Properties

Label 841.2.b.b.840.2
Level $841$
Weight $2$
Character 841.840
Analytic conductor $6.715$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [841,2,Mod(840,841)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(841, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("841.840");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 841 = 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 841.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.71541880999\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 840.2
Root \(-0.618034i\) of defining polynomial
Character \(\chi\) \(=\) 841.840
Dual form 841.2.b.b.840.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.618034i q^{2} +0.618034i q^{3} +1.61803 q^{4} -3.85410 q^{5} +0.381966 q^{6} -2.23607 q^{7} -2.23607i q^{8} +2.61803 q^{9} +O(q^{10})\) \(q-0.618034i q^{2} +0.618034i q^{3} +1.61803 q^{4} -3.85410 q^{5} +0.381966 q^{6} -2.23607 q^{7} -2.23607i q^{8} +2.61803 q^{9} +2.38197i q^{10} +1.38197i q^{11} +1.00000i q^{12} +0.236068 q^{13} +1.38197i q^{14} -2.38197i q^{15} +1.85410 q^{16} +4.38197i q^{17} -1.61803i q^{18} +4.85410i q^{19} -6.23607 q^{20} -1.38197i q^{21} +0.854102 q^{22} -1.23607 q^{23} +1.38197 q^{24} +9.85410 q^{25} -0.145898i q^{26} +3.47214i q^{27} -3.61803 q^{28} -1.47214 q^{30} +10.0902i q^{31} -5.61803i q^{32} -0.854102 q^{33} +2.70820 q^{34} +8.61803 q^{35} +4.23607 q^{36} +4.70820i q^{37} +3.00000 q^{38} +0.145898i q^{39} +8.61803i q^{40} +3.85410i q^{41} -0.854102 q^{42} +7.23607i q^{43} +2.23607i q^{44} -10.0902 q^{45} +0.763932i q^{46} -7.00000i q^{47} +1.14590i q^{48} -2.00000 q^{49} -6.09017i q^{50} -2.70820 q^{51} +0.381966 q^{52} -2.00000 q^{53} +2.14590 q^{54} -5.32624i q^{55} +5.00000i q^{56} -3.00000 q^{57} +6.09017 q^{59} -3.85410i q^{60} +0.618034i q^{61} +6.23607 q^{62} -5.85410 q^{63} +0.236068 q^{64} -0.909830 q^{65} +0.527864i q^{66} +1.52786 q^{67} +7.09017i q^{68} -0.763932i q^{69} -5.32624i q^{70} -10.4721 q^{71} -5.85410i q^{72} -13.7082i q^{73} +2.90983 q^{74} +6.09017i q^{75} +7.85410i q^{76} -3.09017i q^{77} +0.0901699 q^{78} +6.09017i q^{79} -7.14590 q^{80} +5.70820 q^{81} +2.38197 q^{82} -9.94427 q^{83} -2.23607i q^{84} -16.8885i q^{85} +4.47214 q^{86} +3.09017 q^{88} -4.70820i q^{89} +6.23607i q^{90} -0.527864 q^{91} -2.00000 q^{92} -6.23607 q^{93} -4.32624 q^{94} -18.7082i q^{95} +3.47214 q^{96} +3.56231i q^{97} +1.23607i q^{98} +3.61803i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{4} - 2 q^{5} + 6 q^{6} + 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 2 q^{4} - 2 q^{5} + 6 q^{6} + 6 q^{9} - 8 q^{13} - 6 q^{16} - 16 q^{20} - 10 q^{22} + 4 q^{23} + 10 q^{24} + 26 q^{25} - 10 q^{28} + 12 q^{30} + 10 q^{33} - 16 q^{34} + 30 q^{35} + 8 q^{36} + 12 q^{38} + 10 q^{42} - 18 q^{45} - 8 q^{49} + 16 q^{51} + 6 q^{52} - 8 q^{53} + 22 q^{54} - 12 q^{57} + 2 q^{59} + 16 q^{62} - 10 q^{63} - 8 q^{64} - 26 q^{65} + 24 q^{67} - 24 q^{71} + 34 q^{74} - 22 q^{78} - 42 q^{80} - 4 q^{81} + 14 q^{82} - 4 q^{83} - 10 q^{88} - 20 q^{91} - 8 q^{92} - 16 q^{93} + 14 q^{94} - 4 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/841\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 0.618034i − 0.437016i −0.975835 0.218508i \(-0.929881\pi\)
0.975835 0.218508i \(-0.0701190\pi\)
\(3\) 0.618034i 0.356822i 0.983956 + 0.178411i \(0.0570957\pi\)
−0.983956 + 0.178411i \(0.942904\pi\)
\(4\) 1.61803 0.809017
\(5\) −3.85410 −1.72361 −0.861803 0.507242i \(-0.830665\pi\)
−0.861803 + 0.507242i \(0.830665\pi\)
\(6\) 0.381966 0.155937
\(7\) −2.23607 −0.845154 −0.422577 0.906327i \(-0.638874\pi\)
−0.422577 + 0.906327i \(0.638874\pi\)
\(8\) − 2.23607i − 0.790569i
\(9\) 2.61803 0.872678
\(10\) 2.38197i 0.753244i
\(11\) 1.38197i 0.416678i 0.978057 + 0.208339i \(0.0668058\pi\)
−0.978057 + 0.208339i \(0.933194\pi\)
\(12\) 1.00000i 0.288675i
\(13\) 0.236068 0.0654735 0.0327367 0.999464i \(-0.489578\pi\)
0.0327367 + 0.999464i \(0.489578\pi\)
\(14\) 1.38197i 0.369346i
\(15\) − 2.38197i − 0.615021i
\(16\) 1.85410 0.463525
\(17\) 4.38197i 1.06278i 0.847126 + 0.531391i \(0.178331\pi\)
−0.847126 + 0.531391i \(0.821669\pi\)
\(18\) − 1.61803i − 0.381374i
\(19\) 4.85410i 1.11361i 0.830644 + 0.556804i \(0.187972\pi\)
−0.830644 + 0.556804i \(0.812028\pi\)
\(20\) −6.23607 −1.39443
\(21\) − 1.38197i − 0.301570i
\(22\) 0.854102 0.182095
\(23\) −1.23607 −0.257738 −0.128869 0.991662i \(-0.541135\pi\)
−0.128869 + 0.991662i \(0.541135\pi\)
\(24\) 1.38197 0.282093
\(25\) 9.85410 1.97082
\(26\) − 0.145898i − 0.0286130i
\(27\) 3.47214i 0.668213i
\(28\) −3.61803 −0.683744
\(29\) 0 0
\(30\) −1.47214 −0.268774
\(31\) 10.0902i 1.81225i 0.423012 + 0.906124i \(0.360973\pi\)
−0.423012 + 0.906124i \(0.639027\pi\)
\(32\) − 5.61803i − 0.993137i
\(33\) −0.854102 −0.148680
\(34\) 2.70820 0.464453
\(35\) 8.61803 1.45671
\(36\) 4.23607 0.706011
\(37\) 4.70820i 0.774024i 0.922075 + 0.387012i \(0.126493\pi\)
−0.922075 + 0.387012i \(0.873507\pi\)
\(38\) 3.00000 0.486664
\(39\) 0.145898i 0.0233624i
\(40\) 8.61803i 1.36263i
\(41\) 3.85410i 0.601910i 0.953638 + 0.300955i \(0.0973053\pi\)
−0.953638 + 0.300955i \(0.902695\pi\)
\(42\) −0.854102 −0.131791
\(43\) 7.23607i 1.10349i 0.834013 + 0.551745i \(0.186038\pi\)
−0.834013 + 0.551745i \(0.813962\pi\)
\(44\) 2.23607i 0.337100i
\(45\) −10.0902 −1.50415
\(46\) 0.763932i 0.112636i
\(47\) − 7.00000i − 1.02105i −0.859861 0.510527i \(-0.829450\pi\)
0.859861 0.510527i \(-0.170550\pi\)
\(48\) 1.14590i 0.165396i
\(49\) −2.00000 −0.285714
\(50\) − 6.09017i − 0.861280i
\(51\) −2.70820 −0.379224
\(52\) 0.381966 0.0529692
\(53\) −2.00000 −0.274721 −0.137361 0.990521i \(-0.543862\pi\)
−0.137361 + 0.990521i \(0.543862\pi\)
\(54\) 2.14590 0.292020
\(55\) − 5.32624i − 0.718190i
\(56\) 5.00000i 0.668153i
\(57\) −3.00000 −0.397360
\(58\) 0 0
\(59\) 6.09017 0.792873 0.396436 0.918062i \(-0.370247\pi\)
0.396436 + 0.918062i \(0.370247\pi\)
\(60\) − 3.85410i − 0.497562i
\(61\) 0.618034i 0.0791311i 0.999217 + 0.0395656i \(0.0125974\pi\)
−0.999217 + 0.0395656i \(0.987403\pi\)
\(62\) 6.23607 0.791981
\(63\) −5.85410 −0.737548
\(64\) 0.236068 0.0295085
\(65\) −0.909830 −0.112851
\(66\) 0.527864i 0.0649756i
\(67\) 1.52786 0.186658 0.0933292 0.995635i \(-0.470249\pi\)
0.0933292 + 0.995635i \(0.470249\pi\)
\(68\) 7.09017i 0.859809i
\(69\) − 0.763932i − 0.0919666i
\(70\) − 5.32624i − 0.636607i
\(71\) −10.4721 −1.24281 −0.621407 0.783488i \(-0.713439\pi\)
−0.621407 + 0.783488i \(0.713439\pi\)
\(72\) − 5.85410i − 0.689913i
\(73\) − 13.7082i − 1.60442i −0.597039 0.802212i \(-0.703656\pi\)
0.597039 0.802212i \(-0.296344\pi\)
\(74\) 2.90983 0.338261
\(75\) 6.09017i 0.703232i
\(76\) 7.85410i 0.900927i
\(77\) − 3.09017i − 0.352158i
\(78\) 0.0901699 0.0102097
\(79\) 6.09017i 0.685198i 0.939482 + 0.342599i \(0.111307\pi\)
−0.939482 + 0.342599i \(0.888693\pi\)
\(80\) −7.14590 −0.798936
\(81\) 5.70820 0.634245
\(82\) 2.38197 0.263044
\(83\) −9.94427 −1.09153 −0.545763 0.837940i \(-0.683760\pi\)
−0.545763 + 0.837940i \(0.683760\pi\)
\(84\) − 2.23607i − 0.243975i
\(85\) − 16.8885i − 1.83182i
\(86\) 4.47214 0.482243
\(87\) 0 0
\(88\) 3.09017 0.329413
\(89\) − 4.70820i − 0.499069i −0.968366 0.249534i \(-0.919722\pi\)
0.968366 0.249534i \(-0.0802775\pi\)
\(90\) 6.23607i 0.657339i
\(91\) −0.527864 −0.0553352
\(92\) −2.00000 −0.208514
\(93\) −6.23607 −0.646650
\(94\) −4.32624 −0.446217
\(95\) − 18.7082i − 1.91942i
\(96\) 3.47214 0.354373
\(97\) 3.56231i 0.361697i 0.983511 + 0.180849i \(0.0578844\pi\)
−0.983511 + 0.180849i \(0.942116\pi\)
\(98\) 1.23607i 0.124862i
\(99\) 3.61803i 0.363626i
\(100\) 15.9443 1.59443
\(101\) 0.618034i 0.0614967i 0.999527 + 0.0307483i \(0.00978904\pi\)
−0.999527 + 0.0307483i \(0.990211\pi\)
\(102\) 1.67376i 0.165727i
\(103\) 9.18034 0.904566 0.452283 0.891875i \(-0.350610\pi\)
0.452283 + 0.891875i \(0.350610\pi\)
\(104\) − 0.527864i − 0.0517613i
\(105\) 5.32624i 0.519788i
\(106\) 1.23607i 0.120058i
\(107\) 6.76393 0.653894 0.326947 0.945043i \(-0.393980\pi\)
0.326947 + 0.945043i \(0.393980\pi\)
\(108\) 5.61803i 0.540596i
\(109\) 14.3820 1.37754 0.688771 0.724979i \(-0.258150\pi\)
0.688771 + 0.724979i \(0.258150\pi\)
\(110\) −3.29180 −0.313860
\(111\) −2.90983 −0.276189
\(112\) −4.14590 −0.391751
\(113\) 7.94427i 0.747334i 0.927563 + 0.373667i \(0.121900\pi\)
−0.927563 + 0.373667i \(0.878100\pi\)
\(114\) 1.85410i 0.173653i
\(115\) 4.76393 0.444239
\(116\) 0 0
\(117\) 0.618034 0.0571373
\(118\) − 3.76393i − 0.346498i
\(119\) − 9.79837i − 0.898215i
\(120\) −5.32624 −0.486217
\(121\) 9.09017 0.826379
\(122\) 0.381966 0.0345816
\(123\) −2.38197 −0.214775
\(124\) 16.3262i 1.46614i
\(125\) −18.7082 −1.67331
\(126\) 3.61803i 0.322320i
\(127\) − 15.9443i − 1.41483i −0.706801 0.707413i \(-0.749862\pi\)
0.706801 0.707413i \(-0.250138\pi\)
\(128\) − 11.3820i − 1.00603i
\(129\) −4.47214 −0.393750
\(130\) 0.562306i 0.0493175i
\(131\) 14.3262i 1.25169i 0.779948 + 0.625845i \(0.215246\pi\)
−0.779948 + 0.625845i \(0.784754\pi\)
\(132\) −1.38197 −0.120285
\(133\) − 10.8541i − 0.941170i
\(134\) − 0.944272i − 0.0815727i
\(135\) − 13.3820i − 1.15174i
\(136\) 9.79837 0.840204
\(137\) − 7.14590i − 0.610515i −0.952270 0.305258i \(-0.901257\pi\)
0.952270 0.305258i \(-0.0987426\pi\)
\(138\) −0.472136 −0.0401909
\(139\) 1.29180 0.109569 0.0547844 0.998498i \(-0.482553\pi\)
0.0547844 + 0.998498i \(0.482553\pi\)
\(140\) 13.9443 1.17851
\(141\) 4.32624 0.364335
\(142\) 6.47214i 0.543130i
\(143\) 0.326238i 0.0272814i
\(144\) 4.85410 0.404508
\(145\) 0 0
\(146\) −8.47214 −0.701159
\(147\) − 1.23607i − 0.101949i
\(148\) 7.61803i 0.626199i
\(149\) −9.61803 −0.787940 −0.393970 0.919123i \(-0.628899\pi\)
−0.393970 + 0.919123i \(0.628899\pi\)
\(150\) 3.76393 0.307324
\(151\) −2.67376 −0.217588 −0.108794 0.994064i \(-0.534699\pi\)
−0.108794 + 0.994064i \(0.534699\pi\)
\(152\) 10.8541 0.880384
\(153\) 11.4721i 0.927467i
\(154\) −1.90983 −0.153898
\(155\) − 38.8885i − 3.12360i
\(156\) 0.236068i 0.0189006i
\(157\) 14.5623i 1.16220i 0.813833 + 0.581099i \(0.197377\pi\)
−0.813833 + 0.581099i \(0.802623\pi\)
\(158\) 3.76393 0.299442
\(159\) − 1.23607i − 0.0980266i
\(160\) 21.6525i 1.71178i
\(161\) 2.76393 0.217828
\(162\) − 3.52786i − 0.277175i
\(163\) − 6.03444i − 0.472654i −0.971674 0.236327i \(-0.924056\pi\)
0.971674 0.236327i \(-0.0759436\pi\)
\(164\) 6.23607i 0.486955i
\(165\) 3.29180 0.256266
\(166\) 6.14590i 0.477014i
\(167\) −10.5279 −0.814671 −0.407335 0.913279i \(-0.633542\pi\)
−0.407335 + 0.913279i \(0.633542\pi\)
\(168\) −3.09017 −0.238412
\(169\) −12.9443 −0.995713
\(170\) −10.4377 −0.800535
\(171\) 12.7082i 0.971821i
\(172\) 11.7082i 0.892742i
\(173\) −4.09017 −0.310970 −0.155485 0.987838i \(-0.549694\pi\)
−0.155485 + 0.987838i \(0.549694\pi\)
\(174\) 0 0
\(175\) −22.0344 −1.66565
\(176\) 2.56231i 0.193141i
\(177\) 3.76393i 0.282914i
\(178\) −2.90983 −0.218101
\(179\) 16.0000 1.19590 0.597948 0.801535i \(-0.295983\pi\)
0.597948 + 0.801535i \(0.295983\pi\)
\(180\) −16.3262 −1.21689
\(181\) 5.94427 0.441834 0.220917 0.975293i \(-0.429095\pi\)
0.220917 + 0.975293i \(0.429095\pi\)
\(182\) 0.326238i 0.0241824i
\(183\) −0.381966 −0.0282357
\(184\) 2.76393i 0.203760i
\(185\) − 18.1459i − 1.33411i
\(186\) 3.85410i 0.282596i
\(187\) −6.05573 −0.442839
\(188\) − 11.3262i − 0.826051i
\(189\) − 7.76393i − 0.564743i
\(190\) −11.5623 −0.838818
\(191\) − 17.0344i − 1.23257i −0.787524 0.616284i \(-0.788637\pi\)
0.787524 0.616284i \(-0.211363\pi\)
\(192\) 0.145898i 0.0105293i
\(193\) − 12.4721i − 0.897764i −0.893591 0.448882i \(-0.851822\pi\)
0.893591 0.448882i \(-0.148178\pi\)
\(194\) 2.20163 0.158068
\(195\) − 0.562306i − 0.0402676i
\(196\) −3.23607 −0.231148
\(197\) −6.29180 −0.448272 −0.224136 0.974558i \(-0.571956\pi\)
−0.224136 + 0.974558i \(0.571956\pi\)
\(198\) 2.23607 0.158910
\(199\) −5.85410 −0.414986 −0.207493 0.978236i \(-0.566530\pi\)
−0.207493 + 0.978236i \(0.566530\pi\)
\(200\) − 22.0344i − 1.55807i
\(201\) 0.944272i 0.0666038i
\(202\) 0.381966 0.0268750
\(203\) 0 0
\(204\) −4.38197 −0.306799
\(205\) − 14.8541i − 1.03746i
\(206\) − 5.67376i − 0.395310i
\(207\) −3.23607 −0.224922
\(208\) 0.437694 0.0303486
\(209\) −6.70820 −0.464016
\(210\) 3.29180 0.227156
\(211\) − 11.6525i − 0.802190i −0.916037 0.401095i \(-0.868630\pi\)
0.916037 0.401095i \(-0.131370\pi\)
\(212\) −3.23607 −0.222254
\(213\) − 6.47214i − 0.443463i
\(214\) − 4.18034i − 0.285762i
\(215\) − 27.8885i − 1.90198i
\(216\) 7.76393 0.528269
\(217\) − 22.5623i − 1.53163i
\(218\) − 8.88854i − 0.602008i
\(219\) 8.47214 0.572494
\(220\) − 8.61803i − 0.581028i
\(221\) 1.03444i 0.0695841i
\(222\) 1.79837i 0.120699i
\(223\) 2.67376 0.179048 0.0895242 0.995985i \(-0.471465\pi\)
0.0895242 + 0.995985i \(0.471465\pi\)
\(224\) 12.5623i 0.839354i
\(225\) 25.7984 1.71989
\(226\) 4.90983 0.326597
\(227\) −20.8885 −1.38642 −0.693211 0.720735i \(-0.743804\pi\)
−0.693211 + 0.720735i \(0.743804\pi\)
\(228\) −4.85410 −0.321471
\(229\) 2.29180i 0.151446i 0.997129 + 0.0757231i \(0.0241265\pi\)
−0.997129 + 0.0757231i \(0.975874\pi\)
\(230\) − 2.94427i − 0.194140i
\(231\) 1.90983 0.125658
\(232\) 0 0
\(233\) 15.2361 0.998148 0.499074 0.866559i \(-0.333674\pi\)
0.499074 + 0.866559i \(0.333674\pi\)
\(234\) − 0.381966i − 0.0249699i
\(235\) 26.9787i 1.75990i
\(236\) 9.85410 0.641447
\(237\) −3.76393 −0.244494
\(238\) −6.05573 −0.392535
\(239\) −27.7426 −1.79452 −0.897261 0.441500i \(-0.854447\pi\)
−0.897261 + 0.441500i \(0.854447\pi\)
\(240\) − 4.41641i − 0.285078i
\(241\) 4.65248 0.299692 0.149846 0.988709i \(-0.452122\pi\)
0.149846 + 0.988709i \(0.452122\pi\)
\(242\) − 5.61803i − 0.361141i
\(243\) 13.9443i 0.894525i
\(244\) 1.00000i 0.0640184i
\(245\) 7.70820 0.492459
\(246\) 1.47214i 0.0938600i
\(247\) 1.14590i 0.0729117i
\(248\) 22.5623 1.43271
\(249\) − 6.14590i − 0.389480i
\(250\) 11.5623i 0.731264i
\(251\) 19.6525i 1.24045i 0.784423 + 0.620227i \(0.212959\pi\)
−0.784423 + 0.620227i \(0.787041\pi\)
\(252\) −9.47214 −0.596688
\(253\) − 1.70820i − 0.107394i
\(254\) −9.85410 −0.618301
\(255\) 10.4377 0.653634
\(256\) −6.56231 −0.410144
\(257\) −23.1803 −1.44595 −0.722975 0.690874i \(-0.757226\pi\)
−0.722975 + 0.690874i \(0.757226\pi\)
\(258\) 2.76393i 0.172075i
\(259\) − 10.5279i − 0.654170i
\(260\) −1.47214 −0.0912980
\(261\) 0 0
\(262\) 8.85410 0.547008
\(263\) 16.7082i 1.03027i 0.857108 + 0.515136i \(0.172259\pi\)
−0.857108 + 0.515136i \(0.827741\pi\)
\(264\) 1.90983i 0.117542i
\(265\) 7.70820 0.473511
\(266\) −6.70820 −0.411306
\(267\) 2.90983 0.178079
\(268\) 2.47214 0.151010
\(269\) − 6.00000i − 0.365826i −0.983129 0.182913i \(-0.941447\pi\)
0.983129 0.182913i \(-0.0585527\pi\)
\(270\) −8.27051 −0.503327
\(271\) 10.1803i 0.618412i 0.950995 + 0.309206i \(0.100063\pi\)
−0.950995 + 0.309206i \(0.899937\pi\)
\(272\) 8.12461i 0.492627i
\(273\) − 0.326238i − 0.0197448i
\(274\) −4.41641 −0.266805
\(275\) 13.6180i 0.821198i
\(276\) − 1.23607i − 0.0744025i
\(277\) −21.3820 −1.28472 −0.642359 0.766404i \(-0.722044\pi\)
−0.642359 + 0.766404i \(0.722044\pi\)
\(278\) − 0.798374i − 0.0478833i
\(279\) 26.4164i 1.58151i
\(280\) − 19.2705i − 1.15163i
\(281\) 23.1246 1.37950 0.689749 0.724048i \(-0.257721\pi\)
0.689749 + 0.724048i \(0.257721\pi\)
\(282\) − 2.67376i − 0.159220i
\(283\) 5.23607 0.311252 0.155626 0.987816i \(-0.450261\pi\)
0.155626 + 0.987816i \(0.450261\pi\)
\(284\) −16.9443 −1.00546
\(285\) 11.5623 0.684892
\(286\) 0.201626 0.0119224
\(287\) − 8.61803i − 0.508706i
\(288\) − 14.7082i − 0.866689i
\(289\) −2.20163 −0.129507
\(290\) 0 0
\(291\) −2.20163 −0.129062
\(292\) − 22.1803i − 1.29801i
\(293\) − 8.52786i − 0.498203i −0.968477 0.249102i \(-0.919865\pi\)
0.968477 0.249102i \(-0.0801353\pi\)
\(294\) −0.763932 −0.0445534
\(295\) −23.4721 −1.36660
\(296\) 10.5279 0.611920
\(297\) −4.79837 −0.278430
\(298\) 5.94427i 0.344342i
\(299\) −0.291796 −0.0168750
\(300\) 9.85410i 0.568927i
\(301\) − 16.1803i − 0.932619i
\(302\) 1.65248i 0.0950893i
\(303\) −0.381966 −0.0219434
\(304\) 9.00000i 0.516185i
\(305\) − 2.38197i − 0.136391i
\(306\) 7.09017 0.405318
\(307\) 19.1803i 1.09468i 0.836910 + 0.547340i \(0.184360\pi\)
−0.836910 + 0.547340i \(0.815640\pi\)
\(308\) − 5.00000i − 0.284901i
\(309\) 5.67376i 0.322769i
\(310\) −24.0344 −1.36506
\(311\) − 2.09017i − 0.118523i −0.998243 0.0592613i \(-0.981125\pi\)
0.998243 0.0592613i \(-0.0188745\pi\)
\(312\) 0.326238 0.0184696
\(313\) −12.9098 −0.729707 −0.364853 0.931065i \(-0.618881\pi\)
−0.364853 + 0.931065i \(0.618881\pi\)
\(314\) 9.00000 0.507899
\(315\) 22.5623 1.27124
\(316\) 9.85410i 0.554337i
\(317\) 27.7082i 1.55625i 0.628111 + 0.778124i \(0.283828\pi\)
−0.628111 + 0.778124i \(0.716172\pi\)
\(318\) −0.763932 −0.0428392
\(319\) 0 0
\(320\) −0.909830 −0.0508610
\(321\) 4.18034i 0.233324i
\(322\) − 1.70820i − 0.0951945i
\(323\) −21.2705 −1.18352
\(324\) 9.23607 0.513115
\(325\) 2.32624 0.129036
\(326\) −3.72949 −0.206557
\(327\) 8.88854i 0.491538i
\(328\) 8.61803 0.475851
\(329\) 15.6525i 0.862949i
\(330\) − 2.03444i − 0.111992i
\(331\) 21.1803i 1.16418i 0.813126 + 0.582088i \(0.197764\pi\)
−0.813126 + 0.582088i \(0.802236\pi\)
\(332\) −16.0902 −0.883063
\(333\) 12.3262i 0.675474i
\(334\) 6.50658i 0.356024i
\(335\) −5.88854 −0.321726
\(336\) − 2.56231i − 0.139785i
\(337\) − 34.0689i − 1.85585i −0.372767 0.927925i \(-0.621591\pi\)
0.372767 0.927925i \(-0.378409\pi\)
\(338\) 8.00000i 0.435143i
\(339\) −4.90983 −0.266665
\(340\) − 27.3262i − 1.48197i
\(341\) −13.9443 −0.755125
\(342\) 7.85410 0.424701
\(343\) 20.1246 1.08663
\(344\) 16.1803 0.872385
\(345\) 2.94427i 0.158514i
\(346\) 2.52786i 0.135899i
\(347\) 32.1246 1.72454 0.862270 0.506449i \(-0.169042\pi\)
0.862270 + 0.506449i \(0.169042\pi\)
\(348\) 0 0
\(349\) 4.52786 0.242371 0.121186 0.992630i \(-0.461330\pi\)
0.121186 + 0.992630i \(0.461330\pi\)
\(350\) 13.6180i 0.727915i
\(351\) 0.819660i 0.0437502i
\(352\) 7.76393 0.413819
\(353\) 19.1246 1.01790 0.508950 0.860796i \(-0.330034\pi\)
0.508950 + 0.860796i \(0.330034\pi\)
\(354\) 2.32624 0.123638
\(355\) 40.3607 2.14212
\(356\) − 7.61803i − 0.403755i
\(357\) 6.05573 0.320503
\(358\) − 9.88854i − 0.522626i
\(359\) 23.7639i 1.25421i 0.778934 + 0.627106i \(0.215761\pi\)
−0.778934 + 0.627106i \(0.784239\pi\)
\(360\) 22.5623i 1.18914i
\(361\) −4.56231 −0.240121
\(362\) − 3.67376i − 0.193089i
\(363\) 5.61803i 0.294870i
\(364\) −0.854102 −0.0447671
\(365\) 52.8328i 2.76540i
\(366\) 0.236068i 0.0123395i
\(367\) − 27.2705i − 1.42351i −0.702428 0.711755i \(-0.747901\pi\)
0.702428 0.711755i \(-0.252099\pi\)
\(368\) −2.29180 −0.119468
\(369\) 10.0902i 0.525273i
\(370\) −11.2148 −0.583029
\(371\) 4.47214 0.232182
\(372\) −10.0902 −0.523151
\(373\) 20.6180 1.06756 0.533781 0.845623i \(-0.320771\pi\)
0.533781 + 0.845623i \(0.320771\pi\)
\(374\) 3.74265i 0.193528i
\(375\) − 11.5623i − 0.597075i
\(376\) −15.6525 −0.807215
\(377\) 0 0
\(378\) −4.79837 −0.246802
\(379\) 24.2918i 1.24779i 0.781510 + 0.623893i \(0.214450\pi\)
−0.781510 + 0.623893i \(0.785550\pi\)
\(380\) − 30.2705i − 1.55284i
\(381\) 9.85410 0.504841
\(382\) −10.5279 −0.538652
\(383\) 28.8541 1.47438 0.737188 0.675688i \(-0.236153\pi\)
0.737188 + 0.675688i \(0.236153\pi\)
\(384\) 7.03444 0.358975
\(385\) 11.9098i 0.606981i
\(386\) −7.70820 −0.392337
\(387\) 18.9443i 0.962991i
\(388\) 5.76393i 0.292619i
\(389\) − 19.1246i − 0.969656i −0.874609 0.484828i \(-0.838882\pi\)
0.874609 0.484828i \(-0.161118\pi\)
\(390\) −0.347524 −0.0175976
\(391\) − 5.41641i − 0.273920i
\(392\) 4.47214i 0.225877i
\(393\) −8.85410 −0.446630
\(394\) 3.88854i 0.195902i
\(395\) − 23.4721i − 1.18101i
\(396\) 5.85410i 0.294180i
\(397\) −14.0557 −0.705437 −0.352718 0.935730i \(-0.614743\pi\)
−0.352718 + 0.935730i \(0.614743\pi\)
\(398\) 3.61803i 0.181356i
\(399\) 6.70820 0.335830
\(400\) 18.2705 0.913525
\(401\) 25.0689 1.25188 0.625940 0.779871i \(-0.284715\pi\)
0.625940 + 0.779871i \(0.284715\pi\)
\(402\) 0.583592 0.0291069
\(403\) 2.38197i 0.118654i
\(404\) 1.00000i 0.0497519i
\(405\) −22.0000 −1.09319
\(406\) 0 0
\(407\) −6.50658 −0.322519
\(408\) 6.05573i 0.299803i
\(409\) − 27.4164i − 1.35565i −0.735221 0.677827i \(-0.762922\pi\)
0.735221 0.677827i \(-0.237078\pi\)
\(410\) −9.18034 −0.453385
\(411\) 4.41641 0.217845
\(412\) 14.8541 0.731809
\(413\) −13.6180 −0.670100
\(414\) 2.00000i 0.0982946i
\(415\) 38.3262 1.88136
\(416\) − 1.32624i − 0.0650242i
\(417\) 0.798374i 0.0390965i
\(418\) 4.14590i 0.202783i
\(419\) 17.5623 0.857975 0.428987 0.903310i \(-0.358870\pi\)
0.428987 + 0.903310i \(0.358870\pi\)
\(420\) 8.61803i 0.420517i
\(421\) − 31.0344i − 1.51253i −0.654268 0.756263i \(-0.727023\pi\)
0.654268 0.756263i \(-0.272977\pi\)
\(422\) −7.20163 −0.350570
\(423\) − 18.3262i − 0.891052i
\(424\) 4.47214i 0.217186i
\(425\) 43.1803i 2.09455i
\(426\) −4.00000 −0.193801
\(427\) − 1.38197i − 0.0668780i
\(428\) 10.9443 0.529011
\(429\) −0.201626 −0.00973460
\(430\) −17.2361 −0.831197
\(431\) 14.5967 0.703101 0.351550 0.936169i \(-0.385655\pi\)
0.351550 + 0.936169i \(0.385655\pi\)
\(432\) 6.43769i 0.309734i
\(433\) 10.3820i 0.498925i 0.968384 + 0.249463i \(0.0802540\pi\)
−0.968384 + 0.249463i \(0.919746\pi\)
\(434\) −13.9443 −0.669346
\(435\) 0 0
\(436\) 23.2705 1.11446
\(437\) − 6.00000i − 0.287019i
\(438\) − 5.23607i − 0.250189i
\(439\) 20.9443 0.999616 0.499808 0.866136i \(-0.333404\pi\)
0.499808 + 0.866136i \(0.333404\pi\)
\(440\) −11.9098 −0.567779
\(441\) −5.23607 −0.249337
\(442\) 0.639320 0.0304094
\(443\) − 1.90983i − 0.0907388i −0.998970 0.0453694i \(-0.985554\pi\)
0.998970 0.0453694i \(-0.0144465\pi\)
\(444\) −4.70820 −0.223441
\(445\) 18.1459i 0.860198i
\(446\) − 1.65248i − 0.0782470i
\(447\) − 5.94427i − 0.281154i
\(448\) −0.527864 −0.0249392
\(449\) 26.1246i 1.23290i 0.787395 + 0.616448i \(0.211429\pi\)
−0.787395 + 0.616448i \(0.788571\pi\)
\(450\) − 15.9443i − 0.751620i
\(451\) −5.32624 −0.250803
\(452\) 12.8541i 0.604606i
\(453\) − 1.65248i − 0.0776401i
\(454\) 12.9098i 0.605888i
\(455\) 2.03444 0.0953761
\(456\) 6.70820i 0.314140i
\(457\) −18.7082 −0.875133 −0.437566 0.899186i \(-0.644160\pi\)
−0.437566 + 0.899186i \(0.644160\pi\)
\(458\) 1.41641 0.0661844
\(459\) −15.2148 −0.710165
\(460\) 7.70820 0.359397
\(461\) − 38.9787i − 1.81542i −0.419598 0.907710i \(-0.637829\pi\)
0.419598 0.907710i \(-0.362171\pi\)
\(462\) − 1.18034i − 0.0549144i
\(463\) −10.7082 −0.497652 −0.248826 0.968548i \(-0.580045\pi\)
−0.248826 + 0.968548i \(0.580045\pi\)
\(464\) 0 0
\(465\) 24.0344 1.11457
\(466\) − 9.41641i − 0.436207i
\(467\) 17.9443i 0.830362i 0.909739 + 0.415181i \(0.136282\pi\)
−0.909739 + 0.415181i \(0.863718\pi\)
\(468\) 1.00000 0.0462250
\(469\) −3.41641 −0.157755
\(470\) 16.6738 0.769103
\(471\) −9.00000 −0.414698
\(472\) − 13.6180i − 0.626821i
\(473\) −10.0000 −0.459800
\(474\) 2.32624i 0.106848i
\(475\) 47.8328i 2.19472i
\(476\) − 15.8541i − 0.726672i
\(477\) −5.23607 −0.239743
\(478\) 17.1459i 0.784235i
\(479\) − 11.1803i − 0.510843i −0.966830 0.255421i \(-0.917786\pi\)
0.966830 0.255421i \(-0.0822142\pi\)
\(480\) −13.3820 −0.610800
\(481\) 1.11146i 0.0506780i
\(482\) − 2.87539i − 0.130970i
\(483\) 1.70820i 0.0777260i
\(484\) 14.7082 0.668555
\(485\) − 13.7295i − 0.623424i
\(486\) 8.61803 0.390922
\(487\) 42.5623 1.92868 0.964341 0.264663i \(-0.0852606\pi\)
0.964341 + 0.264663i \(0.0852606\pi\)
\(488\) 1.38197 0.0625587
\(489\) 3.72949 0.168653
\(490\) − 4.76393i − 0.215213i
\(491\) − 15.1246i − 0.682564i −0.939961 0.341282i \(-0.889139\pi\)
0.939961 0.341282i \(-0.110861\pi\)
\(492\) −3.85410 −0.173756
\(493\) 0 0
\(494\) 0.708204 0.0318636
\(495\) − 13.9443i − 0.626748i
\(496\) 18.7082i 0.840023i
\(497\) 23.4164 1.05037
\(498\) −3.79837 −0.170209
\(499\) −24.6869 −1.10514 −0.552569 0.833467i \(-0.686352\pi\)
−0.552569 + 0.833467i \(0.686352\pi\)
\(500\) −30.2705 −1.35374
\(501\) − 6.50658i − 0.290692i
\(502\) 12.1459 0.542098
\(503\) 14.2705i 0.636291i 0.948042 + 0.318145i \(0.103060\pi\)
−0.948042 + 0.318145i \(0.896940\pi\)
\(504\) 13.0902i 0.583083i
\(505\) − 2.38197i − 0.105996i
\(506\) −1.05573 −0.0469328
\(507\) − 8.00000i − 0.355292i
\(508\) − 25.7984i − 1.14462i
\(509\) 31.5623 1.39897 0.699487 0.714645i \(-0.253412\pi\)
0.699487 + 0.714645i \(0.253412\pi\)
\(510\) − 6.45085i − 0.285648i
\(511\) 30.6525i 1.35599i
\(512\) − 18.7082i − 0.826794i
\(513\) −16.8541 −0.744127
\(514\) 14.3262i 0.631903i
\(515\) −35.3820 −1.55912
\(516\) −7.23607 −0.318550
\(517\) 9.67376 0.425452
\(518\) −6.50658 −0.285883
\(519\) − 2.52786i − 0.110961i
\(520\) 2.03444i 0.0892162i
\(521\) −4.09017 −0.179194 −0.0895968 0.995978i \(-0.528558\pi\)
−0.0895968 + 0.995978i \(0.528558\pi\)
\(522\) 0 0
\(523\) −20.3820 −0.891241 −0.445621 0.895222i \(-0.647017\pi\)
−0.445621 + 0.895222i \(0.647017\pi\)
\(524\) 23.1803i 1.01264i
\(525\) − 13.6180i − 0.594340i
\(526\) 10.3262 0.450245
\(527\) −44.2148 −1.92603
\(528\) −1.58359 −0.0689170
\(529\) −21.4721 −0.933571
\(530\) − 4.76393i − 0.206932i
\(531\) 15.9443 0.691922
\(532\) − 17.5623i − 0.761423i
\(533\) 0.909830i 0.0394091i
\(534\) − 1.79837i − 0.0778232i
\(535\) −26.0689 −1.12706
\(536\) − 3.41641i − 0.147566i
\(537\) 9.88854i 0.426722i
\(538\) −3.70820 −0.159872
\(539\) − 2.76393i − 0.119051i
\(540\) − 21.6525i − 0.931774i
\(541\) 14.5967i 0.627563i 0.949495 + 0.313782i \(0.101596\pi\)
−0.949495 + 0.313782i \(0.898404\pi\)
\(542\) 6.29180 0.270256
\(543\) 3.67376i 0.157656i
\(544\) 24.6180 1.05549
\(545\) −55.4296 −2.37434
\(546\) −0.201626 −0.00862880
\(547\) 7.38197 0.315630 0.157815 0.987469i \(-0.449555\pi\)
0.157815 + 0.987469i \(0.449555\pi\)
\(548\) − 11.5623i − 0.493917i
\(549\) 1.61803i 0.0690560i
\(550\) 8.41641 0.358877
\(551\) 0 0
\(552\) −1.70820 −0.0727060
\(553\) − 13.6180i − 0.579098i
\(554\) 13.2148i 0.561442i
\(555\) 11.2148 0.476041
\(556\) 2.09017 0.0886430
\(557\) 5.50658 0.233321 0.116661 0.993172i \(-0.462781\pi\)
0.116661 + 0.993172i \(0.462781\pi\)
\(558\) 16.3262 0.691145
\(559\) 1.70820i 0.0722493i
\(560\) 15.9787 0.675224
\(561\) − 3.74265i − 0.158015i
\(562\) − 14.2918i − 0.602863i
\(563\) 28.3951i 1.19671i 0.801230 + 0.598356i \(0.204179\pi\)
−0.801230 + 0.598356i \(0.795821\pi\)
\(564\) 7.00000 0.294753
\(565\) − 30.6180i − 1.28811i
\(566\) − 3.23607i − 0.136022i
\(567\) −12.7639 −0.536035
\(568\) 23.4164i 0.982531i
\(569\) − 1.94427i − 0.0815081i −0.999169 0.0407541i \(-0.987024\pi\)
0.999169 0.0407541i \(-0.0129760\pi\)
\(570\) − 7.14590i − 0.299309i
\(571\) −34.5066 −1.44406 −0.722028 0.691864i \(-0.756790\pi\)
−0.722028 + 0.691864i \(0.756790\pi\)
\(572\) 0.527864i 0.0220711i
\(573\) 10.5279 0.439808
\(574\) −5.32624 −0.222313
\(575\) −12.1803 −0.507955
\(576\) 0.618034 0.0257514
\(577\) − 2.76393i − 0.115064i −0.998344 0.0575320i \(-0.981677\pi\)
0.998344 0.0575320i \(-0.0183231\pi\)
\(578\) 1.36068i 0.0565968i
\(579\) 7.70820 0.320342
\(580\) 0 0
\(581\) 22.2361 0.922508
\(582\) 1.36068i 0.0564020i
\(583\) − 2.76393i − 0.114470i
\(584\) −30.6525 −1.26841
\(585\) −2.38197 −0.0984822
\(586\) −5.27051 −0.217723
\(587\) 46.6180 1.92413 0.962066 0.272816i \(-0.0879552\pi\)
0.962066 + 0.272816i \(0.0879552\pi\)
\(588\) − 2.00000i − 0.0824786i
\(589\) −48.9787 −2.01813
\(590\) 14.5066i 0.597226i
\(591\) − 3.88854i − 0.159953i
\(592\) 8.72949i 0.358780i
\(593\) 14.4377 0.592885 0.296443 0.955051i \(-0.404200\pi\)
0.296443 + 0.955051i \(0.404200\pi\)
\(594\) 2.96556i 0.121678i
\(595\) 37.7639i 1.54817i
\(596\) −15.5623 −0.637457
\(597\) − 3.61803i − 0.148076i
\(598\) 0.180340i 0.00737465i
\(599\) − 13.0689i − 0.533980i −0.963699 0.266990i \(-0.913971\pi\)
0.963699 0.266990i \(-0.0860291\pi\)
\(600\) 13.6180 0.555954
\(601\) − 29.1591i − 1.18942i −0.803939 0.594711i \(-0.797266\pi\)
0.803939 0.594711i \(-0.202734\pi\)
\(602\) −10.0000 −0.407570
\(603\) 4.00000 0.162893
\(604\) −4.32624 −0.176032
\(605\) −35.0344 −1.42435
\(606\) 0.236068i 0.00958961i
\(607\) 10.9787i 0.445612i 0.974863 + 0.222806i \(0.0715217\pi\)
−0.974863 + 0.222806i \(0.928478\pi\)
\(608\) 27.2705 1.10597
\(609\) 0 0
\(610\) −1.47214 −0.0596050
\(611\) − 1.65248i − 0.0668520i
\(612\) 18.5623i 0.750337i
\(613\) −27.5410 −1.11237 −0.556186 0.831058i \(-0.687736\pi\)
−0.556186 + 0.831058i \(0.687736\pi\)
\(614\) 11.8541 0.478393
\(615\) 9.18034 0.370187
\(616\) −6.90983 −0.278405
\(617\) − 14.1803i − 0.570879i −0.958397 0.285439i \(-0.907860\pi\)
0.958397 0.285439i \(-0.0921396\pi\)
\(618\) 3.50658 0.141055
\(619\) 7.05573i 0.283594i 0.989896 + 0.141797i \(0.0452880\pi\)
−0.989896 + 0.141797i \(0.954712\pi\)
\(620\) − 62.9230i − 2.52705i
\(621\) − 4.29180i − 0.172224i
\(622\) −1.29180 −0.0517963
\(623\) 10.5279i 0.421790i
\(624\) 0.270510i 0.0108291i
\(625\) 22.8328 0.913313
\(626\) 7.97871i 0.318894i
\(627\) − 4.14590i − 0.165571i
\(628\) 23.5623i 0.940238i
\(629\) −20.6312 −0.822619
\(630\) − 13.9443i − 0.555553i
\(631\) 28.2148 1.12321 0.561606 0.827405i \(-0.310184\pi\)
0.561606 + 0.827405i \(0.310184\pi\)
\(632\) 13.6180 0.541696
\(633\) 7.20163 0.286239
\(634\) 17.1246 0.680105
\(635\) 61.4508i 2.43860i
\(636\) − 2.00000i − 0.0793052i
\(637\) −0.472136 −0.0187067
\(638\) 0 0
\(639\) −27.4164 −1.08458
\(640\) 43.8673i 1.73401i
\(641\) − 11.0557i − 0.436675i −0.975873 0.218338i \(-0.929937\pi\)
0.975873 0.218338i \(-0.0700634\pi\)
\(642\) 2.58359 0.101966
\(643\) 37.4164 1.47556 0.737780 0.675042i \(-0.235874\pi\)
0.737780 + 0.675042i \(0.235874\pi\)
\(644\) 4.47214 0.176227
\(645\) 17.2361 0.678670
\(646\) 13.1459i 0.517218i
\(647\) 30.5279 1.20017 0.600087 0.799935i \(-0.295133\pi\)
0.600087 + 0.799935i \(0.295133\pi\)
\(648\) − 12.7639i − 0.501415i
\(649\) 8.41641i 0.330373i
\(650\) − 1.43769i − 0.0563910i
\(651\) 13.9443 0.546519
\(652\) − 9.76393i − 0.382385i
\(653\) 48.0132i 1.87890i 0.342686 + 0.939450i \(0.388663\pi\)
−0.342686 + 0.939450i \(0.611337\pi\)
\(654\) 5.49342 0.214810
\(655\) − 55.2148i − 2.15742i
\(656\) 7.14590i 0.279000i
\(657\) − 35.8885i − 1.40015i
\(658\) 9.67376 0.377123
\(659\) 7.05573i 0.274852i 0.990512 + 0.137426i \(0.0438830\pi\)
−0.990512 + 0.137426i \(0.956117\pi\)
\(660\) 5.32624 0.207324
\(661\) −37.4508 −1.45667 −0.728335 0.685222i \(-0.759705\pi\)
−0.728335 + 0.685222i \(0.759705\pi\)
\(662\) 13.0902 0.508764
\(663\) −0.639320 −0.0248291
\(664\) 22.2361i 0.862927i
\(665\) 41.8328i 1.62221i
\(666\) 7.61803 0.295193
\(667\) 0 0
\(668\) −17.0344 −0.659082
\(669\) 1.65248i 0.0638884i
\(670\) 3.63932i 0.140599i
\(671\) −0.854102 −0.0329722
\(672\) −7.76393 −0.299500
\(673\) 6.47214 0.249483 0.124741 0.992189i \(-0.460190\pi\)
0.124741 + 0.992189i \(0.460190\pi\)
\(674\) −21.0557 −0.811036
\(675\) 34.2148i 1.31693i
\(676\) −20.9443 −0.805549
\(677\) − 40.8328i − 1.56933i −0.619918 0.784666i \(-0.712834\pi\)
0.619918 0.784666i \(-0.287166\pi\)
\(678\) 3.03444i 0.116537i
\(679\) − 7.96556i − 0.305690i
\(680\) −37.7639 −1.44818
\(681\) − 12.9098i − 0.494706i
\(682\) 8.61803i 0.330002i
\(683\) 20.8541 0.797960 0.398980 0.916960i \(-0.369364\pi\)
0.398980 + 0.916960i \(0.369364\pi\)
\(684\) 20.5623i 0.786219i
\(685\) 27.5410i 1.05229i
\(686\) − 12.4377i − 0.474873i
\(687\) −1.41641 −0.0540393
\(688\) 13.4164i 0.511496i
\(689\) −0.472136 −0.0179869
\(690\) 1.81966 0.0692733
\(691\) 11.8328 0.450142 0.225071 0.974342i \(-0.427739\pi\)
0.225071 + 0.974342i \(0.427739\pi\)
\(692\) −6.61803 −0.251580
\(693\) − 8.09017i − 0.307320i
\(694\) − 19.8541i − 0.753651i
\(695\) −4.97871 −0.188853
\(696\) 0 0
\(697\) −16.8885 −0.639699
\(698\) − 2.79837i − 0.105920i
\(699\) 9.41641i 0.356161i
\(700\) −35.6525 −1.34754
\(701\) 21.0557 0.795264 0.397632 0.917545i \(-0.369832\pi\)
0.397632 + 0.917545i \(0.369832\pi\)
\(702\) 0.506578 0.0191195
\(703\) −22.8541 −0.861959
\(704\) 0.326238i 0.0122956i
\(705\) −16.6738 −0.627970
\(706\) − 11.8197i − 0.444839i
\(707\) − 1.38197i − 0.0519742i
\(708\) 6.09017i 0.228883i
\(709\) 41.5066 1.55881 0.779406 0.626519i \(-0.215521\pi\)
0.779406 + 0.626519i \(0.215521\pi\)
\(710\) − 24.9443i − 0.936142i
\(711\) 15.9443i 0.597957i
\(712\) −10.5279 −0.394548
\(713\) − 12.4721i − 0.467085i
\(714\) − 3.74265i − 0.140065i
\(715\) − 1.25735i − 0.0470224i
\(716\) 25.8885 0.967500
\(717\) − 17.1459i − 0.640325i
\(718\) 14.6869 0.548111
\(719\) 8.50658 0.317242 0.158621 0.987340i \(-0.449295\pi\)
0.158621 + 0.987340i \(0.449295\pi\)
\(720\) −18.7082 −0.697214
\(721\) −20.5279 −0.764498
\(722\) 2.81966i 0.104937i
\(723\) 2.87539i 0.106937i
\(724\) 9.61803 0.357451
\(725\) 0 0
\(726\) 3.47214 0.128863
\(727\) − 28.0557i − 1.04053i −0.854005 0.520265i \(-0.825833\pi\)
0.854005 0.520265i \(-0.174167\pi\)
\(728\) 1.18034i 0.0437463i
\(729\) 8.50658 0.315058
\(730\) 32.6525 1.20852
\(731\) −31.7082 −1.17277
\(732\) −0.618034 −0.0228432
\(733\) 14.8197i 0.547377i 0.961818 + 0.273688i \(0.0882437\pi\)
−0.961818 + 0.273688i \(0.911756\pi\)
\(734\) −16.8541 −0.622096
\(735\) 4.76393i 0.175720i
\(736\) 6.94427i 0.255969i
\(737\) 2.11146i 0.0777765i
\(738\) 6.23607 0.229553
\(739\) 50.0689i 1.84181i 0.389783 + 0.920907i \(0.372550\pi\)
−0.389783 + 0.920907i \(0.627450\pi\)
\(740\) − 29.3607i − 1.07932i
\(741\) −0.708204 −0.0260165
\(742\) − 2.76393i − 0.101467i
\(743\) 35.2361i 1.29269i 0.763047 + 0.646343i \(0.223702\pi\)
−0.763047 + 0.646343i \(0.776298\pi\)
\(744\) 13.9443i 0.511222i
\(745\) 37.0689 1.35810
\(746\) − 12.7426i − 0.466541i
\(747\) −26.0344 −0.952550
\(748\) −9.79837 −0.358264
\(749\) −15.1246 −0.552641
\(750\) −7.14590 −0.260931
\(751\) − 18.5279i − 0.676091i −0.941130 0.338046i \(-0.890234\pi\)
0.941130 0.338046i \(-0.109766\pi\)
\(752\) − 12.9787i − 0.473285i
\(753\) −12.1459 −0.442621
\(754\) 0 0
\(755\) 10.3050 0.375036
\(756\) − 12.5623i − 0.456887i
\(757\) 0.0212862i 0 0.000773661i 1.00000 0.000386831i \(0.000123132\pi\)
−1.00000 0.000386831i \(0.999877\pi\)
\(758\) 15.0132 0.545302
\(759\) 1.05573 0.0383205
\(760\) −41.8328 −1.51744
\(761\) 25.2016 0.913558 0.456779 0.889580i \(-0.349003\pi\)
0.456779 + 0.889580i \(0.349003\pi\)
\(762\) − 6.09017i − 0.220624i
\(763\) −32.1591 −1.16424
\(764\) − 27.5623i − 0.997169i
\(765\) − 44.2148i − 1.59859i
\(766\) − 17.8328i − 0.644326i
\(767\) 1.43769 0.0519121
\(768\) − 4.05573i − 0.146348i
\(769\) − 19.3607i − 0.698164i −0.937092 0.349082i \(-0.886493\pi\)
0.937092 0.349082i \(-0.113507\pi\)
\(770\) 7.36068 0.265260
\(771\) − 14.3262i − 0.515947i
\(772\) − 20.1803i − 0.726306i
\(773\) 14.0000i 0.503545i 0.967786 + 0.251773i \(0.0810135\pi\)
−0.967786 + 0.251773i \(0.918987\pi\)
\(774\) 11.7082 0.420843
\(775\) 99.4296i 3.57162i
\(776\) 7.96556 0.285947
\(777\) 6.50658 0.233422
\(778\) −11.8197 −0.423755
\(779\) −18.7082 −0.670291
\(780\) − 0.909830i − 0.0325771i
\(781\) − 14.4721i − 0.517854i
\(782\) −3.34752 −0.119707
\(783\) 0 0
\(784\) −3.70820 −0.132436
\(785\) − 56.1246i − 2.00317i
\(786\) 5.47214i 0.195185i
\(787\) −19.3607 −0.690134 −0.345067 0.938578i \(-0.612144\pi\)
−0.345067 + 0.938578i \(0.612144\pi\)
\(788\) −10.1803 −0.362660
\(789\) −10.3262 −0.367624
\(790\) −14.5066 −0.516121
\(791\) − 17.7639i − 0.631613i
\(792\) 8.09017 0.287472
\(793\) 0.145898i 0.00518099i
\(794\) 8.68692i 0.308287i
\(795\) 4.76393i 0.168959i
\(796\) −9.47214 −0.335731
\(797\) − 43.1803i − 1.52953i −0.644312 0.764763i \(-0.722856\pi\)
0.644312 0.764763i \(-0.277144\pi\)
\(798\) − 4.14590i − 0.146763i
\(799\) 30.6738 1.08516
\(800\) − 55.3607i − 1.95730i
\(801\) − 12.3262i − 0.435526i
\(802\) − 15.4934i − 0.547092i
\(803\) 18.9443 0.668529
\(804\) 1.52786i 0.0538836i
\(805\) −10.6525 −0.375450
\(806\) 1.47214 0.0518538
\(807\) 3.70820 0.130535
\(808\) 1.38197 0.0486174
\(809\) − 43.0689i − 1.51422i −0.653287 0.757111i \(-0.726610\pi\)
0.653287 0.757111i \(-0.273390\pi\)
\(810\) 13.5967i 0.477741i
\(811\) −5.65248 −0.198485 −0.0992426 0.995063i \(-0.531642\pi\)
−0.0992426 + 0.995063i \(0.531642\pi\)
\(812\) 0 0
\(813\) −6.29180 −0.220663
\(814\) 4.02129i 0.140946i
\(815\) 23.2574i 0.814670i
\(816\) −5.02129 −0.175780
\(817\) −35.1246 −1.22885
\(818\) −16.9443 −0.592443
\(819\) −1.38197 −0.0482898
\(820\) − 24.0344i − 0.839319i
\(821\) −8.58359 −0.299569 −0.149785 0.988719i \(-0.547858\pi\)
−0.149785 + 0.988719i \(0.547858\pi\)
\(822\) − 2.72949i − 0.0952019i
\(823\) 5.47214i 0.190747i 0.995442 + 0.0953733i \(0.0304045\pi\)
−0.995442 + 0.0953733i \(0.969596\pi\)
\(824\) − 20.5279i − 0.715122i
\(825\) −8.41641 −0.293022
\(826\) 8.41641i 0.292844i
\(827\) 26.9656i 0.937684i 0.883282 + 0.468842i \(0.155329\pi\)
−0.883282 + 0.468842i \(0.844671\pi\)
\(828\) −5.23607 −0.181966
\(829\) − 32.7984i − 1.13913i −0.821945 0.569567i \(-0.807111\pi\)
0.821945 0.569567i \(-0.192889\pi\)
\(830\) − 23.6869i − 0.822185i
\(831\) − 13.2148i − 0.458416i
\(832\) 0.0557281 0.00193202
\(833\) − 8.76393i − 0.303652i
\(834\) 0.493422 0.0170858
\(835\) 40.5755 1.40417
\(836\) −10.8541 −0.375397
\(837\) −35.0344 −1.21097
\(838\) − 10.8541i − 0.374949i
\(839\) − 48.2148i − 1.66456i −0.554356 0.832280i \(-0.687035\pi\)
0.554356 0.832280i \(-0.312965\pi\)
\(840\) 11.9098 0.410928
\(841\) 0 0
\(842\) −19.1803 −0.660998
\(843\) 14.2918i 0.492236i
\(844\) − 18.8541i − 0.648985i
\(845\) 49.8885 1.71622
\(846\) −11.3262 −0.389404
\(847\) −20.3262 −0.698418
\(848\) −3.70820 −0.127340
\(849\) 3.23607i 0.111062i
\(850\) 26.6869 0.915354
\(851\) − 5.81966i − 0.199495i
\(852\) − 10.4721i − 0.358769i
\(853\) − 45.0000i − 1.54077i −0.637579 0.770385i \(-0.720064\pi\)
0.637579 0.770385i \(-0.279936\pi\)
\(854\) −0.854102 −0.0292268
\(855\) − 48.9787i − 1.67504i
\(856\) − 15.1246i − 0.516949i
\(857\) −45.3262 −1.54831 −0.774157 0.632993i \(-0.781826\pi\)
−0.774157 + 0.632993i \(0.781826\pi\)
\(858\) 0.124612i 0.00425418i
\(859\) 32.7082i 1.11599i 0.829844 + 0.557995i \(0.188429\pi\)
−0.829844 + 0.557995i \(0.811571\pi\)
\(860\) − 45.1246i − 1.53874i
\(861\) 5.32624 0.181518
\(862\) − 9.02129i − 0.307266i
\(863\) −17.7426 −0.603967 −0.301983 0.953313i \(-0.597649\pi\)
−0.301983 + 0.953313i \(0.597649\pi\)
\(864\) 19.5066 0.663627
\(865\) 15.7639 0.535990
\(866\) 6.41641 0.218038
\(867\) − 1.36068i − 0.0462111i
\(868\) − 36.5066i − 1.23911i
\(869\) −8.41641 −0.285507
\(870\) 0 0
\(871\) 0.360680 0.0122212
\(872\) − 32.1591i − 1.08904i
\(873\) 9.32624i 0.315645i
\(874\) −3.70820 −0.125432
\(875\) 41.8328 1.41421
\(876\) 13.7082 0.463157
\(877\) 4.38197 0.147968 0.0739842 0.997259i \(-0.476429\pi\)
0.0739842 + 0.997259i \(0.476429\pi\)
\(878\) − 12.9443i − 0.436848i
\(879\) 5.27051 0.177770
\(880\) − 9.87539i − 0.332899i
\(881\) − 4.27051i − 0.143877i −0.997409 0.0719386i \(-0.977081\pi\)
0.997409 0.0719386i \(-0.0229186\pi\)
\(882\) 3.23607i 0.108964i
\(883\) 20.6869 0.696170 0.348085 0.937463i \(-0.386832\pi\)
0.348085 + 0.937463i \(0.386832\pi\)
\(884\) 1.67376i 0.0562947i
\(885\) − 14.5066i − 0.487633i
\(886\) −1.18034 −0.0396543
\(887\) 38.0689i 1.27823i 0.769112 + 0.639114i \(0.220699\pi\)
−0.769112 + 0.639114i \(0.779301\pi\)
\(888\) 6.50658i 0.218346i
\(889\) 35.6525i 1.19575i
\(890\) 11.2148 0.375920
\(891\) 7.88854i 0.264276i
\(892\) 4.32624 0.144853
\(893\) 33.9787 1.13705
\(894\) −3.67376 −0.122869
\(895\) −61.6656 −2.06125
\(896\) 25.4508i 0.850253i
\(897\) − 0.180340i − 0.00602137i
\(898\) 16.1459 0.538796
\(899\) 0 0
\(900\) 41.7426 1.39142
\(901\) − 8.76393i − 0.291969i
\(902\) 3.29180i 0.109605i
\(903\) 10.0000 0.332779
\(904\) 17.7639 0.590820
\(905\) −22.9098 −0.761549
\(906\) −1.02129 −0.0339300
\(907\) 9.76393i 0.324206i 0.986774 + 0.162103i \(0.0518277\pi\)
−0.986774 + 0.162103i \(0.948172\pi\)
\(908\) −33.7984 −1.12164
\(909\) 1.61803i 0.0536668i
\(910\) − 1.25735i − 0.0416809i
\(911\) − 10.9443i − 0.362600i −0.983428 0.181300i \(-0.941970\pi\)
0.983428 0.181300i \(-0.0580305\pi\)
\(912\) −5.56231 −0.184186
\(913\) − 13.7426i − 0.454815i
\(914\) 11.5623i 0.382447i
\(915\) 1.47214 0.0486673
\(916\) 3.70820i 0.122523i
\(917\) − 32.0344i − 1.05787i
\(918\) 9.40325i 0.310354i
\(919\) 31.3050 1.03266 0.516328 0.856391i \(-0.327299\pi\)
0.516328 + 0.856391i \(0.327299\pi\)
\(920\) − 10.6525i − 0.351202i
\(921\) −11.8541 −0.390606
\(922\) −24.0902 −0.793367
\(923\) −2.47214 −0.0813713
\(924\) 3.09017 0.101659
\(925\) 46.3951i 1.52546i
\(926\) 6.61803i 0.217482i
\(927\) 24.0344 0.789395
\(928\) 0 0
\(929\) −3.65248 −0.119834 −0.0599169 0.998203i \(-0.519084\pi\)
−0.0599169 + 0.998203i \(0.519084\pi\)
\(930\) − 14.8541i − 0.487085i
\(931\) − 9.70820i − 0.318174i
\(932\) 24.6525 0.807519
\(933\) 1.29180 0.0422915
\(934\) 11.0902 0.362881
\(935\) 23.3394 0.763280
\(936\) − 1.38197i − 0.0451710i
\(937\) −6.65248 −0.217327 −0.108663 0.994079i \(-0.534657\pi\)
−0.108663 + 0.994079i \(0.534657\pi\)
\(938\) 2.11146i 0.0689415i
\(939\) − 7.97871i − 0.260375i
\(940\) 43.6525i 1.42379i
\(941\) 34.8885 1.13733 0.568667 0.822568i \(-0.307459\pi\)
0.568667 + 0.822568i \(0.307459\pi\)
\(942\) 5.56231i 0.181230i
\(943\) − 4.76393i − 0.155135i
\(944\) 11.2918 0.367517
\(945\) 29.9230i 0.973395i
\(946\) 6.18034i 0.200940i
\(947\) − 43.0344i − 1.39843i −0.714911 0.699216i \(-0.753533\pi\)
0.714911 0.699216i \(-0.246467\pi\)
\(948\) −6.09017 −0.197800
\(949\) − 3.23607i − 0.105047i
\(950\) 29.5623 0.959128
\(951\) −17.1246 −0.555304
\(952\) −21.9098 −0.710102
\(953\) 42.6312 1.38096 0.690480 0.723352i \(-0.257399\pi\)
0.690480 + 0.723352i \(0.257399\pi\)
\(954\) 3.23607i 0.104772i
\(955\) 65.6525i 2.12446i
\(956\) −44.8885 −1.45180
\(957\) 0 0
\(958\) −6.90983 −0.223246
\(959\) 15.9787i 0.515980i
\(960\) − 0.562306i − 0.0181483i
\(961\) −70.8115 −2.28424
\(962\) 0.686918 0.0221471
\(963\) 17.7082 0.570639
\(964\) 7.52786 0.242456
\(965\) 48.0689i 1.54739i
\(966\) 1.05573 0.0339675
\(967\) 3.56231i 0.114556i 0.998358 + 0.0572780i \(0.0182421\pi\)
−0.998358 + 0.0572780i \(0.981758\pi\)
\(968\) − 20.3262i − 0.653310i
\(969\) − 13.1459i − 0.422307i
\(970\) −8.48529 −0.272446
\(971\) 19.5066i 0.625996i 0.949754 + 0.312998i \(0.101333\pi\)
−0.949754 + 0.312998i \(0.898667\pi\)
\(972\) 22.5623i 0.723686i
\(973\) −2.88854 −0.0926025
\(974\) − 26.3050i − 0.842865i
\(975\) 1.43769i 0.0460431i
\(976\) 1.14590i 0.0366793i
\(977\) −45.2148 −1.44655 −0.723275 0.690561i \(-0.757364\pi\)
−0.723275 + 0.690561i \(0.757364\pi\)
\(978\) − 2.30495i − 0.0737042i
\(979\) 6.50658 0.207951
\(980\) 12.4721 0.398408
\(981\) 37.6525 1.20215
\(982\) −9.34752 −0.298291
\(983\) − 10.9443i − 0.349068i −0.984651 0.174534i \(-0.944158\pi\)
0.984651 0.174534i \(-0.0558419\pi\)
\(984\) 5.32624i 0.169794i
\(985\) 24.2492 0.772645
\(986\) 0 0
\(987\) −9.67376 −0.307919
\(988\) 1.85410i 0.0589868i
\(989\) − 8.94427i − 0.284411i
\(990\) −8.61803 −0.273899
\(991\) −7.34752 −0.233402 −0.116701 0.993167i \(-0.537232\pi\)
−0.116701 + 0.993167i \(0.537232\pi\)
\(992\) 56.6869 1.79981
\(993\) −13.0902 −0.415404
\(994\) − 14.4721i − 0.459028i
\(995\) 22.5623 0.715273
\(996\) − 9.94427i − 0.315096i
\(997\) − 16.9098i − 0.535540i −0.963483 0.267770i \(-0.913713\pi\)
0.963483 0.267770i \(-0.0862867\pi\)
\(998\) 15.2574i 0.482963i
\(999\) −16.3475 −0.517213
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 841.2.b.b.840.2 4
29.2 odd 28 841.2.d.g.605.2 12
29.3 odd 28 841.2.d.g.571.2 12
29.4 even 14 841.2.e.j.651.3 24
29.5 even 14 841.2.e.j.236.2 24
29.6 even 14 841.2.e.j.196.3 24
29.7 even 7 841.2.e.j.270.3 24
29.8 odd 28 841.2.d.i.574.2 12
29.9 even 14 841.2.e.j.267.3 24
29.10 odd 28 841.2.d.i.190.1 12
29.11 odd 28 841.2.d.g.778.1 12
29.12 odd 4 841.2.a.a.1.2 2
29.13 even 14 841.2.e.j.63.2 24
29.14 odd 28 841.2.d.g.645.2 12
29.15 odd 28 841.2.d.i.645.1 12
29.16 even 7 841.2.e.j.63.3 24
29.17 odd 4 841.2.a.c.1.1 yes 2
29.18 odd 28 841.2.d.i.778.2 12
29.19 odd 28 841.2.d.g.190.2 12
29.20 even 7 841.2.e.j.267.2 24
29.21 odd 28 841.2.d.g.574.1 12
29.22 even 14 841.2.e.j.270.2 24
29.23 even 7 841.2.e.j.196.2 24
29.24 even 7 841.2.e.j.236.3 24
29.25 even 7 841.2.e.j.651.2 24
29.26 odd 28 841.2.d.i.571.1 12
29.27 odd 28 841.2.d.i.605.1 12
29.28 even 2 inner 841.2.b.b.840.3 4
87.17 even 4 7569.2.a.d.1.2 2
87.41 even 4 7569.2.a.l.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
841.2.a.a.1.2 2 29.12 odd 4
841.2.a.c.1.1 yes 2 29.17 odd 4
841.2.b.b.840.2 4 1.1 even 1 trivial
841.2.b.b.840.3 4 29.28 even 2 inner
841.2.d.g.190.2 12 29.19 odd 28
841.2.d.g.571.2 12 29.3 odd 28
841.2.d.g.574.1 12 29.21 odd 28
841.2.d.g.605.2 12 29.2 odd 28
841.2.d.g.645.2 12 29.14 odd 28
841.2.d.g.778.1 12 29.11 odd 28
841.2.d.i.190.1 12 29.10 odd 28
841.2.d.i.571.1 12 29.26 odd 28
841.2.d.i.574.2 12 29.8 odd 28
841.2.d.i.605.1 12 29.27 odd 28
841.2.d.i.645.1 12 29.15 odd 28
841.2.d.i.778.2 12 29.18 odd 28
841.2.e.j.63.2 24 29.13 even 14
841.2.e.j.63.3 24 29.16 even 7
841.2.e.j.196.2 24 29.23 even 7
841.2.e.j.196.3 24 29.6 even 14
841.2.e.j.236.2 24 29.5 even 14
841.2.e.j.236.3 24 29.24 even 7
841.2.e.j.267.2 24 29.20 even 7
841.2.e.j.267.3 24 29.9 even 14
841.2.e.j.270.2 24 29.22 even 14
841.2.e.j.270.3 24 29.7 even 7
841.2.e.j.651.2 24 29.25 even 7
841.2.e.j.651.3 24 29.4 even 14
7569.2.a.d.1.2 2 87.17 even 4
7569.2.a.l.1.1 2 87.41 even 4