Properties

Label 841.2.b.b
Level $841$
Weight $2$
Character orbit 841.b
Analytic conductor $6.715$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [841,2,Mod(840,841)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(841, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("841.840");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 841 = 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 841.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.71541880999\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} - \beta_1 q^{3} + (\beta_{2} + 1) q^{4} + ( - 3 \beta_{2} - 2) q^{5} + ( - \beta_{2} + 1) q^{6} + ( - 2 \beta_{2} - 1) q^{7} + (\beta_{3} + 2 \beta_1) q^{8} + (\beta_{2} + 2) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_1 q^{2} - \beta_1 q^{3} + (\beta_{2} + 1) q^{4} + ( - 3 \beta_{2} - 2) q^{5} + ( - \beta_{2} + 1) q^{6} + ( - 2 \beta_{2} - 1) q^{7} + (\beta_{3} + 2 \beta_1) q^{8} + (\beta_{2} + 2) q^{9} + ( - 3 \beta_{3} + \beta_1) q^{10} + ( - 2 \beta_{3} + \beta_1) q^{11} - \beta_{3} q^{12} + (2 \beta_{2} - 1) q^{13} + ( - 2 \beta_{3} + \beta_1) q^{14} + (3 \beta_{3} - \beta_1) q^{15} + 3 \beta_{2} q^{16} + ( - 5 \beta_{3} + \beta_1) q^{17} + (\beta_{3} + \beta_1) q^{18} + ( - 3 \beta_{3} - 3 \beta_1) q^{19} + ( - 2 \beta_{2} - 5) q^{20} + (2 \beta_{3} - \beta_1) q^{21} + (3 \beta_{2} - 1) q^{22} - 2 \beta_{2} q^{23} + ( - \beta_{2} + 2) q^{24} + (3 \beta_{2} + 8) q^{25} + (2 \beta_{3} - 3 \beta_1) q^{26} + ( - \beta_{3} - 4 \beta_1) q^{27} + ( - \beta_{2} - 3) q^{28} + ( - 4 \beta_{2} + 1) q^{30} + ( - 7 \beta_{3} - 5 \beta_1) q^{31} + (5 \beta_{3} + \beta_1) q^{32} + ( - 3 \beta_{2} + 1) q^{33} + (6 \beta_{2} - 1) q^{34} + (\beta_{2} + 8) q^{35} + (2 \beta_{2} + 3) q^{36} + ( - \beta_{3} - 6 \beta_1) q^{37} + 3 q^{38} + ( - 2 \beta_{3} + 3 \beta_1) q^{39} + ( - 8 \beta_{3} - \beta_1) q^{40} + ( - 2 \beta_{3} - 3 \beta_1) q^{41} + ( - 3 \beta_{2} + 1) q^{42} + ( - 6 \beta_{3} - 2 \beta_1) q^{43} + ( - \beta_{3} - 2 \beta_1) q^{44} + ( - 5 \beta_{2} - 7) q^{45} + ( - 2 \beta_{3} + 2 \beta_1) q^{46} + 7 \beta_{3} q^{47} + ( - 3 \beta_{3} + 3 \beta_1) q^{48} - 2 q^{49} + (3 \beta_{3} + 5 \beta_1) q^{50} + ( - 6 \beta_{2} + 1) q^{51} + ( - \beta_{2} + 1) q^{52} - 2 q^{53} + ( - 3 \beta_{2} + 4) q^{54} + (\beta_{3} + 7 \beta_1) q^{55} - 5 \beta_{3} q^{56} - 3 q^{57} + (5 \beta_{2} + 3) q^{59} + (2 \beta_{3} + 3 \beta_1) q^{60} - \beta_1 q^{61} + (2 \beta_{2} + 5) q^{62} + ( - 3 \beta_{2} - 4) q^{63} + (2 \beta_{2} - 1) q^{64} + (5 \beta_{2} - 4) q^{65} + ( - 3 \beta_{3} + 4 \beta_1) q^{66} + ( - 4 \beta_{2} + 4) q^{67} + ( - 4 \beta_{3} - 5 \beta_1) q^{68} + (2 \beta_{3} - 2 \beta_1) q^{69} + (\beta_{3} + 7 \beta_1) q^{70} + ( - 4 \beta_{2} - 8) q^{71} + (4 \beta_{3} + 3 \beta_1) q^{72} + (10 \beta_{3} + 6 \beta_1) q^{73} + ( - 5 \beta_{2} + 6) q^{74} + ( - 3 \beta_{3} - 5 \beta_1) q^{75} + ( - 6 \beta_{3} - 3 \beta_1) q^{76} + 5 \beta_1 q^{77} + (5 \beta_{2} - 3) q^{78} + ( - 3 \beta_{3} - 5 \beta_1) q^{79} + (3 \beta_{2} - 9) q^{80} + (6 \beta_{2} + 2) q^{81} + ( - \beta_{2} + 3) q^{82} + ( - 8 \beta_{2} - 5) q^{83} + (\beta_{3} + 2 \beta_1) q^{84} + (7 \beta_{3} + 16 \beta_1) q^{85} + (4 \beta_{2} + 2) q^{86} + 5 \beta_{2} q^{88} + (\beta_{3} + 6 \beta_1) q^{89} + ( - 5 \beta_{3} - 2 \beta_1) q^{90} + (4 \beta_{2} - 3) q^{91} - 2 q^{92} + ( - 2 \beta_{2} - 5) q^{93} - 7 \beta_{2} q^{94} + (15 \beta_{3} + 6 \beta_1) q^{95} + (4 \beta_{2} + 1) q^{96} + (2 \beta_{3} - 9 \beta_1) q^{97} - 2 \beta_1 q^{98} + ( - 3 \beta_{3} - \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{4} - 2 q^{5} + 6 q^{6} + 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 2 q^{4} - 2 q^{5} + 6 q^{6} + 6 q^{9} - 8 q^{13} - 6 q^{16} - 16 q^{20} - 10 q^{22} + 4 q^{23} + 10 q^{24} + 26 q^{25} - 10 q^{28} + 12 q^{30} + 10 q^{33} - 16 q^{34} + 30 q^{35} + 8 q^{36} + 12 q^{38} + 10 q^{42} - 18 q^{45} - 8 q^{49} + 16 q^{51} + 6 q^{52} - 8 q^{53} + 22 q^{54} - 12 q^{57} + 2 q^{59} + 16 q^{62} - 10 q^{63} - 8 q^{64} - 26 q^{65} + 24 q^{67} - 24 q^{71} + 34 q^{74} - 22 q^{78} - 42 q^{80} - 4 q^{81} + 14 q^{82} - 4 q^{83} - 10 q^{88} - 20 q^{91} - 8 q^{92} - 16 q^{93} + 14 q^{94} - 4 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 3x^{2} + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} + 1 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} + 2\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} - 1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} - 2\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/841\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
840.1
1.61803i
0.618034i
0.618034i
1.61803i
1.61803i 1.61803i −0.618034 2.85410 2.61803 2.23607 2.23607i 0.381966 4.61803i
840.2 0.618034i 0.618034i 1.61803 −3.85410 0.381966 −2.23607 2.23607i 2.61803 2.38197i
840.3 0.618034i 0.618034i 1.61803 −3.85410 0.381966 −2.23607 2.23607i 2.61803 2.38197i
840.4 1.61803i 1.61803i −0.618034 2.85410 2.61803 2.23607 2.23607i 0.381966 4.61803i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
29.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 841.2.b.b 4
29.b even 2 1 inner 841.2.b.b 4
29.c odd 4 1 841.2.a.a 2
29.c odd 4 1 841.2.a.c yes 2
29.d even 7 6 841.2.e.j 24
29.e even 14 6 841.2.e.j 24
29.f odd 28 6 841.2.d.g 12
29.f odd 28 6 841.2.d.i 12
87.f even 4 1 7569.2.a.d 2
87.f even 4 1 7569.2.a.l 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
841.2.a.a 2 29.c odd 4 1
841.2.a.c yes 2 29.c odd 4 1
841.2.b.b 4 1.a even 1 1 trivial
841.2.b.b 4 29.b even 2 1 inner
841.2.d.g 12 29.f odd 28 6
841.2.d.i 12 29.f odd 28 6
841.2.e.j 24 29.d even 7 6
841.2.e.j 24 29.e even 14 6
7569.2.a.d 2 87.f even 4 1
7569.2.a.l 2 87.f even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} + 3T_{2}^{2} + 1 \) acting on \(S_{2}^{\mathrm{new}}(841, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 3T^{2} + 1 \) Copy content Toggle raw display
$3$ \( T^{4} + 3T^{2} + 1 \) Copy content Toggle raw display
$5$ \( (T^{2} + T - 11)^{2} \) Copy content Toggle raw display
$7$ \( (T^{2} - 5)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} + 15T^{2} + 25 \) Copy content Toggle raw display
$13$ \( (T^{2} + 4 T - 1)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} + 63T^{2} + 841 \) Copy content Toggle raw display
$19$ \( T^{4} + 27T^{2} + 81 \) Copy content Toggle raw display
$23$ \( (T^{2} - 2 T - 4)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( T^{4} + 103T^{2} + 121 \) Copy content Toggle raw display
$37$ \( T^{4} + 98T^{2} + 1681 \) Copy content Toggle raw display
$41$ \( T^{4} + 23T^{2} + 121 \) Copy content Toggle raw display
$43$ \( T^{4} + 60T^{2} + 400 \) Copy content Toggle raw display
$47$ \( (T^{2} + 49)^{2} \) Copy content Toggle raw display
$53$ \( (T + 2)^{4} \) Copy content Toggle raw display
$59$ \( (T^{2} - T - 31)^{2} \) Copy content Toggle raw display
$61$ \( T^{4} + 3T^{2} + 1 \) Copy content Toggle raw display
$67$ \( (T^{2} - 12 T + 16)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} + 12 T + 16)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + 188T^{2} + 16 \) Copy content Toggle raw display
$79$ \( T^{4} + 63T^{2} + 961 \) Copy content Toggle raw display
$83$ \( (T^{2} + 2 T - 79)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} + 98T^{2} + 1681 \) Copy content Toggle raw display
$97$ \( T^{4} + 287T^{2} + 3481 \) Copy content Toggle raw display
show more
show less