619565 0.271449i
\(298\) 5.35560 + 2.57912i 0.310242 + 0.149405i
\(299\) −0.262899 0.126606i −0.0152039 0.00732179i
\(300\) 2.19274 + 9.60704i 0.126598 + 0.554663i
\(301\) 14.5780 7.02039i 0.840261 0.404648i
\(302\) −1.65248 −0.0950893
\(303\) −0.344139 + 0.165729i −0.0197703 + 0.00952087i
\(304\) 5.61141 + 7.03648i 0.321836 + 0.403570i
\(305\) 1.48513 + 1.86230i 0.0850384 + 0.106635i
\(306\) −6.38802 + 3.07631i −0.365179 + 0.175861i
\(307\) 19.1803 1.09468 0.547340 0.836910i \(-0.315640\pi\)
0.547340 + 0.836910i \(0.315640\pi\)
\(308\) −4.50484 + 2.16942i −0.256687 + 0.123614i
\(309\) −1.26253 5.53151i −0.0718229 0.314677i
\(310\) 21.6543 + 10.4282i 1.22988 + 0.592279i
\(311\) 1.88318 + 0.906891i 0.106785 + 0.0514251i 0.486514 0.873673i \(-0.338268\pi\)
−0.379729 + 0.925098i \(0.623983\pi\)
\(312\) 0.0725948 0.318058i 0.00410987 0.0180065i
\(313\) −8.04915 10.0933i −0.454965 0.570508i 0.500454 0.865763i \(-0.333167\pi\)
−0.955418 + 0.295256i \(0.904595\pi\)
\(314\) 5.61141 7.03648i 0.316670 0.397092i
\(315\) −5.02059 21.9966i −0.282878 1.23937i
\(316\) 2.19274 9.60704i 0.123351 0.540438i
\(317\) −17.2758 + 21.6631i −0.970305 + 1.21672i 0.00592451 + 0.999982i \(0.498114\pi\)
−0.976229 + 0.216741i \(0.930457\pi\)
\(318\) 0.763932 0.0428392
\(319\) 0 0
\(320\) −0.909830 −0.0508610
\(321\) 2.60640 3.26832i 0.145475 0.182420i
\(322\) 0.380111 1.66538i 0.0211828 0.0928078i
\(323\) −4.73313 20.7372i −0.263359 1.15385i
\(324\) −5.75859 + 7.22105i −0.319922 + 0.401169i
\(325\) −1.45039 1.81873i −0.0804529 0.100885i
\(326\) 0.829890 3.63598i 0.0459633 0.201379i
\(327\) 8.00830 + 3.85659i 0.442860 + 0.213270i
\(328\) 7.76458 + 3.73922i 0.428727 + 0.206464i
\(329\) 3.48300 + 15.2600i 0.192024 + 0.841313i
\(330\) 1.83297 0.882711i 0.100902 0.0485917i
\(331\) −21.1803 −1.16418 −0.582088 0.813126i \(-0.697764\pi\)
−0.582088 + 0.813126i \(0.697764\pi\)
\(332\) −14.4967 + 6.98126i −0.795612 + 0.383147i
\(333\) 7.68528 + 9.63704i 0.421151 + 0.528107i
\(334\) −4.05678 5.08705i −0.221977 0.278351i
\(335\) 5.30539 2.55494i 0.289865 0.139591i
\(336\) −2.56231 −0.139785
\(337\) −30.6950 + 14.7819i −1.67206 + 0.805223i −0.674294 + 0.738463i \(0.735552\pi\)
−0.997769 + 0.0667606i \(0.978734\pi\)
\(338\) −1.78017 7.79942i −0.0968283 0.424233i
\(339\) 4.42360 + 2.13030i 0.240257 + 0.115702i
\(340\) 24.6201 + 11.8564i 1.33521 + 0.643004i
\(341\) −3.10289 + 13.5947i −0.168031 + 0.736192i
\(342\) 4.89695 + 6.14058i 0.264797 + 0.332045i
\(343\) 12.5475 15.7341i 0.677501 0.849559i
\(344\) −3.60046 15.7747i −0.194124 0.850513i
\(345\) 0.655162 2.87045i 0.0352727 0.154540i
\(346\) −1.57610 + 1.97636i −0.0847315 + 0.106250i
\(347\) −32.1246 −1.72454 −0.862270 0.506449i \(-0.830958\pi\)
−0.862270 + 0.506449i \(0.830958\pi\)
\(348\) 0 0
\(349\) 4.52786 0.242371 0.121186 0.992630i \(-0.461330\pi\)
0.121186 + 0.992630i \(0.461330\pi\)
\(350\) 8.49071 10.6470i 0.453847 0.569107i
\(351\) −0.182392 + 0.799110i −0.00973534 + 0.0426533i
\(352\) 1.72764 + 7.56927i 0.0920834 + 0.403444i
\(353\) −11.9240 + 14.9522i −0.634651 + 0.795827i −0.990323 0.138784i \(-0.955681\pi\)
0.355672 + 0.934611i \(0.384252\pi\)
\(354\) −1.45039 1.81873i −0.0770871 0.0966642i
\(355\) −8.98110 + 39.3488i −0.476667 + 2.08841i
\(356\) −6.86361 3.30534i −0.363771 0.175183i
\(357\) 5.45602 + 2.62748i 0.288763 + 0.139061i
\(358\) −2.20041 9.64062i −0.116295 0.509522i
\(359\) −21.4106 + 10.3108i −1.13001 + 0.544182i −0.902970 0.429704i \(-0.858618\pi\)
−0.227036 + 0.973886i \(0.572904\pi\)
\(360\) −22.5623 −1.18914
\(361\) −4.11050 + 1.97951i −0.216342 + 0.104185i
\(362\) −2.29055 2.87226i −0.120389 0.150963i
\(363\) −3.50279 4.39236i −0.183849 0.230539i
\(364\) 0.769519 0.370581i 0.0403338 0.0194237i
\(365\) 52.8328 2.76540
\(366\) 0.212690 0.102426i 0.0111175 0.00535390i
\(367\) 6.06826 + 26.5868i 0.316761 + 1.38782i 0.843197 + 0.537604i \(0.180671\pi\)
−0.526437 + 0.850214i \(0.676472\pi\)
\(368\) 2.06484 + 0.994373i 0.107637 + 0.0518353i
\(369\) −9.09093 4.37796i −0.473255 0.227908i
\(370\) −2.49552 + 10.9336i −0.129736 + 0.568411i
\(371\) 2.78833 + 3.49646i 0.144763 + 0.181527i
\(372\) −6.29112 + 7.88881i −0.326179 + 0.409016i
\(373\) −4.58794 20.1011i −0.237555 1.04080i −0.943199 0.332229i \(-0.892199\pi\)
0.705644 0.708566i \(-0.250658\pi\)
\(374\) 0.832817 3.64881i 0.0430639 0.188675i
\(375\) 7.20898 9.03977i 0.372270 0.466812i
\(376\) 15.6525 0.807215
\(377\) 0 0
\(378\) −4.79837 −0.246802
\(379\) 15.1457 18.9921i 0.777982 0.975558i −0.222018 0.975043i \(-0.571264\pi\)
1.00000 0.000515656i \(-0.000164138\pi\)
\(380\) 6.73582 29.5116i 0.345540 1.51391i
\(381\) 2.19274 + 9.60704i 0.112338 + 0.492184i
\(382\) 6.56402 8.23102i 0.335844 0.421135i
\(383\) −17.9902 22.5590i −0.919258 1.15271i −0.987903 0.155072i \(-0.950439\pi\)
0.0686449 0.997641i \(-0.478132\pi\)
\(384\) −1.56531 + 6.85807i −0.0798794 + 0.349975i
\(385\) 10.7304 + 5.16748i 0.546871 + 0.263359i
\(386\) −6.94485 3.34446i −0.353484 0.170229i
\(387\) 4.21550 + 18.4693i 0.214286 + 0.938847i
\(388\) −5.19312 + 2.50088i −0.263641 + 0.126963i
\(389\) 19.1246 0.969656 0.484828 0.874609i \(-0.338882\pi\)
0.484828 + 0.874609i \(0.338882\pi\)
\(390\) −0.313108 + 0.150785i −0.0158549 + 0.00763530i
\(391\) −3.37708 4.23472i −0.170786 0.214159i
\(392\) −2.78833 3.49646i −0.140832 0.176598i
\(393\) 7.97727 3.84165i 0.402400 0.193786i
\(394\) 3.88854 0.195902
\(395\) −21.1477 + 10.1842i −1.06405 + 0.512422i
\(396\) −1.30266 5.70733i −0.0654611 0.286804i
\(397\) 12.6638 + 6.09855i 0.635577 + 0.306078i 0.723786 0.690024i \(-0.242400\pi\)
−0.0882095 + 0.996102i \(0.528115\pi\)
\(398\) −3.25974 1.56981i −0.163396 0.0786873i
\(399\) 1.49272 6.54002i 0.0747293 0.327410i
\(400\) 11.3915 + 14.2845i 0.569574 + 0.714223i
\(401\) 15.6302 19.5996i 0.780535 0.978759i −0.219460 0.975621i \(-0.570430\pi\)
0.999995 0.00313805i \(-0.000998873\pi\)
\(402\) −0.129861 0.568960i −0.00647690 0.0283772i
\(403\) 0.530037 2.32225i 0.0264030 0.115679i
\(404\) −0.623490 + 0.781831i −0.0310198 + 0.0388976i
\(405\) 22.0000 1.09319
\(406\) 0 0
\(407\) −6.50658 −0.322519
\(408\) 3.77568 4.73456i 0.186924 0.234396i
\(409\) 6.10072 26.7290i 0.301661 1.32167i −0.565957 0.824435i \(-0.691493\pi\)
0.867619 0.497230i \(-0.165650\pi\)
\(410\) −2.04282 8.95017i −0.100888 0.442017i
\(411\) −2.75359 + 3.45289i −0.135824 + 0.170318i
\(412\) −9.26138 11.6134i −0.456275 0.572151i
\(413\) 3.03030 13.2766i 0.149111 0.653299i
\(414\) 1.80194 + 0.867767i 0.0885604 + 0.0426484i
\(415\) 34.5307 + 16.6291i 1.69505 + 0.816292i
\(416\) −0.295116 1.29299i −0.0144692 0.0633939i
\(417\) −0.719310 + 0.346401i −0.0352248 + 0.0169634i
\(418\) −4.14590 −0.202783
\(419\) 15.8231 7.62000i 0.773009 0.372261i −0.00542744 0.999985i \(-0.501728\pi\)
0.778436 + 0.627724i \(0.216013\pi\)
\(420\) 5.37326 + 6.73785i 0.262188 + 0.328773i
\(421\) 19.3497 + 24.2637i 0.943045 + 1.18254i 0.983049 + 0.183341i \(0.0586913\pi\)
−0.0400047 + 0.999199i \(0.512737\pi\)
\(422\) 6.48844 3.12467i 0.315852 0.152106i
\(423\) −18.3262 −0.891052
\(424\) 4.02926 1.94039i 0.195678 0.0942335i
\(425\) −9.60853 42.0977i −0.466082 2.04204i
\(426\) 3.60388 + 1.73553i 0.174608 + 0.0840869i
\(427\) 1.24511 + 0.599613i 0.0602550 + 0.0290173i
\(428\) 2.43533 10.6699i 0.117716 0.515748i
\(429\) −0.125712 0.157638i −0.00606942 0.00761082i
\(430\) −10.7465 + 13.4757i −0.518243 + 0.649856i
\(431\) −3.24808 14.2308i −0.156455 0.685472i −0.990925 0.134419i \(-0.957083\pi\)
0.834470 0.551053i \(-0.185774\pi\)
\(432\) 1.43252 6.27629i 0.0689222 0.301968i
\(433\) −6.47305 + 8.11695i −0.311075 + 0.390076i −0.912651 0.408740i \(-0.865968\pi\)
0.601576 + 0.798816i \(0.294540\pi\)
\(434\) 13.9443 0.669346
\(435\) 0 0
\(436\) 23.2705 1.11446
\(437\) −3.74094 + 4.69099i −0.178953 + 0.224400i
\(438\) 1.16513 5.10479i 0.0556723 0.243916i
\(439\) 4.66054 + 20.4192i 0.222435 + 0.974553i 0.955638 + 0.294543i \(0.0951674\pi\)
−0.733203 + 0.680010i \(0.761975\pi\)
\(440\) 7.42566 9.31148i 0.354004 0.443907i
\(441\) 3.26463 + 4.09372i 0.155459 + 0.194939i
\(442\) −0.142262 + 0.623291i −0.00676672 + 0.0296469i
\(443\) −1.72070 0.828644i −0.0817528 0.0393701i 0.392561 0.919726i \(-0.371589\pi\)
−0.474313 + 0.880356i \(0.657304\pi\)
\(444\) −4.24195 2.04281i −0.201314 0.0969476i
\(445\) 4.03784 + 17.6909i 0.191412 + 0.838631i
\(446\) 1.48883 0.716982i 0.0704981 0.0339501i
\(447\) 5.94427 0.281154
\(448\) −0.475589 + 0.229032i −0.0224695 + 0.0108207i
\(449\) 16.2884 + 20.4250i 0.768698 + 0.963917i 0.999960 0.00897427i \(-0.00285664\pi\)
−0.231261 + 0.972892i \(0.574285\pi\)
\(450\) 9.94109 + 12.4657i 0.468628 + 0.587640i
\(451\) 4.79877 2.31097i 0.225965 0.108819i
\(452\) 12.8541 0.604606
\(453\) −1.48883 + 0.716982i −0.0699513 + 0.0336868i
\(454\) −2.87271 12.5862i −0.134823 0.590697i
\(455\) −1.83297 0.882711i −0.0859309 0.0413821i
\(456\) −6.04388 2.91058i −0.283031 0.136300i
\(457\) −4.16297 + 18.2392i −0.194735 + 0.853191i 0.779274 + 0.626683i \(0.215588\pi\)
−0.974009 + 0.226508i \(0.927269\pi\)
\(458\) 0.883116 + 1.10739i 0.0412653 + 0.0517450i
\(459\) −9.48626 + 11.8954i −0.442781 + 0.555230i
\(460\) −1.71524 7.51494i −0.0799733 0.350386i
\(461\) −8.67358 + 38.0014i −0.403969 + 1.76990i 0.207094 + 0.978321i \(0.433599\pi\)
−0.611063 + 0.791582i \(0.709258\pi\)
\(462\) 0.735930 0.922827i 0.0342386 0.0429338i
\(463\) 10.7082 0.497652 0.248826 0.968548i \(-0.419955\pi\)
0.248826 + 0.968548i \(0.419955\pi\)
\(464\) 0 0
\(465\) 24.0344 1.11457
\(466\) −5.87103 + 7.36204i −0.271970 + 0.341040i
\(467\) −3.99298 + 17.4944i −0.184773 + 0.809543i 0.794543 + 0.607207i \(0.207710\pi\)
−0.979316 + 0.202336i \(0.935147\pi\)
\(468\) 0.222521 + 0.974928i 0.0102860 + 0.0450661i
\(469\) 2.13010 2.67106i 0.0983587 0.123338i
\(470\) −10.3959 13.0361i −0.479528 0.601309i
\(471\) 2.00269 8.77435i 0.0922790 0.404301i
\(472\) −12.2694 5.90864i −0.564746 0.271967i
\(473\) −9.00969 4.33884i −0.414266 0.199500i
\(474\) 0.517637 + 2.26791i 0.0237758 + 0.104169i
\(475\) −43.0959 + 20.7539i −1.97737 + 0.952253i
\(476\) 15.8541 0.726672
\(477\) −4.71753 + 2.27184i −0.216001 + 0.104021i
\(478\) 10.6903 + 13.4052i 0.488963 + 0.613140i
\(479\) 6.97083 + 8.74114i 0.318505 + 0.399393i 0.915151 0.403112i \(-0.132072\pi\)
−0.596645 + 0.802505i \(0.703500\pi\)
\(480\) 12.0567 5.80622i 0.550312 0.265016i
\(481\) 1.11146 0.0506780
\(482\) −2.59064 + 1.24758i −0.118000 + 0.0568259i
\(483\) −0.380111 1.66538i −0.0172957 0.0757772i
\(484\) −13.2516 6.38165i −0.602347 0.290075i
\(485\) 12.3698 + 5.95700i 0.561686 + 0.270494i
\(486\) 1.91769 8.40196i 0.0869883 0.381121i
\(487\) 26.5372 + 33.2766i 1.20251 + 1.50790i 0.808178 + 0.588938i \(0.200454\pi\)
0.394335 + 0.918967i \(0.370975\pi\)
\(488\) 0.861642 1.08046i 0.0390047 0.0489103i
\(489\) −0.829890 3.63598i −0.0375289 0.164425i
\(490\) −1.06007 + 4.64449i −0.0478893 + 0.209817i
\(491\) 9.43004 11.8249i 0.425572 0.533650i −0.522105 0.852881i \(-0.674853\pi\)
0.947677 + 0.319231i \(0.103425\pi\)
\(492\) 3.85410 0.173756
\(493\) 0 0
\(494\) 0.708204 0.0318636
\(495\) −8.69411 + 10.9021i −0.390771 + 0.490012i
\(496\) −4.16297 + 18.2392i −0.186923 + 0.818962i
\(497\) 5.21064 + 22.8293i 0.233729 + 1.02403i
\(498\) 2.36825 2.96969i 0.106124 0.133075i
\(499\) 15.3920 + 19.3010i 0.689042 + 0.864032i 0.996152 0.0876423i \(-0.0279332\pi\)
−0.307110 + 0.951674i \(0.599362\pi\)
\(500\) 6.73582 29.5116i 0.301235 1.31980i
\(501\) −5.86222 2.82310i −0.261905 0.126127i
\(502\) 10.9431 + 5.26991i 0.488413 + 0.235207i
\(503\) 3.17549 + 13.9127i 0.141588 + 0.620337i 0.995067 + 0.0992095i \(0.0316314\pi\)
−0.853479 + 0.521128i \(0.825511\pi\)
\(504\) −11.7938 + 5.67961i −0.525339 + 0.252990i
\(505\) 2.38197 0.105996
\(506\) −0.951178 + 0.458063i −0.0422850 + 0.0203634i
\(507\) −4.98792 6.25465i −0.221521 0.277779i
\(508\) 16.0850 + 20.1700i 0.713657 + 0.894898i
\(509\) −28.4367 + 13.6944i −1.26043 + 0.606992i −0.940289 0.340377i \(-0.889445\pi\)
−0.320143 + 0.947369i \(0.603731\pi\)
\(510\) −6.45085 −0.285648
\(511\) 27.6169 13.2996i 1.22170 0.588340i
\(512\) 4.16297 + 18.2392i 0.183979 + 0.806064i
\(513\) 15.1850 + 7.31272i 0.670435 + 0.322865i
\(514\) −12.9075 6.21592i −0.569325 0.274173i
\(515\) −7.87323 + 34.4949i −0.346936 + 1.52003i
\(516\) −4.51161 5.65739i −0.198613 0.249053i
\(517\) 6.03149 7.56325i 0.265265 0.332631i
\(518\) 1.44785 + 6.34344i 0.0636149 + 0.278715i
\(519\) −0.562503 + 2.46449i −0.0246911 + 0.108179i
\(520\) −1.26845 + 1.59059i −0.0556254 + 0.0697520i
\(521\) 4.09017 0.179194 0.0895968 0.995978i \(-0.471442\pi\)
0.0895968 + 0.995978i \(0.471442\pi\)
\(522\) 0 0
\(523\) −20.3820 −0.891241 −0.445621 0.895222i \(-0.647017\pi\)
−0.445621 + 0.895222i \(0.647017\pi\)
\(524\) 14.4527 18.1231i 0.631369 0.791712i
\(525\) 3.03030 13.2766i 0.132253 0.579438i
\(526\) 2.29780 + 10.0673i 0.100189 + 0.438957i
\(527\) 27.5675 34.5685i 1.20086 1.50583i
\(528\) 0.987354 + 1.23810i 0.0429690 + 0.0538815i
\(529\) 4.77800 20.9338i 0.207739 0.910165i
\(530\) −4.29215 2.06699i −0.186439 0.0897844i
\(531\) 14.3653 + 6.91796i 0.623401 + 0.300214i
\(532\) −3.90798 17.1220i −0.169432 0.742332i
\(533\) −0.819729 + 0.394760i −0.0355064 + 0.0170990i
\(534\) 1.79837 0.0778232
\(535\) −23.4873 + 11.3109i −1.01544 + 0.489011i
\(536\) −2.13010 2.67106i −0.0920061 0.115372i
\(537\) −6.16541 7.73117i −0.266057 0.333625i
\(538\) 3.34098 1.60893i 0.144040 0.0693659i
\(539\) −2.76393 −0.119051
\(540\) −19.5082 + 9.39466i −0.839500 + 0.404282i
\(541\) −3.24808 14.2308i −0.139646 0.611829i −0.995512 0.0946319i \(-0.969833\pi\)
0.855866 0.517197i \(-0.173025\pi\)
\(542\) −5.66871 2.72991i −0.243492 0.117260i
\(543\) −3.30995 1.59399i −0.142043 0.0684045i
\(544\) 5.47803 24.0008i 0.234869 1.02903i
\(545\) −34.5598 43.3366i −1.48038 1.85634i
\(546\) −0.125712 + 0.157638i −0.00537997 + 0.00674627i
\(547\) −1.64264 7.19688i −0.0702343 0.307717i 0.927594 0.373591i \(-0.121874\pi\)
−0.997828 + 0.0658742i \(0.979016\pi\)
\(548\) −2.57286 + 11.2724i −0.109907 + 0.481534i
\(549\) −1.00883 + 1.26503i −0.0430557 + 0.0539902i
\(550\) −8.41641 −0.358877
\(551\) 0 0
\(552\) −1.70820 −0.0727060
\(553\) −8.49071 + 10.6470i −0.361062 + 0.452757i
\(554\) −2.94057 + 12.8835i −0.124933 + 0.547366i
\(555\) 2.49552 + 10.9336i 0.105929 + 0.464106i
\(556\) −1.30320 + 1.63416i −0.0552680 + 0.0693038i
\(557\) −3.43330 4.30522i −0.145473 0.182418i 0.703756 0.710441i \(-0.251505\pi\)
−0.849230 + 0.528024i \(0.822933\pi\)
\(558\) −3.63293 + 15.9169i −0.153794 + 0.673816i
\(559\) 1.53904 + 0.741162i 0.0650944 + 0.0313478i
\(560\) 14.3963 + 6.93290i 0.608356 + 0.292969i
\(561\) −0.832817 3.64881i −0.0351616 0.154053i
\(562\) 12.8765 6.20098i 0.543161 0.261572i
\(563\) −28.3951 −1.19671 −0.598356 0.801230i \(-0.704179\pi\)
−0.598356 + 0.801230i \(0.704179\pi\)
\(564\) 6.30678 3.03719i 0.265563 0.127889i
\(565\) −19.0900 23.9381i −0.803124 1.00709i
\(566\) 2.01766 + 2.53006i 0.0848084 + 0.106346i
\(567\) 11.4999 5.53806i 0.482951 0.232577i
\(568\) 23.4164 0.982531
\(569\) −1.75173 + 0.843588i −0.0734363 + 0.0353650i −0.470241 0.882538i \(-0.655833\pi\)
0.396805 + 0.917903i \(0.370119\pi\)
\(570\) 1.59011 + 6.96674i 0.0666025 + 0.291804i
\(571\) 31.0894 + 14.9718i 1.30105 + 0.626552i 0.950713 0.310072i \(-0.100353\pi\)
0.350336 + 0.936624i \(0.386067\pi\)
\(572\) −0.475589 0.229032i −0.0198854 0.00957629i
\(573\) 2.34267 10.2639i 0.0978664 0.428781i
\(574\) −3.32086 4.16422i −0.138610 0.173811i
\(575\) −7.59432 + 9.52297i −0.316705 + 0.397135i
\(576\) −0.137526 0.602539i −0.00573023 0.0251058i
\(577\) −0.615033 + 2.69463i −0.0256041 + 0.112179i −0.986115 0.166063i \(-0.946895\pi\)
0.960511 + 0.278242i \(0.0897517\pi\)
\(578\) −0.848370 + 1.06382i −0.0352875 + 0.0442492i
\(579\) −7.70820 −0.320342
\(580\) 0 0
\(581\) 22.2361 0.922508
\(582\) 0.848370 1.06382i 0.0351661 0.0440969i
\(583\) 0.615033 2.69463i 0.0254721 0.111600i
\(584\) −6.82082 29.8840i −0.282247 1.23661i
\(585\) 1.48513 1.86230i 0.0614026 0.0769965i
\(586\) 3.28611 + 4.12065i 0.135748 + 0.170223i
\(587\) −10.3735 + 45.4492i −0.428160 + 1.87589i 0.0518966 + 0.998652i \(0.483473\pi\)
−0.480056 + 0.877238i \(0.659384\pi\)
\(588\) −1.80194 0.867767i −0.0743107 0.0357861i
\(589\) −44.1283 21.2511i −1.81827 0.875635i
\(590\) 3.22802 + 14.1429i 0.132895 + 0.582253i
\(591\) 3.50346 1.68718i 0.144113 0.0694011i
\(592\) −8.72949 −0.358780
\(593\) 13.0079 6.26428i 0.534171 0.257243i −0.147295 0.989093i \(-0.547057\pi\)
0.681466 + 0.731849i \(0.261343\pi\)
\(594\) 1.84900 + 2.31857i 0.0758652 + 0.0951319i
\(595\) −23.5454 29.5250i −0.965268 1.21041i
\(596\) 14.0212 6.75223i 0.574329 0.276582i
\(597\) −3.61803 −0.148076
\(598\) 0.162481 0.0782465i 0.00664433 0.00319974i
\(599\) 2.90810 + 12.7412i 0.118822 + 0.520592i 0.998948 + 0.0458528i \(0.0146005\pi\)
−0.880126 + 0.474739i \(0.842542\pi\)
\(600\) −12.2694 5.90864i −0.500897 0.241219i
\(601\) 26.2714 + 12.6516i 1.07163 + 0.516071i 0.884633 0.466289i \(-0.154409\pi\)
0.187000 + 0.982360i \(0.440124\pi\)
\(602\) −2.22521 + 9.74928i −0.0906928 + 0.397351i
\(603\) 2.49396 + 3.12733i 0.101562 + 0.127355i
\(604\) −2.69737 + 3.38239i −0.109754 + 0.137627i
\(605\) 7.79590 + 34.1561i 0.316948 + 1.38864i
\(606\) 0.0525301 0.230149i 0.00213389 0.00934917i
\(607\) −6.84512 + 8.58350i −0.277835 + 0.348394i −0.901096 0.433620i \(-0.857236\pi\)
0.623261 + 0.782014i \(0.285807\pi\)
\(608\) −27.2705 −1.10597
\(609\) 0 0
\(610\) −1.47214 −0.0596050
\(611\) −1.03030 + 1.29196i −0.0416816 + 0.0522670i
\(612\) −4.13050 + 18.0969i −0.166966 + 0.731524i
\(613\) −6.12845 26.8505i −0.247526 1.08448i −0.933985 0.357313i \(-0.883693\pi\)
0.686459 0.727169i \(-0.259164\pi\)
\(614\) −7.39091 + 9.26791i −0.298273 + 0.374022i
\(615\) −5.72385 7.17748i −0.230808 0.289424i
\(616\) 1.53758 6.73659i 0.0619509 0.271425i
\(617\) −12.7760 6.15262i −0.514344 0.247695i 0.158661 0.987333i \(-0.449282\pi\)
−0.673005 + 0.739638i \(0.734997\pi\)
\(618\) 3.15932 + 1.52145i 0.127086 + 0.0612016i
\(619\) 1.57005 + 6.87883i 0.0631055 + 0.276483i 0.996630 0.0820308i \(-0.0261406\pi\)
−0.933524 + 0.358514i \(0.883283\pi\)
\(620\) 56.6917 27.3013i 2.27679 1.09644i
\(621\) 4.29180 0.172224
\(622\) −1.16387 + 0.560489i −0.0466669 + 0.0224736i
\(623\) 6.56402 + 8.23102i 0.262982 + 0.329769i
\(624\) −0.168660 0.211493i −0.00675181 0.00846650i
\(625\) −20.5717 + 9.90679i −0.822866 + 0.396271i
\(626\) 7.97871 0.318894
\(627\) −3.73533 + 1.79884i −0.149175 + 0.0718387i
\(628\) −5.24311 22.9715i −0.209223 0.916665i
\(629\) 18.5881 + 8.95154i 0.741154 + 0.356921i
\(630\) 12.5634 + 6.05019i 0.500536 + 0.241045i
\(631\) 6.27838 27.5074i 0.249938 1.09505i −0.681691 0.731641i \(-0.738755\pi\)
0.931629 0.363411i \(-0.118388\pi\)
\(632\) 8.49071 + 10.6470i 0.337742 + 0.423515i
\(633\) 4.49014 5.63046i 0.178467 0.223791i
\(634\) −3.81058 16.6953i −0.151338 0.663054i
\(635\) 13.6741 59.9101i 0.542640 2.37746i
\(636\) 1.24698 1.56366i 0.0494460 0.0620033i
\(637\) 0.472136 0.0187067
\(638\) 0 0
\(639\) −27.4164 −1.08458
\(640\) 27.3508 34.2968i 1.08113 1.35570i
\(641\) 2.46013 10.7785i 0.0971693 0.425727i −0.902821 0.430016i \(-0.858508\pi\)
0.999991 + 0.00428892i \(0.00136521\pi\)
\(642\) 0.574903 + 2.51882i 0.0226896 + 0.0994097i
\(643\) −23.3287 + 29.2533i −0.919996 + 1.15364i 0.0677709 + 0.997701i \(0.478411\pi\)
−0.987767 + 0.155938i \(0.950160\pi\)
\(644\) −2.78833 3.49646i −0.109876 0.137780i
\(645\) −3.83539 + 16.8039i −0.151018 + 0.661654i
\(646\) 11.8440 + 5.70379i 0.465998 + 0.224413i
\(647\) 27.5047 + 13.2455i 1.08132 + 0.520736i 0.887738 0.460348i \(-0.152275\pi\)
0.193581 + 0.981084i \(0.437990\pi\)
\(648\) −2.84024 12.4439i −0.111575 0.488843i
\(649\) −7.58292 + 3.65174i −0.297656 + 0.143343i
\(650\) 1.43769 0.0563910
\(651\) 12.5634 6.05019i 0.492397 0.237126i
\(652\) −6.08771 7.63375i −0.238413 0.298961i
\(653\) −29.9357 37.5382i −1.17147 1.46898i −0.853660 0.520830i \(-0.825622\pi\)
−0.317815 0.948153i \(-0.602949\pi\)
\(654\) −4.94940 + 2.38351i −0.193537 + 0.0932025i
\(655\) −55.2148 −2.15742
\(656\) 6.43823 3.10049i 0.251371 0.121054i
\(657\) 7.98595 + 34.9887i 0.311562 + 1.36504i
\(658\) −8.71576 4.19729i −0.339776 0.163627i
\(659\) −6.35699 3.06137i −0.247633 0.119254i 0.305950 0.952047i \(-0.401026\pi\)
−0.553584 + 0.832794i \(0.686740\pi\)
\(660\) 1.18520 5.19270i 0.0461338 0.202125i
\(661\) −23.3502 29.2803i −0.908218 1.13887i −0.989837 0.142206i \(-0.954580\pi\)
0.0816186 0.996664i \(-0.473991\pi\)
\(662\) 8.16159 10.2343i 0.317209 0.397768i
\(663\) 0.142262 + 0.623291i 0.00552500 + 0.0242066i
\(664\) 4.94799 21.6786i 0.192019 0.841291i
\(665\) −26.0823 + 32.7062i −1.01143 + 1.26829i
\(666\) −7.61803 −0.295193
\(667\) 0 0
\(668\) −17.0344 −0.659082
\(669\) 1.03030 1.29196i 0.0398338 0.0499500i
\(670\) −0.809825 + 3.54807i −0.0312863 + 0.137074i
\(671\) −0.190056 0.832688i −0.00733701 0.0321456i
\(672\) 4.84073 6.07009i 0.186735 0.234159i
\(673\) −4.03531 5.06012i −0.155550 0.195053i 0.697950 0.716147i \(-0.254096\pi\)
−0.853500 + 0.521093i \(0.825524\pi\)
\(674\) 4.68534 20.5278i 0.180473 0.790702i
\(675\) 30.8265 + 14.8452i 1.18651 + 0.571393i
\(676\) −18.8701 9.08738i −0.725774 0.349515i
\(677\) −9.08616 39.8091i −0.349209 1.52999i −0.778980 0.627048i \(-0.784263\pi\)
0.429771 0.902938i \(-0.358594\pi\)
\(678\) −2.73394 + 1.31659i −0.104996 + 0.0505635i
\(679\) 7.96556 0.305690
\(680\) −34.0241 + 16.3852i −1.30477 + 0.628342i
\(681\) −8.04915 10.0933i −0.308444 0.386777i
\(682\) −5.37326 6.73785i −0.205753 0.258006i
\(683\) −18.7889 + 9.04826i −0.718937 + 0.346222i −0.757322 0.653041i \(-0.773493\pi\)
0.0383853 + 0.999263i \(0.487779\pi\)
\(684\) 20.5623 0.786219
\(685\) 24.8136 11.9496i 0.948079 0.456571i
\(686\) 2.76765 + 12.1259i 0.105669 + 0.462967i
\(687\) 1.27614 + 0.614556i 0.0486878 + 0.0234468i
\(688\) −12.0878 5.82116i −0.460842 0.221930i
\(689\) −0.105060 + 0.460299i −0.00400247 + 0.0175360i
\(690\) 1.13454 + 1.42267i 0.0431912 + 0.0541600i
\(691\) 7.37764 9.25127i 0.280659 0.351935i −0.621442 0.783460i \(-0.713453\pi\)
0.902101 + 0.431525i \(0.142024\pi\)
\(692\) 1.47265 + 6.45211i 0.0559818 + 0.245272i
\(693\) −1.80023 + 7.88733i −0.0683852 + 0.299615i
\(694\) 12.3788 15.5226i 0.469894 0.589228i
\(695\) 4.97871 0.188853
\(696\) 0 0
\(697\) −16.8885 −0.639699
\(698\) −1.74476 + 2.18786i −0.0660400 + 0.0828116i
\(699\) −2.09535 + 9.18032i −0.0792533 + 0.347232i
\(700\) −7.93342 34.7586i −0.299855 1.31375i
\(701\) −13.1280 + 16.4620i −0.495839 + 0.621762i −0.965285 0.261199i \(-0.915882\pi\)
0.469446 + 0.882961i \(0.344454\pi\)
\(702\) −0.315846 0.396058i −0.0119208 0.0149483i
\(703\) 5.08552 22.2811i 0.191804 0.840348i
\(704\) 0.293930 + 0.141549i 0.0110779 + 0.00533484i
\(705\) −15.0225 7.23447i −0.565782 0.272466i
\(706\) −2.63012 11.5233i −0.0989859 0.433686i
\(707\) 1.24511 0.599613i 0.0468271 0.0225508i
\(708\) −6.09017 −0.228883
\(709\) 37.3961 18.0090i 1.40444 0.676343i 0.430384 0.902646i \(-0.358378\pi\)
0.974057 + 0.226302i \(0.0726638\pi\)
\(710\) −15.5525 19.5022i −0.583675 0.731905i
\(711\) −9.94109 12.4657i −0.372820 0.467502i
\(712\) 9.48528 4.56787i 0.355476 0.171188i
\(713\) −12.4721 −0.467085
\(714\) −3.37201 + 1.62387i −0.126194 + 0.0607719i
\(715\) 0.279788 + 1.22583i 0.0104635 + 0.0458434i
\(716\) −23.3248 11.2326i −0.871688 0.419783i
\(717\) 15.4479 + 7.43933i 0.576913 + 0.277827i
\(718\) 3.26815 14.3187i 0.121966 0.534369i
\(719\) 5.30376 + 6.65071i 0.197797 + 0.248030i 0.870832 0.491581i \(-0.163581\pi\)
−0.673035 + 0.739611i \(0.735010\pi\)
\(720\) −11.6644 + 14.6267i −0.434706 + 0.545104i
\(721\) 4.56788 + 20.0132i 0.170117 + 0.745330i
\(722\) 0.627433 2.74897i 0.0233507 0.102306i
\(723\) −1.79278 + 2.24807i −0.0666740 + 0.0836066i
\(724\) −9.61803 −0.357451
\(725\) 0 0
\(726\) 3.47214 0.128863
\(727\) −17.4925 + 21.9349i −0.648759 + 0.813519i −0.992068 0.125704i \(-0.959881\pi\)
0.343308 + 0.939223i \(0.388452\pi\)
\(728\) −0.262650 + 1.15075i −0.00973447 + 0.0426495i
\(729\) 1.89289 + 8.29330i 0.0701071 + 0.307159i
\(730\) −20.3585 + 25.5287i −0.753501 + 0.944861i
\(731\) 19.7697 + 24.7905i 0.731210 + 0.916909i
\(732\) 0.137526 0.602539i 0.00508309 0.0222705i
\(733\) 13.3521 + 6.43001i 0.493169 + 0.237498i 0.663902 0.747820i \(-0.268899\pi\)
−0.170733 + 0.985317i \(0.554613\pi\)
\(734\) −15.1850 7.31272i −0.560489 0.269917i
\(735\) 1.06007 + 4.64449i 0.0391014 + 0.171315i
\(736\) −6.25657 + 3.01301i −0.230620 + 0.111061i
\(737\) −2.11146 −0.0777765
\(738\) 5.61850 2.70573i 0.206820 0.0995992i
\(739\) 31.2174 + 39.1454i 1.14835 + 1.43999i 0.878920 + 0.476968i \(0.158264\pi\)
0.269432 + 0.963020i \(0.413164\pi\)
\(740\) 18.3061 + 22.9551i 0.672945 + 0.843846i
\(741\) 0.638070 0.307278i 0.0234401 0.0112881i
\(742\) −2.76393 −0.101467
\(743\) 31.7466 15.2884i 1.16467 0.560875i 0.251261 0.967919i \(-0.419155\pi\)
0.913409 + 0.407044i \(0.133440\pi\)
\(744\) −3.10289 13.5947i −0.113758 0.498404i
\(745\) −33.3979 16.0836i −1.22360 0.589257i
\(746\) 11.4807 + 5.52883i 0.420339 + 0.202425i
\(747\) −5.79321 + 25.3817i −0.211962 + 0.928668i
\(748\) −6.10919 7.66068i −0.223374 0.280102i
\(749\) −9.43004 + 11.8249i −0.344566 + 0.432072i
\(750\) 1.59011 + 6.96674i 0.0580627 + 0.254389i
\(751\) −4.12284 + 18.0633i −0.150444 + 0.659140i 0.842311 + 0.538991i \(0.181194\pi\)
−0.992756 + 0.120149i \(0.961663\pi\)
\(752\) 8.09210 10.1472i 0.295088 0.370029i
\(753\) 12.1459 0.442621
\(754\) 0 0
\(755\) 10.3050 0.375036
\(756\) −7.83247 + 9.82161i −0.284864 + 0.357208i
\(757\) −0.00473663 + 0.0207525i −0.000172156 + 0.000754264i −0.975014 0.222144i \(-0.928695\pi\)
0.974842 + 0.222898i \(0.0715517\pi\)
\(758\) 3.34074 + 14.6367i 0.121341 + 0.531630i
\(759\) −0.658236 + 0.825401i −0.0238924 + 0.0299602i
\(760\) 26.0823 + 32.7062i 0.946106 + 1.18638i
\(761\) −5.60789 + 24.5698i −0.203286 + 0.890653i 0.765634 + 0.643277i \(0.222426\pi\)
−0.968919 + 0.247377i \(0.920432\pi\)
\(762\) −5.48705 2.64243i −0.198775 0.0957250i
\(763\) −28.9743 13.9533i −1.04894 0.505143i
\(764\) −6.13319 26.8713i −0.221891 0.972168i
\(765\) 39.8361 19.1841i 1.44028 0.693602i
\(766\) 17.8328 0.644326
\(767\) 1.29532 0.623792i 0.0467712 0.0225238i
\(768\)