Properties

Label 841.2.d.g.190.2
Level $841$
Weight $2$
Character 841.190
Analytic conductor $6.715$
Analytic rank $0$
Dimension $12$
Inner twists $6$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [841,2,Mod(190,841)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(841, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("841.190");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 841 = 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 841.d (of order \(7\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.71541880999\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{7})\)
Coefficient field: 12.0.4413675765625.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} + 2x^{10} - 3x^{9} + 5x^{8} - 8x^{7} + 13x^{6} + 8x^{5} + 5x^{4} + 3x^{3} + 2x^{2} + x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 190.2
Root \(-0.556829 - 0.268155i\) of defining polynomial
Character \(\chi\) \(=\) 841.190
Dual form 841.2.d.g.571.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.556829 + 0.268155i) q^{2} +(0.385338 - 0.483198i) q^{3} +(-1.00883 - 1.26503i) q^{4} +(-3.47243 - 1.67223i) q^{5} +(0.344139 - 0.165729i) q^{6} +(-1.39417 + 1.74823i) q^{7} +(-0.497572 - 2.18001i) q^{8} +(0.582567 + 2.55239i) q^{9} +O(q^{10})\) \(q+(0.556829 + 0.268155i) q^{2} +(0.385338 - 0.483198i) q^{3} +(-1.00883 - 1.26503i) q^{4} +(-3.47243 - 1.67223i) q^{5} +(0.344139 - 0.165729i) q^{6} +(-1.39417 + 1.74823i) q^{7} +(-0.497572 - 2.18001i) q^{8} +(0.582567 + 2.55239i) q^{9} +(-1.48513 - 1.86230i) q^{10} +(-0.307516 + 1.34732i) q^{11} -1.00000 q^{12} +(0.0525301 - 0.230149i) q^{13} +(-1.24511 + 0.599613i) q^{14} +(-2.14608 + 1.03350i) q^{15} +(-0.412577 + 1.80762i) q^{16} +4.38197 q^{17} +(-0.360046 + 1.57747i) q^{18} +(3.02648 + 3.79509i) q^{19} +(1.38766 + 6.07972i) q^{20} +(0.307516 + 1.34732i) q^{21} +(-0.532524 + 0.667764i) q^{22} +(1.11366 - 0.536310i) q^{23} +(-1.24511 - 0.599613i) q^{24} +(6.14393 + 7.70425i) q^{25} +(0.0909659 - 0.114068i) q^{26} +(3.12829 + 1.50650i) q^{27} +3.61803 q^{28} -1.47214 q^{30} +(-9.09093 - 4.37796i) q^{31} +(-3.50279 + 4.39236i) q^{32} +(0.532524 + 0.667764i) q^{33} +(2.44001 + 1.17505i) q^{34} +(7.76458 - 3.73922i) q^{35} +(2.64115 - 3.31189i) q^{36} +(1.04767 + 4.59016i) q^{37} +(0.667563 + 2.92478i) q^{38} +(-0.0909659 - 0.114068i) q^{39} +(-1.91769 + 8.40196i) q^{40} -3.85410 q^{41} +(-0.190056 + 0.832688i) q^{42} +(-6.51947 + 3.13961i) q^{43} +(2.01463 - 0.970194i) q^{44} +(2.24527 - 9.83719i) q^{45} +0.763932 q^{46} +(-1.55765 + 6.82450i) q^{47} +(0.714456 + 0.895899i) q^{48} +(0.445042 + 1.94986i) q^{49} +(1.35519 + 5.93748i) q^{50} +(1.68854 - 2.11736i) q^{51} +(-0.344139 + 0.165729i) q^{52} +(1.80194 + 0.867767i) q^{53} +(1.33795 + 1.67773i) q^{54} +(3.32086 - 4.16422i) q^{55} +(4.50484 + 2.16942i) q^{56} +3.00000 q^{57} +6.09017 q^{59} +(3.47243 + 1.67223i) q^{60} +(0.385338 - 0.483198i) q^{61} +(-3.88812 - 4.87555i) q^{62} +(-5.27436 - 2.54000i) q^{63} +(0.212690 - 0.102426i) q^{64} +(-0.567270 + 0.711334i) q^{65} +(0.117461 + 0.514629i) q^{66} +(0.339982 + 1.48956i) q^{67} +(-4.42065 - 5.54332i) q^{68} +(0.169991 - 0.744779i) q^{69} +5.32624 q^{70} +(-2.33027 + 10.2096i) q^{71} +(5.27436 - 2.54000i) q^{72} +(-12.3507 + 5.94777i) q^{73} +(-0.647498 + 2.83687i) q^{74} +6.09017 q^{75} +(1.74770 - 7.65718i) q^{76} +(-1.92669 - 2.41599i) q^{77} +(-0.0200647 - 0.0879092i) q^{78} +(-1.35519 - 5.93748i) q^{79} +(4.45539 - 5.58689i) q^{80} +(-5.14291 + 2.47670i) q^{81} +(-2.14608 - 1.03350i) q^{82} +(-6.20015 - 7.77474i) q^{83} +(1.39417 - 1.74823i) q^{84} +(-15.2161 - 7.32766i) q^{85} -4.47214 q^{86} +3.09017 q^{88} +(4.24195 + 2.04281i) q^{89} +(3.88812 - 4.87555i) q^{90} +(0.329118 + 0.412701i) q^{91} +(-1.80194 - 0.867767i) q^{92} +(-5.61850 + 2.70573i) q^{93} +(-2.69737 + 3.38239i) q^{94} +(-4.16297 - 18.2392i) q^{95} +(0.772623 + 3.38508i) q^{96} +(-2.22106 - 2.78512i) q^{97} +(-0.275051 + 1.20508i) q^{98} -3.61803 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - q^{2} + q^{3} + q^{4} - q^{5} + 3 q^{6} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 12 q - q^{2} + q^{3} + q^{4} - q^{5} + 3 q^{6} + 3 q^{9} + 7 q^{10} - 5 q^{11} - 12 q^{12} - 4 q^{13} - 5 q^{14} - 7 q^{15} + 3 q^{16} + 66 q^{17} - q^{18} - 3 q^{19} + 8 q^{20} + 5 q^{21} - 5 q^{22} - 2 q^{23} - 5 q^{24} - 13 q^{25} - 7 q^{26} - 2 q^{27} + 30 q^{28} + 36 q^{30} - 9 q^{31} + 9 q^{32} + 5 q^{33} - 8 q^{34} + 15 q^{35} - 4 q^{36} - 4 q^{37} + 6 q^{38} + 7 q^{39} - 15 q^{40} - 6 q^{41} + 5 q^{42} - 10 q^{43} + 9 q^{45} + 36 q^{46} - 14 q^{47} - 9 q^{48} + 4 q^{49} + q^{50} + 8 q^{51} - 3 q^{52} + 4 q^{53} - 11 q^{54} + 5 q^{55} + 10 q^{56} + 36 q^{57} + 6 q^{59} + q^{60} + q^{61} + 8 q^{62} - 5 q^{63} - 4 q^{64} + 13 q^{65} + 10 q^{66} + 12 q^{67} + 3 q^{68} + 6 q^{69} - 30 q^{70} - 12 q^{71} + 5 q^{72} - 14 q^{73} - 17 q^{74} + 6 q^{75} + 9 q^{76} - 5 q^{77} + 11 q^{78} - q^{79} - 21 q^{80} + 2 q^{81} - 7 q^{82} + 2 q^{83} + 2 q^{85} - 30 q^{88} - 4 q^{89} - 8 q^{90} - 10 q^{91} - 4 q^{92} - 8 q^{93} - 7 q^{94} - 24 q^{95} - 2 q^{96} - 13 q^{97} + 2 q^{98} - 30 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/841\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{7}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.556829 + 0.268155i 0.393738 + 0.189614i 0.620268 0.784390i \(-0.287024\pi\)
−0.226530 + 0.974004i \(0.572738\pi\)
\(3\) 0.385338 0.483198i 0.222475 0.278975i −0.658050 0.752974i \(-0.728619\pi\)
0.880525 + 0.473999i \(0.157190\pi\)
\(4\) −1.00883 1.26503i −0.504414 0.632515i
\(5\) −3.47243 1.67223i −1.55292 0.747845i −0.556374 0.830932i \(-0.687808\pi\)
−0.996542 + 0.0830872i \(0.973522\pi\)
\(6\) 0.344139 0.165729i 0.140494 0.0676585i
\(7\) −1.39417 + 1.74823i −0.526945 + 0.660768i −0.972067 0.234702i \(-0.924589\pi\)
0.445122 + 0.895470i \(0.353160\pi\)
\(8\) −0.497572 2.18001i −0.175918 0.770748i
\(9\) 0.582567 + 2.55239i 0.194189 + 0.850798i
\(10\) −1.48513 1.86230i −0.469640 0.588910i
\(11\) −0.307516 + 1.34732i −0.0927197 + 0.406231i −0.999895 0.0145224i \(-0.995377\pi\)
0.907175 + 0.420754i \(0.138234\pi\)
\(12\) −1.00000 −0.288675
\(13\) 0.0525301 0.230149i 0.0145692 0.0638319i −0.967121 0.254318i \(-0.918149\pi\)
0.981690 + 0.190486i \(0.0610063\pi\)
\(14\) −1.24511 + 0.599613i −0.332769 + 0.160253i
\(15\) −2.14608 + 1.03350i −0.554115 + 0.266848i
\(16\) −0.412577 + 1.80762i −0.103144 + 0.451904i
\(17\) 4.38197 1.06278 0.531391 0.847126i \(-0.321669\pi\)
0.531391 + 0.847126i \(0.321669\pi\)
\(18\) −0.360046 + 1.57747i −0.0848638 + 0.371812i
\(19\) 3.02648 + 3.79509i 0.694323 + 0.870653i 0.996585 0.0825715i \(-0.0263133\pi\)
−0.302262 + 0.953225i \(0.597742\pi\)
\(20\) 1.38766 + 6.07972i 0.310289 + 1.35947i
\(21\) 0.307516 + 1.34732i 0.0671056 + 0.294009i
\(22\) −0.532524 + 0.667764i −0.113534 + 0.142368i
\(23\) 1.11366 0.536310i 0.232214 0.111828i −0.314159 0.949370i \(-0.601722\pi\)
0.546373 + 0.837542i \(0.316008\pi\)
\(24\) −1.24511 0.599613i −0.254157 0.122395i
\(25\) 6.14393 + 7.70425i 1.22879 + 1.54085i
\(26\) 0.0909659 0.114068i 0.0178399 0.0223705i
\(27\) 3.12829 + 1.50650i 0.602039 + 0.289927i
\(28\) 3.61803 0.683744
\(29\) 0 0
\(30\) −1.47214 −0.268774
\(31\) −9.09093 4.37796i −1.63278 0.786305i −0.999928 0.0120317i \(-0.996170\pi\)
−0.632851 0.774273i \(-0.718116\pi\)
\(32\) −3.50279 + 4.39236i −0.619211 + 0.776466i
\(33\) 0.532524 + 0.667764i 0.0927005 + 0.116243i
\(34\) 2.44001 + 1.17505i 0.418458 + 0.201519i
\(35\) 7.76458 3.73922i 1.31245 0.632044i
\(36\) 2.64115 3.31189i 0.440191 0.551982i
\(37\) 1.04767 + 4.59016i 0.172237 + 0.754618i 0.985075 + 0.172128i \(0.0550642\pi\)
−0.812838 + 0.582490i \(0.802079\pi\)
\(38\) 0.667563 + 2.92478i 0.108293 + 0.474463i
\(39\) −0.0909659 0.114068i −0.0145662 0.0182654i
\(40\) −1.91769 + 8.40196i −0.303214 + 1.32847i
\(41\) −3.85410 −0.601910 −0.300955 0.953638i \(-0.597305\pi\)
−0.300955 + 0.953638i \(0.597305\pi\)
\(42\) −0.190056 + 0.832688i −0.0293262 + 0.128487i
\(43\) −6.51947 + 3.13961i −0.994210 + 0.478786i −0.858970 0.512026i \(-0.828895\pi\)
−0.135240 + 0.990813i \(0.543181\pi\)
\(44\) 2.01463 0.970194i 0.303717 0.146262i
\(45\) 2.24527 9.83719i 0.334706 1.46644i
\(46\) 0.763932 0.112636
\(47\) −1.55765 + 6.82450i −0.227206 + 0.995455i 0.724700 + 0.689065i \(0.241978\pi\)
−0.951906 + 0.306390i \(0.900879\pi\)
\(48\) 0.714456 + 0.895899i 0.103123 + 0.129312i
\(49\) 0.445042 + 1.94986i 0.0635774 + 0.278551i
\(50\) 1.35519 + 5.93748i 0.191653 + 0.839686i
\(51\) 1.68854 2.11736i 0.236443 0.296490i
\(52\) −0.344139 + 0.165729i −0.0477236 + 0.0229825i
\(53\) 1.80194 + 0.867767i 0.247515 + 0.119197i 0.553529 0.832830i \(-0.313281\pi\)
−0.306013 + 0.952027i \(0.598995\pi\)
\(54\) 1.33795 + 1.67773i 0.182071 + 0.228310i
\(55\) 3.32086 4.16422i 0.447784 0.561503i
\(56\) 4.50484 + 2.16942i 0.601985 + 0.289901i
\(57\) 3.00000 0.397360
\(58\) 0 0
\(59\) 6.09017 0.792873 0.396436 0.918062i \(-0.370247\pi\)
0.396436 + 0.918062i \(0.370247\pi\)
\(60\) 3.47243 + 1.67223i 0.448288 + 0.215884i
\(61\) 0.385338 0.483198i 0.0493375 0.0618672i −0.756551 0.653935i \(-0.773117\pi\)
0.805888 + 0.592068i \(0.201688\pi\)
\(62\) −3.88812 4.87555i −0.493792 0.619196i
\(63\) −5.27436 2.54000i −0.664507 0.320010i
\(64\) 0.212690 0.102426i 0.0265862 0.0128033i
\(65\) −0.567270 + 0.711334i −0.0703612 + 0.0882301i
\(66\) 0.117461 + 0.514629i 0.0144584 + 0.0633465i
\(67\) 0.339982 + 1.48956i 0.0415354 + 0.181978i 0.991440 0.130561i \(-0.0416777\pi\)
−0.949905 + 0.312539i \(0.898821\pi\)
\(68\) −4.42065 5.54332i −0.536082 0.672226i
\(69\) 0.169991 0.744779i 0.0204645 0.0896608i
\(70\) 5.32624 0.636607
\(71\) −2.33027 + 10.2096i −0.276552 + 1.21165i 0.625568 + 0.780169i \(0.284867\pi\)
−0.902120 + 0.431484i \(0.857990\pi\)
\(72\) 5.27436 2.54000i 0.621590 0.299342i
\(73\) −12.3507 + 5.94777i −1.44554 + 0.696133i −0.981814 0.189847i \(-0.939201\pi\)
−0.463722 + 0.885981i \(0.653486\pi\)
\(74\) −0.647498 + 2.83687i −0.0752701 + 0.329780i
\(75\) 6.09017 0.703232
\(76\) 1.74770 7.65718i 0.200475 0.878339i
\(77\) −1.92669 2.41599i −0.219567 0.275328i
\(78\) −0.0200647 0.0879092i −0.00227188 0.00995376i
\(79\) −1.35519 5.93748i −0.152471 0.668018i −0.992162 0.124955i \(-0.960121\pi\)
0.839692 0.543064i \(-0.182736\pi\)
\(80\) 4.45539 5.58689i 0.498128 0.624633i
\(81\) −5.14291 + 2.47670i −0.571435 + 0.275189i
\(82\) −2.14608 1.03350i −0.236995 0.114131i
\(83\) −6.20015 7.77474i −0.680555 0.853389i 0.314850 0.949141i \(-0.398046\pi\)
−0.995405 + 0.0957523i \(0.969474\pi\)
\(84\) 1.39417 1.74823i 0.152116 0.190747i
\(85\) −15.2161 7.32766i −1.65041 0.794797i
\(86\) −4.47214 −0.482243
\(87\) 0 0
\(88\) 3.09017 0.329413
\(89\) 4.24195 + 2.04281i 0.449645 + 0.216538i 0.644981 0.764199i \(-0.276865\pi\)
−0.195336 + 0.980736i \(0.562580\pi\)
\(90\) 3.88812 4.87555i 0.409844 0.513929i
\(91\) 0.329118 + 0.412701i 0.0345009 + 0.0432628i
\(92\) −1.80194 0.867767i −0.187865 0.0904710i
\(93\) −5.61850 + 2.70573i −0.582612 + 0.280571i
\(94\) −2.69737 + 3.38239i −0.278212 + 0.348867i
\(95\) −4.16297 18.2392i −0.427111 1.87130i
\(96\) 0.772623 + 3.38508i 0.0788555 + 0.345489i
\(97\) −2.22106 2.78512i −0.225515 0.282786i 0.656183 0.754602i \(-0.272170\pi\)
−0.881697 + 0.471816i \(0.843599\pi\)
\(98\) −0.275051 + 1.20508i −0.0277843 + 0.121731i
\(99\) −3.61803 −0.363626
\(100\) 3.54793 15.5445i 0.354793 1.55445i
\(101\) −0.556829 + 0.268155i −0.0554066 + 0.0266824i −0.461382 0.887202i \(-0.652646\pi\)
0.405975 + 0.913884i \(0.366932\pi\)
\(102\) 1.50801 0.726218i 0.149315 0.0719063i
\(103\) −2.04282 + 8.95017i −0.201285 + 0.881886i 0.768871 + 0.639404i \(0.220819\pi\)
−0.970156 + 0.242482i \(0.922038\pi\)
\(104\) −0.527864 −0.0517613
\(105\) 1.18520 5.19270i 0.115664 0.506755i
\(106\) 0.770676 + 0.966397i 0.0748546 + 0.0938648i
\(107\) −1.50512 6.59435i −0.145505 0.637500i −0.994101 0.108458i \(-0.965409\pi\)
0.848596 0.529042i \(-0.177448\pi\)
\(108\) −1.25013 5.47718i −0.120294 0.527042i
\(109\) −8.96701 + 11.2443i −0.858884 + 1.07701i 0.137369 + 0.990520i \(0.456135\pi\)
−0.996253 + 0.0864862i \(0.972436\pi\)
\(110\) 2.96581 1.42826i 0.282778 0.136179i
\(111\) 2.62167 + 1.26253i 0.248838 + 0.119834i
\(112\) −2.58493 3.24139i −0.244252 0.306283i
\(113\) −4.95317 + 6.21108i −0.465955 + 0.584289i −0.958175 0.286181i \(-0.907614\pi\)
0.492220 + 0.870471i \(0.336185\pi\)
\(114\) 1.67049 + 0.804465i 0.156456 + 0.0753450i
\(115\) −4.76393 −0.444239
\(116\) 0 0
\(117\) 0.618034 0.0571373
\(118\) 3.39119 + 1.63311i 0.312184 + 0.150340i
\(119\) −6.10919 + 7.66068i −0.560028 + 0.702253i
\(120\) 3.32086 + 4.16422i 0.303151 + 0.380140i
\(121\) 8.18996 + 3.94408i 0.744542 + 0.358552i
\(122\) 0.344139 0.165729i 0.0311569 0.0150044i
\(123\) −1.48513 + 1.86230i −0.133910 + 0.167918i
\(124\) 3.63293 + 15.9169i 0.326247 + 1.42938i
\(125\) −4.16297 18.2392i −0.372347 1.63136i
\(126\) −2.25581 2.82869i −0.200963 0.252000i
\(127\) 3.54793 15.5445i 0.314828 1.37935i −0.531666 0.846954i \(-0.678434\pi\)
0.846494 0.532398i \(-0.178709\pi\)
\(128\) 11.3820 1.00603
\(129\) −0.995144 + 4.36001i −0.0876175 + 0.383877i
\(130\) −0.506620 + 0.243975i −0.0444335 + 0.0213981i
\(131\) 12.9075 6.21592i 1.12773 0.543088i 0.225460 0.974252i \(-0.427612\pi\)
0.902273 + 0.431165i \(0.141897\pi\)
\(132\) 0.307516 1.34732i 0.0267659 0.117269i
\(133\) −10.8541 −0.941170
\(134\) −0.210120 + 0.920597i −0.0181516 + 0.0795275i
\(135\) −8.34352 10.4624i −0.718096 0.900464i
\(136\) −2.18034 9.55271i −0.186963 0.819138i
\(137\) 1.59011 + 6.96674i 0.135852 + 0.595208i 0.996321 + 0.0857042i \(0.0273140\pi\)
−0.860468 + 0.509504i \(0.829829\pi\)
\(138\) 0.294372 0.369131i 0.0250586 0.0314225i
\(139\) −1.16387 + 0.560489i −0.0987180 + 0.0475401i −0.482591 0.875846i \(-0.660304\pi\)
0.383873 + 0.923386i \(0.374590\pi\)
\(140\) −12.5634 6.05019i −1.06180 0.511335i
\(141\) 2.69737 + 3.38239i 0.227159 + 0.284849i
\(142\) −4.03531 + 5.06012i −0.338636 + 0.424636i
\(143\) 0.293930 + 0.141549i 0.0245797 + 0.0118369i
\(144\) −4.85410 −0.404508
\(145\) 0 0
\(146\) −8.47214 −0.701159
\(147\) 1.11366 + 0.536310i 0.0918530 + 0.0442341i
\(148\) 4.74977 5.95602i 0.390428 0.489582i
\(149\) 5.99675 + 7.51968i 0.491273 + 0.616036i 0.964236 0.265046i \(-0.0853871\pi\)
−0.472963 + 0.881082i \(0.656816\pi\)
\(150\) 3.39119 + 1.63311i 0.276889 + 0.133343i
\(151\) −2.40898 + 1.16010i −0.196040 + 0.0944078i −0.529328 0.848417i \(-0.677556\pi\)
0.333288 + 0.942825i \(0.391842\pi\)
\(152\) 6.76742 8.48608i 0.548910 0.688312i
\(153\) 2.55279 + 11.1845i 0.206381 + 0.904214i
\(154\) −0.424977 1.86195i −0.0342456 0.150040i
\(155\) 24.2466 + 30.4043i 1.94753 + 2.44213i
\(156\) −0.0525301 + 0.230149i −0.00420577 + 0.0184267i
\(157\) −14.5623 −1.16220 −0.581099 0.813833i \(-0.697377\pi\)
−0.581099 + 0.813833i \(0.697377\pi\)
\(158\) 0.837554 3.66956i 0.0666322 0.291935i
\(159\) 1.11366 0.536310i 0.0883189 0.0425321i
\(160\) 19.5082 9.39466i 1.54226 0.742713i
\(161\) −0.615033 + 2.69463i −0.0484714 + 0.212367i
\(162\) −3.52786 −0.277175
\(163\) −1.34279 + 5.88315i −0.105175 + 0.460804i 0.894724 + 0.446619i \(0.147372\pi\)
−0.999899 + 0.0141841i \(0.995485\pi\)
\(164\) 3.88812 + 4.87555i 0.303612 + 0.380717i
\(165\) −0.732494 3.20926i −0.0570245 0.249841i
\(166\) −1.36759 5.99181i −0.106146 0.465054i
\(167\) 6.56402 8.23102i 0.507939 0.636935i −0.460061 0.887888i \(-0.652172\pi\)
0.967999 + 0.250952i \(0.0807438\pi\)
\(168\) 2.78415 1.34077i 0.214802 0.103443i
\(169\) 11.6624 + 5.61631i 0.897107 + 0.432024i
\(170\) −6.50780 8.16052i −0.499125 0.625883i
\(171\) −7.92344 + 9.93567i −0.605920 + 0.759800i
\(172\) 10.5487 + 5.08000i 0.804333 + 0.387346i
\(173\) 4.09017 0.310970 0.155485 0.987838i \(-0.450306\pi\)
0.155485 + 0.987838i \(0.450306\pi\)
\(174\) 0 0
\(175\) −22.0344 −1.66565
\(176\) −2.30856 1.11174i −0.174014 0.0838008i
\(177\) 2.34677 2.94276i 0.176394 0.221191i
\(178\) 1.81425 + 2.27500i 0.135984 + 0.170518i
\(179\) 14.4155 + 6.94214i 1.07747 + 0.518880i 0.886506 0.462718i \(-0.153126\pi\)
0.190960 + 0.981598i \(0.438840\pi\)
\(180\) −14.7094 + 7.08369i −1.09638 + 0.527987i
\(181\) 3.70619 4.64742i 0.275479 0.345440i −0.624775 0.780805i \(-0.714809\pi\)
0.900254 + 0.435365i \(0.143381\pi\)
\(182\) 0.0725948 + 0.318058i 0.00538108 + 0.0235761i
\(183\) −0.0849954 0.372389i −0.00628304 0.0275278i
\(184\) −1.72328 2.16093i −0.127042 0.159306i
\(185\) 4.03784 17.6909i 0.296868 1.30066i
\(186\) −3.85410 −0.282596
\(187\) −1.34753 + 5.90390i −0.0985409 + 0.431736i
\(188\) 10.2046 4.91427i 0.744246 0.358410i
\(189\) −6.99506 + 3.36864i −0.508816 + 0.245033i
\(190\) 2.57286 11.2724i 0.186655 0.817787i
\(191\) −17.0344 −1.23257 −0.616284 0.787524i \(-0.711363\pi\)
−0.616284 + 0.787524i \(0.711363\pi\)
\(192\) 0.0324654 0.142240i 0.00234299 0.0102653i
\(193\) −7.77625 9.75111i −0.559747 0.701900i 0.418764 0.908095i \(-0.362463\pi\)
−0.978511 + 0.206195i \(0.933892\pi\)
\(194\) −0.489908 2.14643i −0.0351733 0.154104i
\(195\) 0.125125 + 0.548208i 0.00896038 + 0.0392580i
\(196\) 2.01766 2.53006i 0.144118 0.180719i
\(197\) 5.66871 2.72991i 0.403879 0.194498i −0.220905 0.975295i \(-0.570901\pi\)
0.624784 + 0.780797i \(0.285187\pi\)
\(198\) −2.01463 0.970194i −0.143173 0.0689487i
\(199\) −3.64997 4.57692i −0.258740 0.324449i 0.635446 0.772145i \(-0.280816\pi\)
−0.894186 + 0.447696i \(0.852245\pi\)
\(200\) 13.7382 17.2272i 0.971441 1.21815i
\(201\) 0.850760 + 0.409704i 0.0600080 + 0.0288983i
\(202\) −0.381966 −0.0268750
\(203\) 0 0
\(204\) −4.38197 −0.306799
\(205\) 13.3831 + 6.44495i 0.934715 + 0.450135i
\(206\) −3.53753 + 4.43593i −0.246472 + 0.309066i
\(207\) 2.01766 + 2.53006i 0.140237 + 0.175851i
\(208\) 0.394349 + 0.189908i 0.0273432 + 0.0131678i
\(209\) −6.04388 + 2.91058i −0.418064 + 0.201329i
\(210\) 2.05240 2.57363i 0.141629 0.177597i
\(211\) −2.59292 11.3603i −0.178504 0.782077i −0.982322 0.187201i \(-0.940058\pi\)
0.803818 0.594876i \(-0.202799\pi\)
\(212\) −0.720093 3.15493i −0.0494562 0.216682i
\(213\) 4.03531 + 5.06012i 0.276495 + 0.346714i
\(214\) 0.930213 4.07553i 0.0635881 0.278597i
\(215\) 27.8885 1.90198
\(216\) 1.72764 7.56927i 0.117551 0.515024i
\(217\) 20.3279 9.78942i 1.37995 0.664549i
\(218\) −8.00830 + 3.85659i −0.542391 + 0.261202i
\(219\) −1.88523 + 8.25972i −0.127392 + 0.558140i
\(220\) −8.61803 −0.581028
\(221\) 0.230185 1.00851i 0.0154839 0.0678395i
\(222\) 1.12127 + 1.40603i 0.0752546 + 0.0943662i
\(223\) −0.594968 2.60673i −0.0398420 0.174559i 0.951092 0.308907i \(-0.0999632\pi\)
−0.990934 + 0.134348i \(0.957106\pi\)
\(224\) −2.79538 12.2473i −0.186774 0.818310i
\(225\) −16.0850 + 20.1700i −1.07233 + 1.34467i
\(226\) −4.42360 + 2.13030i −0.294254 + 0.141705i
\(227\) 18.8199 + 9.06320i 1.24912 + 0.601546i 0.937276 0.348587i \(-0.113338\pi\)
0.311846 + 0.950133i \(0.399053\pi\)
\(228\) −3.02648 3.79509i −0.200434 0.251336i
\(229\) −1.42891 + 1.79180i −0.0944251 + 0.118405i −0.826799 0.562497i \(-0.809841\pi\)
0.732374 + 0.680902i \(0.238412\pi\)
\(230\) −2.65270 1.27747i −0.174914 0.0842340i
\(231\) −1.90983 −0.125658
\(232\) 0 0
\(233\) 15.2361 0.998148 0.499074 0.866559i \(-0.333674\pi\)
0.499074 + 0.866559i \(0.333674\pi\)
\(234\) 0.344139 + 0.165729i 0.0224971 + 0.0108340i
\(235\) 16.8210 21.0928i 1.09728 1.37594i
\(236\) −6.14393 7.70425i −0.399936 0.501504i
\(237\) −3.39119 1.63311i −0.220281 0.106082i
\(238\) −5.45602 + 2.62748i −0.353661 + 0.170314i
\(239\) −17.2973 + 21.6901i −1.11887 + 1.40301i −0.214255 + 0.976778i \(0.568732\pi\)
−0.904612 + 0.426236i \(0.859839\pi\)
\(240\) −0.982743 4.30568i −0.0634358 0.277930i
\(241\) 1.03527 + 4.53583i 0.0666878 + 0.292178i 0.997264 0.0739193i \(-0.0235507\pi\)
−0.930576 + 0.366098i \(0.880694\pi\)
\(242\) 3.50279 + 4.39236i 0.225168 + 0.282351i
\(243\) −3.10289 + 13.5947i −0.199051 + 0.872098i
\(244\) −1.00000 −0.0640184
\(245\) 1.71524 7.51494i 0.109582 0.480112i
\(246\) −1.32635 + 0.638736i −0.0845649 + 0.0407243i
\(247\) 1.03242 0.497187i 0.0656912 0.0316352i
\(248\) −5.02059 + 21.9966i −0.318807 + 1.39679i
\(249\) −6.14590 −0.389480
\(250\) 2.57286 11.2724i 0.162722 0.712930i
\(251\) 12.2531 + 15.3649i 0.773410 + 0.969825i 0.999991 0.00416682i \(-0.00132634\pi\)
−0.226581 + 0.973992i \(0.572755\pi\)
\(252\) 2.10775 + 9.23465i 0.132776 + 0.581728i
\(253\) 0.380111 + 1.66538i 0.0238974 + 0.104701i
\(254\) 6.14393 7.70425i 0.385505 0.483407i
\(255\) −9.40404 + 4.52875i −0.588904 + 0.283601i
\(256\) 5.91243 + 2.84728i 0.369527 + 0.177955i
\(257\) −14.4527 18.1231i −0.901535 1.13049i −0.990915 0.134492i \(-0.957060\pi\)
0.0893797 0.995998i \(-0.471512\pi\)
\(258\) −1.72328 + 2.16093i −0.107287 + 0.134534i
\(259\) −9.48528 4.56787i −0.589386 0.283834i
\(260\) 1.47214 0.0912980
\(261\) 0 0
\(262\) 8.85410 0.547008
\(263\) −15.0536 7.24942i −0.928243 0.447018i −0.0922361 0.995737i \(-0.529401\pi\)
−0.836007 + 0.548719i \(0.815116\pi\)
\(264\) 1.19076 1.49317i 0.0732862 0.0918980i
\(265\) −4.80599 6.02652i −0.295229 0.370206i
\(266\) −6.04388 2.91058i −0.370574 0.178459i
\(267\) 2.62167 1.26253i 0.160443 0.0772655i
\(268\) 1.54135 1.93279i 0.0941530 0.118064i
\(269\) −1.33513 5.84957i −0.0814040 0.356654i 0.917778 0.397094i \(-0.129981\pi\)
−0.999182 + 0.0404396i \(0.987124\pi\)
\(270\) −1.84036 8.06315i −0.112001 0.490708i
\(271\) −6.34734 7.95931i −0.385573 0.483494i 0.550731 0.834683i \(-0.314349\pi\)
−0.936305 + 0.351189i \(0.885777\pi\)
\(272\) −1.80790 + 7.92091i −0.109620 + 0.480276i
\(273\) 0.326238 0.0197448
\(274\) −0.982743 + 4.30568i −0.0593697 + 0.260116i
\(275\) −12.2694 + 5.90864i −0.739874 + 0.356305i
\(276\) −1.11366 + 0.536310i −0.0670344 + 0.0322821i
\(277\) 4.75794 20.8459i 0.285877 1.25251i −0.604250 0.796795i \(-0.706527\pi\)
0.890127 0.455713i \(-0.150616\pi\)
\(278\) −0.798374 −0.0478833
\(279\) 5.87820 25.7541i 0.351919 1.54186i
\(280\) −12.0150 15.0663i −0.718032 0.900383i
\(281\) −5.14571 22.5448i −0.306967 1.34491i −0.859379 0.511340i \(-0.829149\pi\)
0.552411 0.833572i \(-0.313708\pi\)
\(282\) 0.594968 + 2.60673i 0.0354298 + 0.155228i
\(283\) −3.26463 + 4.09372i −0.194062 + 0.243347i −0.869337 0.494220i \(-0.835454\pi\)
0.675274 + 0.737567i \(0.264025\pi\)
\(284\) 15.2663 7.35184i 0.905886 0.436252i
\(285\) −10.4173 5.01670i −0.617066 0.297163i
\(286\) 0.125712 + 0.157638i 0.00743350 + 0.00932131i
\(287\) 5.37326 6.73785i 0.317173 0.397723i
\(288\) −13.2516 6.38165i −0.780860 0.376042i
\(289\) 2.20163 0.129507
\(290\) 0 0
\(291\) −2.20163 −0.129062
\(292\) 19.9838 + 9.62369i 1.16946 + 0.563184i
\(293\) −5.31704 + 6.66735i −0.310625 + 0.389511i −0.912498 0.409080i \(-0.865850\pi\)
0.601874 + 0.798591i \(0.294421\pi\)
\(294\) 0.476304 + 0.597266i 0.0277786 + 0.0348333i
\(295\) −21.1477 10.1842i −1.23126 0.592946i
\(296\) 9.48528 4.56787i 0.551321 0.265502i
\(297\) −2.99174 + 3.75152i −0.173598 + 0.217685i
\(298\) 1.32272 + 5.79524i 0.0766234 + 0.335709i
\(299\) −0.0649307 0.284480i −0.00375504 0.0164519i
\(300\) −6.14393 7.70425i −0.354720 0.444805i
\(301\) 3.60046 15.7747i 0.207527 0.909237i
\(302\) −1.65248 −0.0950893
\(303\) −0.0849954 + 0.372389i −0.00488286 + 0.0213932i
\(304\) −8.10872 + 3.90495i −0.465067 + 0.223964i
\(305\) −2.14608 + 1.03350i −0.122884 + 0.0591778i
\(306\) −1.57771 + 6.91240i −0.0901917 + 0.395156i
\(307\) 19.1803 1.09468 0.547340 0.836910i \(-0.315640\pi\)
0.547340 + 0.836910i \(0.315640\pi\)
\(308\) −1.11260 + 4.87464i −0.0633965 + 0.277758i
\(309\) 3.53753 + 4.43593i 0.201243 + 0.252351i
\(310\) 5.34817 + 23.4318i 0.303755 + 1.33084i
\(311\) 0.465107 + 2.03777i 0.0263738 + 0.115551i 0.986401 0.164354i \(-0.0525540\pi\)
−0.960028 + 0.279905i \(0.909697\pi\)
\(312\) −0.203406 + 0.255063i −0.0115156 + 0.0144401i
\(313\) 11.6314 5.60137i 0.657443 0.316608i −0.0752524 0.997165i \(-0.523976\pi\)
0.732695 + 0.680557i \(0.238262\pi\)
\(314\) −8.10872 3.90495i −0.457602 0.220369i
\(315\) 14.0674 + 17.6399i 0.792606 + 0.993897i
\(316\) −6.14393 + 7.70425i −0.345623 + 0.433398i
\(317\) 24.9642 + 12.0221i 1.40213 + 0.675231i 0.973592 0.228293i \(-0.0733144\pi\)
0.428538 + 0.903524i \(0.359029\pi\)
\(318\) 0.763932 0.0428392
\(319\) 0 0
\(320\) −0.909830 −0.0508610
\(321\) −3.76636 1.81378i −0.210217 0.101235i
\(322\) −1.06505 + 1.33553i −0.0593528 + 0.0744260i
\(323\) 13.2619 + 16.6300i 0.737914 + 0.925315i
\(324\) 8.32141 + 4.00738i 0.462301 + 0.222632i
\(325\) 2.09587 1.00932i 0.116258 0.0559868i
\(326\) −2.32530 + 2.91583i −0.128786 + 0.161493i
\(327\) 1.97789 + 8.66569i 0.109377 + 0.479214i
\(328\) 1.91769 + 8.40196i 0.105887 + 0.463921i
\(329\) −9.75916 12.2376i −0.538040 0.674681i
\(330\) 0.452706 1.98343i 0.0249206 0.109184i
\(331\) −21.1803 −1.16418 −0.582088 0.813126i \(-0.697764\pi\)
−0.582088 + 0.813126i \(0.697764\pi\)
\(332\) −3.58040 + 15.6868i −0.196500 + 0.860923i
\(333\) −11.1056 + 5.34815i −0.608581 + 0.293077i
\(334\) 5.86222 2.82310i 0.320767 0.154473i
\(335\) 1.31032 5.74091i 0.0715907 0.313659i
\(336\) −2.56231 −0.139785
\(337\) −7.58104 + 33.2147i −0.412966 + 1.80932i 0.156938 + 0.987609i \(0.449838\pi\)
−0.569903 + 0.821712i \(0.693019\pi\)
\(338\) 4.98792 + 6.25465i 0.271307 + 0.340208i
\(339\) 1.09254 + 4.78673i 0.0593386 + 0.259980i
\(340\) 6.08066 + 26.6411i 0.329770 + 1.44482i
\(341\) 8.69411 10.9021i 0.470813 0.590380i
\(342\) −7.07630 + 3.40777i −0.382643 + 0.184271i
\(343\) −18.1316 8.73174i −0.979017 0.471470i
\(344\) 10.0883 + 12.6503i 0.543923 + 0.682058i
\(345\) −1.83572 + 2.30192i −0.0988320 + 0.123931i
\(346\) 2.27753 + 1.09680i 0.122441 + 0.0589643i
\(347\) −32.1246 −1.72454 −0.862270 0.506449i \(-0.830958\pi\)
−0.862270 + 0.506449i \(0.830958\pi\)
\(348\) 0 0
\(349\) 4.52786 0.242371 0.121186 0.992630i \(-0.461330\pi\)
0.121186 + 0.992630i \(0.461330\pi\)
\(350\) −12.2694 5.90864i −0.655828 0.315830i
\(351\) 0.511050 0.640836i 0.0272778 0.0342053i
\(352\) −4.84073 6.07009i −0.258012 0.323537i
\(353\) 17.2307 + 8.29786i 0.917097 + 0.441650i 0.832034 0.554725i \(-0.187177\pi\)
0.0850629 + 0.996376i \(0.472891\pi\)
\(354\) 2.09587 1.00932i 0.111394 0.0536446i
\(355\) 25.1645 31.5553i 1.33559 1.67478i
\(356\) −1.69517 7.42703i −0.0898439 0.393632i
\(357\) 1.34753 + 5.90390i 0.0713187 + 0.312467i
\(358\) 6.16541 + 7.73117i 0.325852 + 0.408605i
\(359\) −5.28797 + 23.1681i −0.279089 + 1.22277i 0.619860 + 0.784712i \(0.287189\pi\)
−0.898949 + 0.438054i \(0.855668\pi\)
\(360\) −22.5623 −1.18914
\(361\) −1.01521 + 4.44792i −0.0534320 + 0.234101i
\(362\) 3.30995 1.59399i 0.173967 0.0837780i
\(363\) 5.06167 2.43757i 0.265669 0.127939i
\(364\) 0.190056 0.832688i 0.00996162 0.0436447i
\(365\) 52.8328 2.76540
\(366\) 0.0525301 0.230149i 0.00274579 0.0120301i
\(367\) −17.0029 21.3209i −0.887543 1.11294i −0.992952 0.118515i \(-0.962187\pi\)
0.105409 0.994429i \(-0.466385\pi\)
\(368\) 0.509973 + 2.23434i 0.0265842 + 0.116473i
\(369\) −2.24527 9.83719i −0.116884 0.512104i
\(370\) 6.99230 8.76807i 0.363512 0.455830i
\(371\) −4.02926 + 1.94039i −0.209189 + 0.100740i
\(372\) 9.09093 + 4.37796i 0.471343 + 0.226987i
\(373\) 12.8551 + 16.1198i 0.665614 + 0.834653i 0.993941 0.109911i \(-0.0350565\pi\)
−0.328328 + 0.944564i \(0.606485\pi\)
\(374\) −2.33350 + 2.92612i −0.120662 + 0.151306i
\(375\) −10.4173 5.01670i −0.537946 0.259061i
\(376\) 15.6525 0.807215
\(377\) 0 0
\(378\) −4.79837 −0.246802
\(379\) −21.8862 10.5398i −1.12422 0.541394i −0.223024 0.974813i \(-0.571593\pi\)
−0.901192 + 0.433419i \(0.857307\pi\)
\(380\) −18.8734 + 23.6664i −0.968183 + 1.21406i
\(381\) −6.14393 7.70425i −0.314763 0.394701i
\(382\) −9.48528 4.56787i −0.485309 0.233713i
\(383\) 25.9966 12.5193i 1.32837 0.639708i 0.371013 0.928628i \(-0.379010\pi\)
0.957353 + 0.288920i \(0.0932961\pi\)
\(384\) 4.38590 5.49975i 0.223817 0.280658i
\(385\) 2.65019 + 11.6112i 0.135066 + 0.591763i
\(386\) −1.71524 7.51494i −0.0873033 0.382501i
\(387\) −11.8116 14.8112i −0.600415 0.752897i
\(388\) −1.28260 + 5.61942i −0.0651139 + 0.285283i
\(389\) 19.1246 0.969656 0.484828 0.874609i \(-0.338882\pi\)
0.484828 + 0.874609i \(0.338882\pi\)
\(390\) −0.0773314 + 0.338811i −0.00391583 + 0.0171564i
\(391\) 4.88001 2.35009i 0.246793 0.118849i
\(392\) 4.02926 1.94039i 0.203508 0.0980043i
\(393\) 1.97022 8.63211i 0.0993846 0.435432i
\(394\) 3.88854 0.195902
\(395\) −5.22304 + 22.8836i −0.262800 + 1.15140i
\(396\) 3.64997 + 4.57692i 0.183418 + 0.229999i
\(397\) 3.12769 + 13.7033i 0.156974 + 0.687750i 0.990756 + 0.135656i \(0.0433141\pi\)
−0.833782 + 0.552094i \(0.813829\pi\)
\(398\) −0.805088 3.52732i −0.0403554 0.176809i
\(399\) −4.18250 + 5.24469i −0.209387 + 0.262563i
\(400\) −16.4612 + 7.92728i −0.823058 + 0.396364i
\(401\) −22.5863 10.8770i −1.12791 0.543171i −0.225579 0.974225i \(-0.572427\pi\)
−0.902326 + 0.431054i \(0.858142\pi\)
\(402\) 0.363864 + 0.456271i 0.0181479 + 0.0227567i
\(403\) −1.48513 + 1.86230i −0.0739797 + 0.0927676i
\(404\) 0.900969 + 0.433884i 0.0448249 + 0.0215865i
\(405\) 22.0000 1.09319
\(406\) 0 0
\(407\) −6.50658 −0.322519
\(408\) −5.45602 2.62748i −0.270113 0.130080i
\(409\) −17.0939 + 21.4350i −0.845237 + 1.05989i 0.152201 + 0.988350i \(0.451364\pi\)
−0.997437 + 0.0715435i \(0.977208\pi\)
\(410\) 5.72385 + 7.17748i 0.282681 + 0.354470i
\(411\) 3.97905 + 1.91621i 0.196272 + 0.0945195i
\(412\) 13.3831 6.44495i 0.659337 0.317520i
\(413\) −8.49071 + 10.6470i −0.417800 + 0.523905i
\(414\) 0.445042 + 1.94986i 0.0218726 + 0.0958302i
\(415\) 8.52839 + 37.3653i 0.418642 + 1.83419i
\(416\) 0.826896 + 1.03689i 0.0405419 + 0.0508379i
\(417\) −0.177655 + 0.778357i −0.00869980 + 0.0381163i
\(418\) −4.14590 −0.202783
\(419\) 3.90798 17.1220i 0.190917 0.836464i −0.785204 0.619237i \(-0.787442\pi\)
0.976121 0.217226i \(-0.0697010\pi\)
\(420\) −7.76458 + 3.73922i −0.378873 + 0.182455i
\(421\) −27.9611 + 13.4653i −1.36274 + 0.656261i −0.965246 0.261345i \(-0.915834\pi\)
−0.397493 + 0.917605i \(0.630120\pi\)
\(422\) 1.60251 7.02107i 0.0780091 0.341780i
\(423\) −18.3262 −0.891052
\(424\) 0.995144 4.36001i 0.0483285 0.211741i
\(425\) 26.9225 + 33.7597i 1.30593 + 1.63759i
\(426\) 0.890084 + 3.89971i 0.0431247 + 0.188942i
\(427\) 0.307516 + 1.34732i 0.0148818 + 0.0652013i
\(428\) −6.82364 + 8.55658i −0.329833 + 0.413598i
\(429\) 0.181659 0.0874823i 0.00877057 0.00422369i
\(430\) 15.5292 + 7.47845i 0.748883 + 0.360643i
\(431\) 9.10092 + 11.4122i 0.438376 + 0.549706i 0.951114 0.308839i \(-0.0999403\pi\)
−0.512738 + 0.858545i \(0.671369\pi\)
\(432\) −4.01384 + 5.03319i −0.193116 + 0.242160i
\(433\) 9.35383 + 4.50457i 0.449516 + 0.216476i 0.644924 0.764246i \(-0.276889\pi\)
−0.195408 + 0.980722i \(0.562603\pi\)
\(434\) 13.9443 0.669346
\(435\) 0 0
\(436\) 23.2705 1.11446
\(437\) 5.40581 + 2.60330i 0.258595 + 0.124533i
\(438\) −3.26463 + 4.09372i −0.155990 + 0.195606i
\(439\) −13.0585 16.3749i −0.623250 0.781531i 0.365548 0.930793i \(-0.380882\pi\)
−0.988798 + 0.149262i \(0.952310\pi\)
\(440\) −10.7304 5.16748i −0.511551 0.246350i
\(441\) −4.71753 + 2.27184i −0.224644 + 0.108183i
\(442\) 0.398610 0.499841i 0.0189599 0.0237750i
\(443\) −0.424977 1.86195i −0.0201913 0.0884638i 0.963828 0.266524i \(-0.0858751\pi\)
−0.984020 + 0.178060i \(0.943018\pi\)
\(444\) −1.04767 4.59016i −0.0497204 0.217839i
\(445\) −11.3138 14.1870i −0.536325 0.672530i
\(446\) 0.367710 1.61104i 0.0174116 0.0762852i
\(447\) 5.94427 0.281154
\(448\) −0.117461 + 0.514629i −0.00554950 + 0.0243140i
\(449\) −23.5375 + 11.3350i −1.11080 + 0.534934i −0.897039 0.441952i \(-0.854286\pi\)
−0.213763 + 0.976886i \(0.568572\pi\)
\(450\) −14.3653 + 6.91796i −0.677186 + 0.326116i
\(451\) 1.18520 5.19270i 0.0558089 0.244515i
\(452\) 12.8541 0.604606
\(453\) −0.367710 + 1.61104i −0.0172765 + 0.0756935i
\(454\) 8.04915 + 10.0933i 0.377765 + 0.473703i
\(455\) −0.452706 1.98343i −0.0212232 0.0929848i
\(456\) −1.49272 6.54002i −0.0699028 0.306264i
\(457\) 11.6644 14.6267i 0.545636 0.684206i −0.430194 0.902737i \(-0.641555\pi\)
0.975830 + 0.218530i \(0.0701262\pi\)
\(458\) −1.27614 + 0.614556i −0.0596301 + 0.0287163i
\(459\) 13.7080 + 6.60145i 0.639837 + 0.308129i
\(460\) 4.80599 + 6.02652i 0.224080 + 0.280988i
\(461\) 24.3028 30.4748i 1.13190 1.41935i 0.237893 0.971291i \(-0.423543\pi\)
0.894003 0.448061i \(-0.147885\pi\)
\(462\) −1.06345 0.512130i −0.0494761 0.0238265i
\(463\) 10.7082 0.497652 0.248826 0.968548i \(-0.419955\pi\)
0.248826 + 0.968548i \(0.419955\pi\)
\(464\) 0 0
\(465\) 24.0344 1.11457
\(466\) 8.48389 + 4.08563i 0.393009 + 0.189263i
\(467\) 11.1881 14.0294i 0.517722 0.649203i −0.452401 0.891814i \(-0.649433\pi\)
0.970124 + 0.242611i \(0.0780040\pi\)
\(468\) −0.623490 0.781831i −0.0288208 0.0361402i
\(469\) −3.07808 1.48232i −0.142132 0.0684474i
\(470\) 15.0225 7.23447i 0.692938 0.333701i
\(471\) −5.61141 + 7.03648i −0.258560 + 0.324224i
\(472\) −3.03030 13.2766i −0.139481 0.611105i
\(473\) −2.22521 9.74928i −0.102315 0.448272i
\(474\) −1.45039 1.81873i −0.0666184 0.0835369i
\(475\) −10.6438 + 46.6335i −0.488371 + 2.13969i
\(476\) 15.8541 0.726672
\(477\) −1.16513 + 5.10479i −0.0533479 + 0.233732i
\(478\) −15.4479 + 7.43933i −0.706571 + 0.340267i
\(479\) −10.0731 + 4.85097i −0.460253 + 0.221646i −0.649618 0.760260i \(-0.725071\pi\)
0.189365 + 0.981907i \(0.439357\pi\)
\(480\) 2.97777 13.0465i 0.135916 0.595486i
\(481\) 1.11146 0.0506780
\(482\) −0.639834 + 2.80330i −0.0291436 + 0.127687i
\(483\) 1.06505 + 1.33553i 0.0484613 + 0.0607686i
\(484\) −3.27288 14.3394i −0.148767 0.651793i
\(485\) 3.05510 + 13.3853i 0.138725 + 0.607793i
\(486\) −5.37326 + 6.73785i −0.243736 + 0.305635i
\(487\) −38.3473 + 18.4671i −1.73768 + 0.836824i −0.754009 + 0.656865i \(0.771882\pi\)
−0.983674 + 0.179959i \(0.942403\pi\)
\(488\) −1.24511 0.599613i −0.0563634 0.0271432i
\(489\) 2.32530 + 2.91583i 0.105154 + 0.131859i
\(490\) 2.97026 3.72459i 0.134183 0.168260i
\(491\) −13.6268 6.56232i −0.614969 0.296153i 0.100349 0.994952i \(-0.468004\pi\)
−0.715318 + 0.698799i \(0.753718\pi\)
\(492\) 3.85410 0.173756
\(493\) 0 0
\(494\) 0.708204 0.0318636
\(495\) 12.5634 + 6.05019i 0.564681 + 0.271936i
\(496\) 11.6644 14.6267i 0.523746 0.656757i
\(497\) −14.5999 18.3077i −0.654895 0.821212i
\(498\) −3.42222 1.64805i −0.153353 0.0738510i
\(499\) −22.2421 + 10.7113i −0.995695 + 0.479502i −0.859475 0.511177i \(-0.829210\pi\)
−0.136220 + 0.990679i \(0.543495\pi\)
\(500\) −18.8734 + 23.6664i −0.844042 + 1.05840i
\(501\) −1.44785 6.34344i −0.0646852 0.283404i
\(502\) 2.70272 + 11.8414i 0.120628 + 0.528506i
\(503\) −8.89752 11.1571i −0.396721 0.497472i 0.542849 0.839831i \(-0.317346\pi\)
−0.939569 + 0.342358i \(0.888774\pi\)
\(504\) −2.91284 + 12.7620i −0.129748 + 0.568463i
\(505\) 2.38197 0.105996
\(506\) −0.234922 + 1.02926i −0.0104435 + 0.0457561i
\(507\) 7.20775 3.47107i 0.320107 0.154156i
\(508\) −23.2435 + 11.1935i −1.03126 + 0.496631i
\(509\) −7.02327 + 30.7710i −0.311301 + 1.36390i 0.541077 + 0.840973i \(0.318017\pi\)
−0.852378 + 0.522926i \(0.824840\pi\)
\(510\) −6.45085 −0.285648
\(511\) 6.82082 29.8840i 0.301735 1.32199i
\(512\) −11.6644 14.6267i −0.515497 0.646413i
\(513\) 3.75039 + 16.4315i 0.165584 + 0.725470i
\(514\) −3.18789 13.9670i −0.140612 0.616060i
\(515\) 22.0603 27.6627i 0.972093 1.21897i
\(516\) 6.51947 3.13961i 0.287004 0.138214i
\(517\) −8.71576 4.19729i −0.383319 0.184597i
\(518\) −4.05678 5.08705i −0.178245 0.223512i
\(519\) 1.57610 1.97636i 0.0691830 0.0867527i
\(520\) 1.83297 + 0.882711i 0.0803810 + 0.0387094i
\(521\) 4.09017 0.179194 0.0895968 0.995978i \(-0.471442\pi\)
0.0895968 + 0.995978i \(0.471442\pi\)
\(522\) 0 0
\(523\) −20.3820 −0.891241 −0.445621 0.895222i \(-0.647017\pi\)
−0.445621 + 0.895222i \(0.647017\pi\)
\(524\) −20.8848 10.0576i −0.912355 0.439367i
\(525\) −8.49071 + 10.6470i −0.370565 + 0.464674i
\(526\) −6.43830 8.07338i −0.280723 0.352016i
\(527\) −39.8361 19.1841i −1.73529 0.835671i
\(528\) −1.42677 + 0.687095i −0.0620921 + 0.0299020i
\(529\) −13.3877 + 16.7876i −0.582072 + 0.729895i
\(530\) −1.06007 4.64449i −0.0460467 0.201744i
\(531\) 3.54793 + 15.5445i 0.153967 + 0.674575i
\(532\) 10.9499 + 13.7308i 0.474739 + 0.595304i
\(533\) −0.202456 + 0.887019i −0.00876935 + 0.0384210i
\(534\) 1.79837 0.0778232
\(535\) −5.80087 + 25.4153i −0.250794 + 1.09880i
\(536\) 3.07808 1.48232i 0.132953 0.0640266i
\(537\) 8.90927 4.29048i 0.384463 0.185148i
\(538\) 0.825153 3.61523i 0.0355749 0.155864i
\(539\) −2.76393 −0.119051
\(540\) −4.81813 + 21.1096i −0.207339 + 0.908413i
\(541\) 9.10092 + 11.4122i 0.391279 + 0.490649i 0.937985 0.346676i \(-0.112690\pi\)
−0.546706 + 0.837325i \(0.684118\pi\)
\(542\) −1.40006 6.13405i −0.0601376 0.263480i
\(543\) −0.817489 3.58165i −0.0350818 0.153703i
\(544\) −15.3491 + 19.2472i −0.658087 + 0.825215i
\(545\) 49.9403 24.0500i 2.13921 1.03019i
\(546\) 0.181659 + 0.0874823i 0.00777428 + 0.00374390i
\(547\) 4.60258 + 5.77145i 0.196792 + 0.246770i 0.870430 0.492292i \(-0.163841\pi\)
−0.673638 + 0.739061i \(0.735269\pi\)
\(548\) 7.20898 9.03977i 0.307952 0.386160i
\(549\) 1.45780 + 0.702039i 0.0622173 + 0.0299623i
\(550\) −8.41641 −0.358877
\(551\) 0 0
\(552\) −1.70820 −0.0727060
\(553\) 12.2694 + 5.90864i 0.521749 + 0.251261i
\(554\) 8.23928 10.3317i 0.350054 0.438953i
\(555\) −6.99230 8.76807i −0.296807 0.372184i
\(556\) 1.88318 + 0.906891i 0.0798645 + 0.0384607i
\(557\) 4.96126 2.38921i 0.210215 0.101234i −0.325814 0.945434i \(-0.605638\pi\)
0.536029 + 0.844200i \(0.319924\pi\)
\(558\) 10.1792 12.7644i 0.430922 0.540359i
\(559\) 0.380111 + 1.66538i 0.0160770 + 0.0704379i
\(560\) 3.55560 + 15.5781i 0.150251 + 0.658295i
\(561\) 2.33350 + 2.92612i 0.0985205 + 0.123541i
\(562\) 3.18022 13.9335i 0.134150 0.587748i
\(563\) −28.3951 −1.19671 −0.598356 0.801230i \(-0.704179\pi\)
−0.598356 + 0.801230i \(0.704179\pi\)
\(564\) 1.55765 6.82450i 0.0655888 0.287363i
\(565\) 27.5859 13.2847i 1.16055 0.558890i
\(566\) −2.91560 + 1.40408i −0.122552 + 0.0590178i
\(567\) 2.84024 12.4439i 0.119279 0.522595i
\(568\) 23.4164 0.982531
\(569\) −0.432641 + 1.89552i −0.0181373 + 0.0794645i −0.983187 0.182604i \(-0.941547\pi\)
0.965049 + 0.262068i \(0.0844046\pi\)
\(570\) −4.45539 5.58689i −0.186616 0.234009i
\(571\) 7.67844 + 33.6414i 0.321333 + 1.40785i 0.835184 + 0.549971i \(0.185361\pi\)
−0.513851 + 0.857879i \(0.671782\pi\)
\(572\) −0.117461 0.514629i −0.00491128 0.0215177i
\(573\) −6.56402 + 8.23102i −0.274216 + 0.343856i
\(574\) 4.79877 2.31097i 0.200297 0.0964579i
\(575\) 10.9741 + 5.28485i 0.457652 + 0.220394i
\(576\) 0.385338 + 0.483198i 0.0160557 + 0.0201333i
\(577\) 1.72328 2.16093i 0.0717412 0.0899607i −0.744666 0.667437i \(-0.767391\pi\)
0.816407 + 0.577477i \(0.195963\pi\)
\(578\) 1.22593 + 0.590377i 0.0509920 + 0.0245564i
\(579\) −7.70820 −0.320342
\(580\) 0 0
\(581\) 22.2361 0.922508
\(582\) −1.22593 0.590377i −0.0508164 0.0244719i
\(583\) −1.72328 + 2.16093i −0.0713711 + 0.0894965i
\(584\) 19.1115 + 23.9651i 0.790840 + 0.991682i
\(585\) −2.14608 1.03350i −0.0887294 0.0427298i
\(586\) −4.74857 + 2.28679i −0.196161 + 0.0944664i
\(587\) 29.0659 36.4474i 1.19968 1.50435i 0.386542 0.922272i \(-0.373669\pi\)
0.813135 0.582075i \(-0.197759\pi\)
\(588\) −0.445042 1.94986i −0.0183532 0.0804107i
\(589\) −10.8988 47.7507i −0.449077 1.96753i
\(590\) −9.04470 11.3417i −0.372365 0.466930i
\(591\) 0.865282 3.79105i 0.0355930 0.155943i
\(592\) −8.72949 −0.358780
\(593\) 3.21269 14.0757i 0.131929 0.578020i −0.865141 0.501529i \(-0.832771\pi\)
0.997070 0.0764913i \(-0.0243717\pi\)
\(594\) −2.67188 + 1.28671i −0.109628 + 0.0527942i
\(595\) 34.0241 16.3852i 1.39485 0.671726i
\(596\) 3.46294 15.1721i 0.141848 0.621475i
\(597\) −3.61803 −0.148076
\(598\) 0.0401294 0.175818i 0.00164101 0.00718975i
\(599\) −8.14832 10.2177i −0.332931 0.417482i 0.586985 0.809598i \(-0.300315\pi\)
−0.919916 + 0.392115i \(0.871743\pi\)
\(600\) −3.03030 13.2766i −0.123711 0.542015i
\(601\) 6.48850 + 28.4280i 0.264671 + 1.15960i 0.916119 + 0.400907i \(0.131305\pi\)
−0.651447 + 0.758694i \(0.725838\pi\)
\(602\) 6.23490 7.81831i 0.254115 0.318651i
\(603\) −3.60388 + 1.73553i −0.146761 + 0.0706764i
\(604\) 3.89781 + 1.87708i 0.158599 + 0.0763775i
\(605\) −21.8436 27.3910i −0.888069 1.11360i
\(606\) −0.147186 + 0.184565i −0.00597902 + 0.00749746i
\(607\) 9.89148 + 4.76349i 0.401483 + 0.193344i 0.623718 0.781649i \(-0.285621\pi\)
−0.222236 + 0.974993i \(0.571335\pi\)
\(608\) −27.2705 −1.10597
\(609\) 0 0
\(610\) −1.47214 −0.0596050
\(611\) 1.48883 + 0.716982i 0.0602316 + 0.0290060i
\(612\) 11.5734 14.5126i 0.467827 0.586637i
\(613\) 17.1715 + 21.5324i 0.693552 + 0.869687i 0.996523 0.0833128i \(-0.0265501\pi\)
−0.302971 + 0.953000i \(0.597979\pi\)
\(614\) 10.6802 + 5.14330i 0.431017 + 0.207567i
\(615\) 8.27120 3.98320i 0.333527 0.160618i
\(616\) −4.30821 + 5.40232i −0.173583 + 0.217666i
\(617\) −3.15542 13.8248i −0.127033 0.556566i −0.997884 0.0650196i \(-0.979289\pi\)
0.870851 0.491546i \(-0.163568\pi\)
\(618\) 0.780287 + 3.41866i 0.0313877 + 0.137519i
\(619\) −4.39917 5.51639i −0.176818 0.221722i 0.685523 0.728051i \(-0.259574\pi\)
−0.862341 + 0.506329i \(0.831002\pi\)
\(620\) 14.0017 61.3454i 0.562321 2.46369i
\(621\) 4.29180 0.172224
\(622\) −0.287452 + 1.25941i −0.0115258 + 0.0504977i
\(623\) −9.48528 + 4.56787i −0.380020 + 0.183008i
\(624\) 0.243721 0.117370i 0.00975665 0.00469855i
\(625\) −5.08078 + 22.2603i −0.203231 + 0.890414i
\(626\) 7.97871 0.318894
\(627\) −0.922549 + 4.04195i −0.0368431 + 0.161420i
\(628\) 14.6909 + 18.4218i 0.586229 + 0.735108i
\(629\) 4.59087 + 20.1139i 0.183050 + 0.801995i
\(630\) 3.10289 + 13.5947i 0.123622 + 0.541624i
\(631\) −17.5916 + 22.0592i −0.700312 + 0.878163i −0.997047 0.0767968i \(-0.975531\pi\)
0.296735 + 0.954960i \(0.404102\pi\)
\(632\) −12.2694 + 5.90864i −0.488052 + 0.235033i
\(633\) −6.48844 3.12467i −0.257892 0.124194i
\(634\) 10.6770 + 13.3886i 0.424039 + 0.531728i
\(635\) −38.3140 + 48.0442i −1.52044 + 1.90658i
\(636\) −1.80194 0.867767i −0.0714515 0.0344092i
\(637\) 0.472136 0.0187067
\(638\) 0 0
\(639\) −27.4164 −1.08458
\(640\) −39.5230 19.0333i −1.56229 0.752357i
\(641\) −6.89313 + 8.64372i −0.272262 + 0.341406i −0.899100 0.437744i \(-0.855778\pi\)
0.626837 + 0.779150i \(0.284349\pi\)
\(642\) −1.61084 2.01993i −0.0635749 0.0797204i
\(643\) 33.7110 + 16.2344i 1.32943 + 0.640221i 0.957606 0.288081i \(-0.0930173\pi\)
0.371827 + 0.928302i \(0.378732\pi\)
\(644\) 4.02926 1.94039i 0.158775 0.0764620i
\(645\) 10.7465 13.4757i 0.423144 0.530605i
\(646\) 2.92524 + 12.8163i 0.115092 + 0.504251i
\(647\) 6.79309 + 29.7625i 0.267064 + 1.17008i 0.913411 + 0.407039i \(0.133439\pi\)
−0.646347 + 0.763044i \(0.723704\pi\)
\(648\) 7.95818 + 9.97924i 0.312627 + 0.392022i
\(649\) −1.87283 + 8.20539i −0.0735149 + 0.322090i
\(650\) 1.43769 0.0563910
\(651\) 3.10289 13.5947i 0.121612 0.532817i
\(652\) 8.79700 4.23641i 0.344517 0.165911i
\(653\) 43.2584 20.8321i 1.69283 0.815224i 0.697729 0.716362i \(-0.254194\pi\)
0.995101 0.0988626i \(-0.0315204\pi\)
\(654\) −1.22240 + 5.35569i −0.0477997 + 0.209424i
\(655\) −55.2148 −2.15742
\(656\) 1.59011 6.96674i 0.0620834 0.272005i
\(657\) −22.3761 28.0588i −0.872976 1.09468i
\(658\) −2.15261 9.43122i −0.0839177 0.367667i
\(659\) −1.57005 6.87883i −0.0611604 0.267961i 0.935098 0.354390i \(-0.115312\pi\)
−0.996258 + 0.0864291i \(0.972454\pi\)
\(660\) −3.32086 + 4.16422i −0.129264 + 0.162092i
\(661\) 33.7420 16.2493i 1.31241 0.632025i 0.358900 0.933376i \(-0.383152\pi\)
0.953513 + 0.301351i \(0.0974375\pi\)
\(662\) −11.7938 5.67961i −0.458380 0.220744i
\(663\) −0.398610 0.499841i −0.0154807 0.0194122i
\(664\) −13.8640 + 17.3849i −0.538026 + 0.674663i
\(665\) 37.6901 + 18.1506i 1.46156 + 0.703849i
\(666\) −7.61803 −0.295193
\(667\) 0 0
\(668\) −17.0344 −0.659082
\(669\) −1.48883 0.716982i −0.0575615 0.0277201i
\(670\) 2.26908 2.84534i 0.0876622 0.109925i
\(671\) 0.532524 + 0.667764i 0.0205579 + 0.0257787i
\(672\) −6.99506 3.36864i −0.269840 0.129948i
\(673\) 5.83119 2.80815i 0.224776 0.108246i −0.318107 0.948055i \(-0.603047\pi\)
0.542883 + 0.839808i \(0.317333\pi\)
\(674\) −13.1280 + 16.4620i −0.505673 + 0.634094i
\(675\) 7.61351 + 33.3569i 0.293044 + 1.28391i
\(676\) −4.66054 20.4192i −0.179251 0.785352i
\(677\) 25.4588 + 31.9244i 0.978463 + 1.22695i 0.973903 + 0.226964i \(0.0728800\pi\)
0.00455972 + 0.999990i \(0.498549\pi\)
\(678\) −0.675227 + 2.95836i −0.0259319 + 0.113615i
\(679\) 7.96556 0.305690
\(680\) −8.40327 + 36.8171i −0.322251 + 1.41187i
\(681\) 11.6314 5.60137i 0.445714 0.214645i
\(682\) 7.76458 3.73922i 0.297321 0.143182i
\(683\) −4.64047 + 20.3312i −0.177563 + 0.777954i 0.805188 + 0.593019i \(0.202064\pi\)
−0.982751 + 0.184934i \(0.940793\pi\)
\(684\) 20.5623 0.786219
\(685\) 6.12845 26.8505i 0.234156 1.02591i
\(686\) −7.75478 9.72418i −0.296079 0.371271i
\(687\) 0.315180 + 1.38090i 0.0120249 + 0.0526845i
\(688\) −2.98543 13.0800i −0.113819 0.498671i
\(689\) 0.294372 0.369131i 0.0112147 0.0140628i
\(690\) −1.63946 + 0.789521i −0.0624131 + 0.0300565i
\(691\) −10.6610 5.13407i −0.405563 0.195309i 0.219970 0.975507i \(-0.429404\pi\)
−0.625533 + 0.780198i \(0.715118\pi\)
\(692\) −4.12628 5.17419i −0.156858 0.196693i
\(693\) 5.04414 6.32515i 0.191611 0.240273i
\(694\) −17.8879 8.61437i −0.679016 0.326997i
\(695\) 4.97871 0.188853
\(696\) 0 0
\(697\) −16.8885 −0.639699
\(698\) 2.52125 + 1.21417i 0.0954306 + 0.0459570i
\(699\) 5.87103 7.36204i 0.222063 0.278458i
\(700\) 22.2290 + 27.8742i 0.840176 + 1.05355i
\(701\) 18.9706 + 9.13574i 0.716508 + 0.345052i 0.756362 0.654153i \(-0.226975\pi\)
−0.0398539 + 0.999206i \(0.512689\pi\)
\(702\) 0.456411 0.219796i 0.0172261 0.00829566i
\(703\) −14.2493 + 17.8681i −0.537423 + 0.673907i
\(704\) 0.0725948 + 0.318058i 0.00273602 + 0.0119873i
\(705\) −3.71026 16.2557i −0.139737 0.612226i
\(706\) 7.36944 + 9.24098i 0.277352 + 0.347789i
\(707\) 0.307516 1.34732i 0.0115653 0.0506711i
\(708\) −6.09017 −0.228883
\(709\) 9.23608 40.4659i 0.346868 1.51973i −0.437377 0.899278i \(-0.644092\pi\)
0.784245 0.620451i \(-0.213051\pi\)
\(710\) 22.4740 10.8229i 0.843435 0.406177i
\(711\) 14.3653 6.91796i 0.538741 0.259444i
\(712\) 2.34267 10.2639i 0.0877953 0.384656i
\(713\) −12.4721 −0.467085
\(714\) −0.832817 + 3.64881i −0.0311674 + 0.136553i
\(715\) −0.783948 0.983039i −0.0293180 0.0367636i
\(716\) −5.76074 25.2395i −0.215289 0.943243i
\(717\) 3.81532 + 16.7160i 0.142486 + 0.624271i
\(718\) −9.15714 + 11.4827i −0.341742 + 0.428530i
\(719\) −7.66416 + 3.69087i −0.285825 + 0.137646i −0.571303 0.820739i \(-0.693562\pi\)
0.285478 + 0.958385i \(0.407848\pi\)
\(720\) 16.8555 + 8.11719i 0.628168 + 0.302510i
\(721\) −12.7989 16.0493i −0.476656 0.597708i
\(722\) −1.75803 + 2.20450i −0.0654271 + 0.0820430i
\(723\) 2.59064 + 1.24758i 0.0963468 + 0.0463982i
\(724\) −9.61803 −0.357451
\(725\) 0 0
\(726\) 3.47214 0.128863
\(727\) 25.2773 + 12.1729i 0.937485 + 0.451469i 0.839281 0.543698i \(-0.182976\pi\)
0.0982034 + 0.995166i \(0.468690\pi\)
\(728\) 0.735930 0.922827i 0.0272754 0.0342022i
\(729\) −5.30376 6.65071i −0.196436 0.246323i
\(730\) 29.4189 + 14.1674i 1.08884 + 0.524358i
\(731\) −28.5681 + 13.7577i −1.05663 + 0.508846i
\(732\) −0.385338 + 0.483198i −0.0142425 + 0.0178595i
\(733\) 3.29768 + 14.4481i 0.121803 + 0.533653i 0.998605 + 0.0528016i \(0.0168151\pi\)
−0.876802 + 0.480851i \(0.840328\pi\)
\(734\) −3.75039 16.4315i −0.138429 0.606499i
\(735\) −2.97026 3.72459i −0.109560 0.137384i
\(736\) −1.54525 + 6.77016i −0.0569585 + 0.249552i
\(737\) −2.11146 −0.0777765
\(738\) 1.38766 6.07972i 0.0510803 0.223797i
\(739\) −45.1105 + 21.7241i −1.65942 + 0.799133i −0.660588 + 0.750749i \(0.729693\pi\)
−0.998829 + 0.0483844i \(0.984593\pi\)
\(740\) −26.4531 + 12.7391i −0.972434 + 0.468299i
\(741\) 0.157590 0.690448i 0.00578922 0.0253642i
\(742\) −2.76393 −0.101467
\(743\) 7.84076 34.3526i 0.287650 1.26028i −0.600091 0.799932i \(-0.704869\pi\)
0.887741 0.460344i \(-0.152274\pi\)
\(744\) 8.69411 + 10.9021i 0.318742 + 0.399689i
\(745\) −8.24860 36.1395i −0.302205 1.32405i
\(746\) 2.83551 + 12.4232i 0.103815 + 0.454844i
\(747\) 16.2322 20.3545i 0.593905 0.744734i
\(748\) 8.82803 4.25136i 0.322785 0.155445i
\(749\) 13.6268 + 6.56232i 0.497913 + 0.239782i
\(750\) −4.45539 5.58689i −0.162688 0.204004i
\(751\) 11.5519 14.4857i 0.421536 0.528590i −0.525037 0.851080i \(-0.675948\pi\)
0.946573 + 0.322490i \(0.104520\pi\)
\(752\) −11.6934 5.63125i −0.426415 0.205351i
\(753\) 12.1459 0.442621
\(754\) 0 0
\(755\) 10.3050 0.375036
\(756\) 11.3182 + 5.45058i 0.411641 + 0.198236i
\(757\) 0.0132718 0.0166422i 0.000482370 0.000604873i −0.781590 0.623792i \(-0.785591\pi\)
0.782073 + 0.623187i \(0.214163\pi\)
\(758\) −9.36055 11.7378i −0.339990 0.426335i
\(759\) 0.951178 + 0.458063i 0.0345256 + 0.0166266i
\(760\) −37.6901 + 18.1506i −1.36716 + 0.658391i
\(761\) 15.7130 19.7034i 0.569594 0.714249i −0.410705 0.911768i \(-0.634717\pi\)
0.980299 + 0.197520i \(0.0632887\pi\)
\(762\) −1.35519 5.93748i −0.0490934 0.215092i
\(763\) −7.15606 31.3528i −0.259067 1.13505i
\(764\) 17.1848 + 21.5491i 0.621725 + 0.779618i
\(765\) 9.83871 43.1062i 0.355719 1.55851i
\(766\) 17.8328 0.644326
\(767\) 0.319917 1.40165i 0.0115515 0.0506106i
\(768\) 3.65408