Properties

Label 841.2.a.a.1.2
Level $841$
Weight $2$
Character 841.1
Self dual yes
Analytic conductor $6.715$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [841,2,Mod(1,841)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(841, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("841.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 841 = 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 841.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.71541880999\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.618034\) of defining polynomial
Character \(\chi\) \(=\) 841.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.618034 q^{2} -0.618034 q^{3} -1.61803 q^{4} +3.85410 q^{5} -0.381966 q^{6} -2.23607 q^{7} -2.23607 q^{8} -2.61803 q^{9} +O(q^{10})\) \(q+0.618034 q^{2} -0.618034 q^{3} -1.61803 q^{4} +3.85410 q^{5} -0.381966 q^{6} -2.23607 q^{7} -2.23607 q^{8} -2.61803 q^{9} +2.38197 q^{10} -1.38197 q^{11} +1.00000 q^{12} -0.236068 q^{13} -1.38197 q^{14} -2.38197 q^{15} +1.85410 q^{16} -4.38197 q^{17} -1.61803 q^{18} -4.85410 q^{19} -6.23607 q^{20} +1.38197 q^{21} -0.854102 q^{22} -1.23607 q^{23} +1.38197 q^{24} +9.85410 q^{25} -0.145898 q^{26} +3.47214 q^{27} +3.61803 q^{28} -1.47214 q^{30} -10.0902 q^{31} +5.61803 q^{32} +0.854102 q^{33} -2.70820 q^{34} -8.61803 q^{35} +4.23607 q^{36} +4.70820 q^{37} -3.00000 q^{38} +0.145898 q^{39} -8.61803 q^{40} +3.85410 q^{41} +0.854102 q^{42} -7.23607 q^{43} +2.23607 q^{44} -10.0902 q^{45} -0.763932 q^{46} -7.00000 q^{47} -1.14590 q^{48} -2.00000 q^{49} +6.09017 q^{50} +2.70820 q^{51} +0.381966 q^{52} -2.00000 q^{53} +2.14590 q^{54} -5.32624 q^{55} +5.00000 q^{56} +3.00000 q^{57} +6.09017 q^{59} +3.85410 q^{60} -0.618034 q^{61} -6.23607 q^{62} +5.85410 q^{63} -0.236068 q^{64} -0.909830 q^{65} +0.527864 q^{66} -1.52786 q^{67} +7.09017 q^{68} +0.763932 q^{69} -5.32624 q^{70} +10.4721 q^{71} +5.85410 q^{72} -13.7082 q^{73} +2.90983 q^{74} -6.09017 q^{75} +7.85410 q^{76} +3.09017 q^{77} +0.0901699 q^{78} -6.09017 q^{79} +7.14590 q^{80} +5.70820 q^{81} +2.38197 q^{82} -9.94427 q^{83} -2.23607 q^{84} -16.8885 q^{85} -4.47214 q^{86} +3.09017 q^{88} +4.70820 q^{89} -6.23607 q^{90} +0.527864 q^{91} +2.00000 q^{92} +6.23607 q^{93} -4.32624 q^{94} -18.7082 q^{95} -3.47214 q^{96} +3.56231 q^{97} -1.23607 q^{98} +3.61803 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} + q^{3} - q^{4} + q^{5} - 3 q^{6} - 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - q^{2} + q^{3} - q^{4} + q^{5} - 3 q^{6} - 3 q^{9} + 7 q^{10} - 5 q^{11} + 2 q^{12} + 4 q^{13} - 5 q^{14} - 7 q^{15} - 3 q^{16} - 11 q^{17} - q^{18} - 3 q^{19} - 8 q^{20} + 5 q^{21} + 5 q^{22} + 2 q^{23} + 5 q^{24} + 13 q^{25} - 7 q^{26} - 2 q^{27} + 5 q^{28} + 6 q^{30} - 9 q^{31} + 9 q^{32} - 5 q^{33} + 8 q^{34} - 15 q^{35} + 4 q^{36} - 4 q^{37} - 6 q^{38} + 7 q^{39} - 15 q^{40} + q^{41} - 5 q^{42} - 10 q^{43} - 9 q^{45} - 6 q^{46} - 14 q^{47} - 9 q^{48} - 4 q^{49} + q^{50} - 8 q^{51} + 3 q^{52} - 4 q^{53} + 11 q^{54} + 5 q^{55} + 10 q^{56} + 6 q^{57} + q^{59} + q^{60} + q^{61} - 8 q^{62} + 5 q^{63} + 4 q^{64} - 13 q^{65} + 10 q^{66} - 12 q^{67} + 3 q^{68} + 6 q^{69} + 5 q^{70} + 12 q^{71} + 5 q^{72} - 14 q^{73} + 17 q^{74} - q^{75} + 9 q^{76} - 5 q^{77} - 11 q^{78} - q^{79} + 21 q^{80} - 2 q^{81} + 7 q^{82} - 2 q^{83} + 2 q^{85} - 5 q^{88} - 4 q^{89} - 8 q^{90} + 10 q^{91} + 4 q^{92} + 8 q^{93} + 7 q^{94} - 24 q^{95} + 2 q^{96} - 13 q^{97} + 2 q^{98} + 5 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.618034 0.437016 0.218508 0.975835i \(-0.429881\pi\)
0.218508 + 0.975835i \(0.429881\pi\)
\(3\) −0.618034 −0.356822 −0.178411 0.983956i \(-0.557096\pi\)
−0.178411 + 0.983956i \(0.557096\pi\)
\(4\) −1.61803 −0.809017
\(5\) 3.85410 1.72361 0.861803 0.507242i \(-0.169335\pi\)
0.861803 + 0.507242i \(0.169335\pi\)
\(6\) −0.381966 −0.155937
\(7\) −2.23607 −0.845154 −0.422577 0.906327i \(-0.638874\pi\)
−0.422577 + 0.906327i \(0.638874\pi\)
\(8\) −2.23607 −0.790569
\(9\) −2.61803 −0.872678
\(10\) 2.38197 0.753244
\(11\) −1.38197 −0.416678 −0.208339 0.978057i \(-0.566806\pi\)
−0.208339 + 0.978057i \(0.566806\pi\)
\(12\) 1.00000 0.288675
\(13\) −0.236068 −0.0654735 −0.0327367 0.999464i \(-0.510422\pi\)
−0.0327367 + 0.999464i \(0.510422\pi\)
\(14\) −1.38197 −0.369346
\(15\) −2.38197 −0.615021
\(16\) 1.85410 0.463525
\(17\) −4.38197 −1.06278 −0.531391 0.847126i \(-0.678331\pi\)
−0.531391 + 0.847126i \(0.678331\pi\)
\(18\) −1.61803 −0.381374
\(19\) −4.85410 −1.11361 −0.556804 0.830644i \(-0.687972\pi\)
−0.556804 + 0.830644i \(0.687972\pi\)
\(20\) −6.23607 −1.39443
\(21\) 1.38197 0.301570
\(22\) −0.854102 −0.182095
\(23\) −1.23607 −0.257738 −0.128869 0.991662i \(-0.541135\pi\)
−0.128869 + 0.991662i \(0.541135\pi\)
\(24\) 1.38197 0.282093
\(25\) 9.85410 1.97082
\(26\) −0.145898 −0.0286130
\(27\) 3.47214 0.668213
\(28\) 3.61803 0.683744
\(29\) 0 0
\(30\) −1.47214 −0.268774
\(31\) −10.0902 −1.81225 −0.906124 0.423012i \(-0.860973\pi\)
−0.906124 + 0.423012i \(0.860973\pi\)
\(32\) 5.61803 0.993137
\(33\) 0.854102 0.148680
\(34\) −2.70820 −0.464453
\(35\) −8.61803 −1.45671
\(36\) 4.23607 0.706011
\(37\) 4.70820 0.774024 0.387012 0.922075i \(-0.373507\pi\)
0.387012 + 0.922075i \(0.373507\pi\)
\(38\) −3.00000 −0.486664
\(39\) 0.145898 0.0233624
\(40\) −8.61803 −1.36263
\(41\) 3.85410 0.601910 0.300955 0.953638i \(-0.402695\pi\)
0.300955 + 0.953638i \(0.402695\pi\)
\(42\) 0.854102 0.131791
\(43\) −7.23607 −1.10349 −0.551745 0.834013i \(-0.686038\pi\)
−0.551745 + 0.834013i \(0.686038\pi\)
\(44\) 2.23607 0.337100
\(45\) −10.0902 −1.50415
\(46\) −0.763932 −0.112636
\(47\) −7.00000 −1.02105 −0.510527 0.859861i \(-0.670550\pi\)
−0.510527 + 0.859861i \(0.670550\pi\)
\(48\) −1.14590 −0.165396
\(49\) −2.00000 −0.285714
\(50\) 6.09017 0.861280
\(51\) 2.70820 0.379224
\(52\) 0.381966 0.0529692
\(53\) −2.00000 −0.274721 −0.137361 0.990521i \(-0.543862\pi\)
−0.137361 + 0.990521i \(0.543862\pi\)
\(54\) 2.14590 0.292020
\(55\) −5.32624 −0.718190
\(56\) 5.00000 0.668153
\(57\) 3.00000 0.397360
\(58\) 0 0
\(59\) 6.09017 0.792873 0.396436 0.918062i \(-0.370247\pi\)
0.396436 + 0.918062i \(0.370247\pi\)
\(60\) 3.85410 0.497562
\(61\) −0.618034 −0.0791311 −0.0395656 0.999217i \(-0.512597\pi\)
−0.0395656 + 0.999217i \(0.512597\pi\)
\(62\) −6.23607 −0.791981
\(63\) 5.85410 0.737548
\(64\) −0.236068 −0.0295085
\(65\) −0.909830 −0.112851
\(66\) 0.527864 0.0649756
\(67\) −1.52786 −0.186658 −0.0933292 0.995635i \(-0.529751\pi\)
−0.0933292 + 0.995635i \(0.529751\pi\)
\(68\) 7.09017 0.859809
\(69\) 0.763932 0.0919666
\(70\) −5.32624 −0.636607
\(71\) 10.4721 1.24281 0.621407 0.783488i \(-0.286561\pi\)
0.621407 + 0.783488i \(0.286561\pi\)
\(72\) 5.85410 0.689913
\(73\) −13.7082 −1.60442 −0.802212 0.597039i \(-0.796344\pi\)
−0.802212 + 0.597039i \(0.796344\pi\)
\(74\) 2.90983 0.338261
\(75\) −6.09017 −0.703232
\(76\) 7.85410 0.900927
\(77\) 3.09017 0.352158
\(78\) 0.0901699 0.0102097
\(79\) −6.09017 −0.685198 −0.342599 0.939482i \(-0.611307\pi\)
−0.342599 + 0.939482i \(0.611307\pi\)
\(80\) 7.14590 0.798936
\(81\) 5.70820 0.634245
\(82\) 2.38197 0.263044
\(83\) −9.94427 −1.09153 −0.545763 0.837940i \(-0.683760\pi\)
−0.545763 + 0.837940i \(0.683760\pi\)
\(84\) −2.23607 −0.243975
\(85\) −16.8885 −1.83182
\(86\) −4.47214 −0.482243
\(87\) 0 0
\(88\) 3.09017 0.329413
\(89\) 4.70820 0.499069 0.249534 0.968366i \(-0.419722\pi\)
0.249534 + 0.968366i \(0.419722\pi\)
\(90\) −6.23607 −0.657339
\(91\) 0.527864 0.0553352
\(92\) 2.00000 0.208514
\(93\) 6.23607 0.646650
\(94\) −4.32624 −0.446217
\(95\) −18.7082 −1.91942
\(96\) −3.47214 −0.354373
\(97\) 3.56231 0.361697 0.180849 0.983511i \(-0.442116\pi\)
0.180849 + 0.983511i \(0.442116\pi\)
\(98\) −1.23607 −0.124862
\(99\) 3.61803 0.363626
\(100\) −15.9443 −1.59443
\(101\) −0.618034 −0.0614967 −0.0307483 0.999527i \(-0.509789\pi\)
−0.0307483 + 0.999527i \(0.509789\pi\)
\(102\) 1.67376 0.165727
\(103\) 9.18034 0.904566 0.452283 0.891875i \(-0.350610\pi\)
0.452283 + 0.891875i \(0.350610\pi\)
\(104\) 0.527864 0.0517613
\(105\) 5.32624 0.519788
\(106\) −1.23607 −0.120058
\(107\) 6.76393 0.653894 0.326947 0.945043i \(-0.393980\pi\)
0.326947 + 0.945043i \(0.393980\pi\)
\(108\) −5.61803 −0.540596
\(109\) −14.3820 −1.37754 −0.688771 0.724979i \(-0.741850\pi\)
−0.688771 + 0.724979i \(0.741850\pi\)
\(110\) −3.29180 −0.313860
\(111\) −2.90983 −0.276189
\(112\) −4.14590 −0.391751
\(113\) 7.94427 0.747334 0.373667 0.927563i \(-0.378100\pi\)
0.373667 + 0.927563i \(0.378100\pi\)
\(114\) 1.85410 0.173653
\(115\) −4.76393 −0.444239
\(116\) 0 0
\(117\) 0.618034 0.0571373
\(118\) 3.76393 0.346498
\(119\) 9.79837 0.898215
\(120\) 5.32624 0.486217
\(121\) −9.09017 −0.826379
\(122\) −0.381966 −0.0345816
\(123\) −2.38197 −0.214775
\(124\) 16.3262 1.46614
\(125\) 18.7082 1.67331
\(126\) 3.61803 0.322320
\(127\) 15.9443 1.41483 0.707413 0.706801i \(-0.249862\pi\)
0.707413 + 0.706801i \(0.249862\pi\)
\(128\) −11.3820 −1.00603
\(129\) 4.47214 0.393750
\(130\) −0.562306 −0.0493175
\(131\) 14.3262 1.25169 0.625845 0.779948i \(-0.284754\pi\)
0.625845 + 0.779948i \(0.284754\pi\)
\(132\) −1.38197 −0.120285
\(133\) 10.8541 0.941170
\(134\) −0.944272 −0.0815727
\(135\) 13.3820 1.15174
\(136\) 9.79837 0.840204
\(137\) 7.14590 0.610515 0.305258 0.952270i \(-0.401257\pi\)
0.305258 + 0.952270i \(0.401257\pi\)
\(138\) 0.472136 0.0401909
\(139\) 1.29180 0.109569 0.0547844 0.998498i \(-0.482553\pi\)
0.0547844 + 0.998498i \(0.482553\pi\)
\(140\) 13.9443 1.17851
\(141\) 4.32624 0.364335
\(142\) 6.47214 0.543130
\(143\) 0.326238 0.0272814
\(144\) −4.85410 −0.404508
\(145\) 0 0
\(146\) −8.47214 −0.701159
\(147\) 1.23607 0.101949
\(148\) −7.61803 −0.626199
\(149\) 9.61803 0.787940 0.393970 0.919123i \(-0.371101\pi\)
0.393970 + 0.919123i \(0.371101\pi\)
\(150\) −3.76393 −0.307324
\(151\) 2.67376 0.217588 0.108794 0.994064i \(-0.465301\pi\)
0.108794 + 0.994064i \(0.465301\pi\)
\(152\) 10.8541 0.880384
\(153\) 11.4721 0.927467
\(154\) 1.90983 0.153898
\(155\) −38.8885 −3.12360
\(156\) −0.236068 −0.0189006
\(157\) 14.5623 1.16220 0.581099 0.813833i \(-0.302623\pi\)
0.581099 + 0.813833i \(0.302623\pi\)
\(158\) −3.76393 −0.299442
\(159\) 1.23607 0.0980266
\(160\) 21.6525 1.71178
\(161\) 2.76393 0.217828
\(162\) 3.52786 0.277175
\(163\) −6.03444 −0.472654 −0.236327 0.971674i \(-0.575944\pi\)
−0.236327 + 0.971674i \(0.575944\pi\)
\(164\) −6.23607 −0.486955
\(165\) 3.29180 0.256266
\(166\) −6.14590 −0.477014
\(167\) 10.5279 0.814671 0.407335 0.913279i \(-0.366458\pi\)
0.407335 + 0.913279i \(0.366458\pi\)
\(168\) −3.09017 −0.238412
\(169\) −12.9443 −0.995713
\(170\) −10.4377 −0.800535
\(171\) 12.7082 0.971821
\(172\) 11.7082 0.892742
\(173\) 4.09017 0.310970 0.155485 0.987838i \(-0.450306\pi\)
0.155485 + 0.987838i \(0.450306\pi\)
\(174\) 0 0
\(175\) −22.0344 −1.66565
\(176\) −2.56231 −0.193141
\(177\) −3.76393 −0.282914
\(178\) 2.90983 0.218101
\(179\) −16.0000 −1.19590 −0.597948 0.801535i \(-0.704017\pi\)
−0.597948 + 0.801535i \(0.704017\pi\)
\(180\) 16.3262 1.21689
\(181\) 5.94427 0.441834 0.220917 0.975293i \(-0.429095\pi\)
0.220917 + 0.975293i \(0.429095\pi\)
\(182\) 0.326238 0.0241824
\(183\) 0.381966 0.0282357
\(184\) 2.76393 0.203760
\(185\) 18.1459 1.33411
\(186\) 3.85410 0.282596
\(187\) 6.05573 0.442839
\(188\) 11.3262 0.826051
\(189\) −7.76393 −0.564743
\(190\) −11.5623 −0.838818
\(191\) 17.0344 1.23257 0.616284 0.787524i \(-0.288637\pi\)
0.616284 + 0.787524i \(0.288637\pi\)
\(192\) 0.145898 0.0105293
\(193\) 12.4721 0.897764 0.448882 0.893591i \(-0.351822\pi\)
0.448882 + 0.893591i \(0.351822\pi\)
\(194\) 2.20163 0.158068
\(195\) 0.562306 0.0402676
\(196\) 3.23607 0.231148
\(197\) −6.29180 −0.448272 −0.224136 0.974558i \(-0.571956\pi\)
−0.224136 + 0.974558i \(0.571956\pi\)
\(198\) 2.23607 0.158910
\(199\) −5.85410 −0.414986 −0.207493 0.978236i \(-0.566530\pi\)
−0.207493 + 0.978236i \(0.566530\pi\)
\(200\) −22.0344 −1.55807
\(201\) 0.944272 0.0666038
\(202\) −0.381966 −0.0268750
\(203\) 0 0
\(204\) −4.38197 −0.306799
\(205\) 14.8541 1.03746
\(206\) 5.67376 0.395310
\(207\) 3.23607 0.224922
\(208\) −0.437694 −0.0303486
\(209\) 6.70820 0.464016
\(210\) 3.29180 0.227156
\(211\) −11.6525 −0.802190 −0.401095 0.916037i \(-0.631370\pi\)
−0.401095 + 0.916037i \(0.631370\pi\)
\(212\) 3.23607 0.222254
\(213\) −6.47214 −0.443463
\(214\) 4.18034 0.285762
\(215\) −27.8885 −1.90198
\(216\) −7.76393 −0.528269
\(217\) 22.5623 1.53163
\(218\) −8.88854 −0.602008
\(219\) 8.47214 0.572494
\(220\) 8.61803 0.581028
\(221\) 1.03444 0.0695841
\(222\) −1.79837 −0.120699
\(223\) 2.67376 0.179048 0.0895242 0.995985i \(-0.471465\pi\)
0.0895242 + 0.995985i \(0.471465\pi\)
\(224\) −12.5623 −0.839354
\(225\) −25.7984 −1.71989
\(226\) 4.90983 0.326597
\(227\) −20.8885 −1.38642 −0.693211 0.720735i \(-0.743804\pi\)
−0.693211 + 0.720735i \(0.743804\pi\)
\(228\) −4.85410 −0.321471
\(229\) 2.29180 0.151446 0.0757231 0.997129i \(-0.475874\pi\)
0.0757231 + 0.997129i \(0.475874\pi\)
\(230\) −2.94427 −0.194140
\(231\) −1.90983 −0.125658
\(232\) 0 0
\(233\) 15.2361 0.998148 0.499074 0.866559i \(-0.333674\pi\)
0.499074 + 0.866559i \(0.333674\pi\)
\(234\) 0.381966 0.0249699
\(235\) −26.9787 −1.75990
\(236\) −9.85410 −0.641447
\(237\) 3.76393 0.244494
\(238\) 6.05573 0.392535
\(239\) −27.7426 −1.79452 −0.897261 0.441500i \(-0.854447\pi\)
−0.897261 + 0.441500i \(0.854447\pi\)
\(240\) −4.41641 −0.285078
\(241\) −4.65248 −0.299692 −0.149846 0.988709i \(-0.547878\pi\)
−0.149846 + 0.988709i \(0.547878\pi\)
\(242\) −5.61803 −0.361141
\(243\) −13.9443 −0.894525
\(244\) 1.00000 0.0640184
\(245\) −7.70820 −0.492459
\(246\) −1.47214 −0.0938600
\(247\) 1.14590 0.0729117
\(248\) 22.5623 1.43271
\(249\) 6.14590 0.389480
\(250\) 11.5623 0.731264
\(251\) −19.6525 −1.24045 −0.620227 0.784423i \(-0.712959\pi\)
−0.620227 + 0.784423i \(0.712959\pi\)
\(252\) −9.47214 −0.596688
\(253\) 1.70820 0.107394
\(254\) 9.85410 0.618301
\(255\) 10.4377 0.653634
\(256\) −6.56231 −0.410144
\(257\) −23.1803 −1.44595 −0.722975 0.690874i \(-0.757226\pi\)
−0.722975 + 0.690874i \(0.757226\pi\)
\(258\) 2.76393 0.172075
\(259\) −10.5279 −0.654170
\(260\) 1.47214 0.0912980
\(261\) 0 0
\(262\) 8.85410 0.547008
\(263\) −16.7082 −1.03027 −0.515136 0.857108i \(-0.672259\pi\)
−0.515136 + 0.857108i \(0.672259\pi\)
\(264\) −1.90983 −0.117542
\(265\) −7.70820 −0.473511
\(266\) 6.70820 0.411306
\(267\) −2.90983 −0.178079
\(268\) 2.47214 0.151010
\(269\) −6.00000 −0.365826 −0.182913 0.983129i \(-0.558553\pi\)
−0.182913 + 0.983129i \(0.558553\pi\)
\(270\) 8.27051 0.503327
\(271\) 10.1803 0.618412 0.309206 0.950995i \(-0.399937\pi\)
0.309206 + 0.950995i \(0.399937\pi\)
\(272\) −8.12461 −0.492627
\(273\) −0.326238 −0.0197448
\(274\) 4.41641 0.266805
\(275\) −13.6180 −0.821198
\(276\) −1.23607 −0.0744025
\(277\) −21.3820 −1.28472 −0.642359 0.766404i \(-0.722044\pi\)
−0.642359 + 0.766404i \(0.722044\pi\)
\(278\) 0.798374 0.0478833
\(279\) 26.4164 1.58151
\(280\) 19.2705 1.15163
\(281\) 23.1246 1.37950 0.689749 0.724048i \(-0.257721\pi\)
0.689749 + 0.724048i \(0.257721\pi\)
\(282\) 2.67376 0.159220
\(283\) −5.23607 −0.311252 −0.155626 0.987816i \(-0.549739\pi\)
−0.155626 + 0.987816i \(0.549739\pi\)
\(284\) −16.9443 −1.00546
\(285\) 11.5623 0.684892
\(286\) 0.201626 0.0119224
\(287\) −8.61803 −0.508706
\(288\) −14.7082 −0.866689
\(289\) 2.20163 0.129507
\(290\) 0 0
\(291\) −2.20163 −0.129062
\(292\) 22.1803 1.29801
\(293\) 8.52786 0.498203 0.249102 0.968477i \(-0.419865\pi\)
0.249102 + 0.968477i \(0.419865\pi\)
\(294\) 0.763932 0.0445534
\(295\) 23.4721 1.36660
\(296\) −10.5279 −0.611920
\(297\) −4.79837 −0.278430
\(298\) 5.94427 0.344342
\(299\) 0.291796 0.0168750
\(300\) 9.85410 0.568927
\(301\) 16.1803 0.932619
\(302\) 1.65248 0.0950893
\(303\) 0.381966 0.0219434
\(304\) −9.00000 −0.516185
\(305\) −2.38197 −0.136391
\(306\) 7.09017 0.405318
\(307\) −19.1803 −1.09468 −0.547340 0.836910i \(-0.684360\pi\)
−0.547340 + 0.836910i \(0.684360\pi\)
\(308\) −5.00000 −0.284901
\(309\) −5.67376 −0.322769
\(310\) −24.0344 −1.36506
\(311\) 2.09017 0.118523 0.0592613 0.998243i \(-0.481125\pi\)
0.0592613 + 0.998243i \(0.481125\pi\)
\(312\) −0.326238 −0.0184696
\(313\) −12.9098 −0.729707 −0.364853 0.931065i \(-0.618881\pi\)
−0.364853 + 0.931065i \(0.618881\pi\)
\(314\) 9.00000 0.507899
\(315\) 22.5623 1.27124
\(316\) 9.85410 0.554337
\(317\) 27.7082 1.55625 0.778124 0.628111i \(-0.216172\pi\)
0.778124 + 0.628111i \(0.216172\pi\)
\(318\) 0.763932 0.0428392
\(319\) 0 0
\(320\) −0.909830 −0.0508610
\(321\) −4.18034 −0.233324
\(322\) 1.70820 0.0951945
\(323\) 21.2705 1.18352
\(324\) −9.23607 −0.513115
\(325\) −2.32624 −0.129036
\(326\) −3.72949 −0.206557
\(327\) 8.88854 0.491538
\(328\) −8.61803 −0.475851
\(329\) 15.6525 0.862949
\(330\) 2.03444 0.111992
\(331\) 21.1803 1.16418 0.582088 0.813126i \(-0.302236\pi\)
0.582088 + 0.813126i \(0.302236\pi\)
\(332\) 16.0902 0.883063
\(333\) −12.3262 −0.675474
\(334\) 6.50658 0.356024
\(335\) −5.88854 −0.321726
\(336\) 2.56231 0.139785
\(337\) −34.0689 −1.85585 −0.927925 0.372767i \(-0.878409\pi\)
−0.927925 + 0.372767i \(0.878409\pi\)
\(338\) −8.00000 −0.435143
\(339\) −4.90983 −0.266665
\(340\) 27.3262 1.48197
\(341\) 13.9443 0.755125
\(342\) 7.85410 0.424701
\(343\) 20.1246 1.08663
\(344\) 16.1803 0.872385
\(345\) 2.94427 0.158514
\(346\) 2.52786 0.135899
\(347\) −32.1246 −1.72454 −0.862270 0.506449i \(-0.830958\pi\)
−0.862270 + 0.506449i \(0.830958\pi\)
\(348\) 0 0
\(349\) 4.52786 0.242371 0.121186 0.992630i \(-0.461330\pi\)
0.121186 + 0.992630i \(0.461330\pi\)
\(350\) −13.6180 −0.727915
\(351\) −0.819660 −0.0437502
\(352\) −7.76393 −0.413819
\(353\) −19.1246 −1.01790 −0.508950 0.860796i \(-0.669966\pi\)
−0.508950 + 0.860796i \(0.669966\pi\)
\(354\) −2.32624 −0.123638
\(355\) 40.3607 2.14212
\(356\) −7.61803 −0.403755
\(357\) −6.05573 −0.320503
\(358\) −9.88854 −0.522626
\(359\) −23.7639 −1.25421 −0.627106 0.778934i \(-0.715761\pi\)
−0.627106 + 0.778934i \(0.715761\pi\)
\(360\) 22.5623 1.18914
\(361\) 4.56231 0.240121
\(362\) 3.67376 0.193089
\(363\) 5.61803 0.294870
\(364\) −0.854102 −0.0447671
\(365\) −52.8328 −2.76540
\(366\) 0.236068 0.0123395
\(367\) 27.2705 1.42351 0.711755 0.702428i \(-0.247901\pi\)
0.711755 + 0.702428i \(0.247901\pi\)
\(368\) −2.29180 −0.119468
\(369\) −10.0902 −0.525273
\(370\) 11.2148 0.583029
\(371\) 4.47214 0.232182
\(372\) −10.0902 −0.523151
\(373\) 20.6180 1.06756 0.533781 0.845623i \(-0.320771\pi\)
0.533781 + 0.845623i \(0.320771\pi\)
\(374\) 3.74265 0.193528
\(375\) −11.5623 −0.597075
\(376\) 15.6525 0.807215
\(377\) 0 0
\(378\) −4.79837 −0.246802
\(379\) −24.2918 −1.24779 −0.623893 0.781510i \(-0.714450\pi\)
−0.623893 + 0.781510i \(0.714450\pi\)
\(380\) 30.2705 1.55284
\(381\) −9.85410 −0.504841
\(382\) 10.5279 0.538652
\(383\) −28.8541 −1.47438 −0.737188 0.675688i \(-0.763847\pi\)
−0.737188 + 0.675688i \(0.763847\pi\)
\(384\) 7.03444 0.358975
\(385\) 11.9098 0.606981
\(386\) 7.70820 0.392337
\(387\) 18.9443 0.962991
\(388\) −5.76393 −0.292619
\(389\) −19.1246 −0.969656 −0.484828 0.874609i \(-0.661118\pi\)
−0.484828 + 0.874609i \(0.661118\pi\)
\(390\) 0.347524 0.0175976
\(391\) 5.41641 0.273920
\(392\) 4.47214 0.225877
\(393\) −8.85410 −0.446630
\(394\) −3.88854 −0.195902
\(395\) −23.4721 −1.18101
\(396\) −5.85410 −0.294180
\(397\) −14.0557 −0.705437 −0.352718 0.935730i \(-0.614743\pi\)
−0.352718 + 0.935730i \(0.614743\pi\)
\(398\) −3.61803 −0.181356
\(399\) −6.70820 −0.335830
\(400\) 18.2705 0.913525
\(401\) 25.0689 1.25188 0.625940 0.779871i \(-0.284715\pi\)
0.625940 + 0.779871i \(0.284715\pi\)
\(402\) 0.583592 0.0291069
\(403\) 2.38197 0.118654
\(404\) 1.00000 0.0497519
\(405\) 22.0000 1.09319
\(406\) 0 0
\(407\) −6.50658 −0.322519
\(408\) −6.05573 −0.299803
\(409\) 27.4164 1.35565 0.677827 0.735221i \(-0.262922\pi\)
0.677827 + 0.735221i \(0.262922\pi\)
\(410\) 9.18034 0.453385
\(411\) −4.41641 −0.217845
\(412\) −14.8541 −0.731809
\(413\) −13.6180 −0.670100
\(414\) 2.00000 0.0982946
\(415\) −38.3262 −1.88136
\(416\) −1.32624 −0.0650242
\(417\) −0.798374 −0.0390965
\(418\) 4.14590 0.202783
\(419\) −17.5623 −0.857975 −0.428987 0.903310i \(-0.641130\pi\)
−0.428987 + 0.903310i \(0.641130\pi\)
\(420\) −8.61803 −0.420517
\(421\) −31.0344 −1.51253 −0.756263 0.654268i \(-0.772977\pi\)
−0.756263 + 0.654268i \(0.772977\pi\)
\(422\) −7.20163 −0.350570
\(423\) 18.3262 0.891052
\(424\) 4.47214 0.217186
\(425\) −43.1803 −2.09455
\(426\) −4.00000 −0.193801
\(427\) 1.38197 0.0668780
\(428\) −10.9443 −0.529011
\(429\) −0.201626 −0.00973460
\(430\) −17.2361 −0.831197
\(431\) 14.5967 0.703101 0.351550 0.936169i \(-0.385655\pi\)
0.351550 + 0.936169i \(0.385655\pi\)
\(432\) 6.43769 0.309734
\(433\) 10.3820 0.498925 0.249463 0.968384i \(-0.419746\pi\)
0.249463 + 0.968384i \(0.419746\pi\)
\(434\) 13.9443 0.669346
\(435\) 0 0
\(436\) 23.2705 1.11446
\(437\) 6.00000 0.287019
\(438\) 5.23607 0.250189
\(439\) −20.9443 −0.999616 −0.499808 0.866136i \(-0.666596\pi\)
−0.499808 + 0.866136i \(0.666596\pi\)
\(440\) 11.9098 0.567779
\(441\) 5.23607 0.249337
\(442\) 0.639320 0.0304094
\(443\) −1.90983 −0.0907388 −0.0453694 0.998970i \(-0.514446\pi\)
−0.0453694 + 0.998970i \(0.514446\pi\)
\(444\) 4.70820 0.223441
\(445\) 18.1459 0.860198
\(446\) 1.65248 0.0782470
\(447\) −5.94427 −0.281154
\(448\) 0.527864 0.0249392
\(449\) −26.1246 −1.23290 −0.616448 0.787395i \(-0.711429\pi\)
−0.616448 + 0.787395i \(0.711429\pi\)
\(450\) −15.9443 −0.751620
\(451\) −5.32624 −0.250803
\(452\) −12.8541 −0.604606
\(453\) −1.65248 −0.0776401
\(454\) −12.9098 −0.605888
\(455\) 2.03444 0.0953761
\(456\) −6.70820 −0.314140
\(457\) 18.7082 0.875133 0.437566 0.899186i \(-0.355840\pi\)
0.437566 + 0.899186i \(0.355840\pi\)
\(458\) 1.41641 0.0661844
\(459\) −15.2148 −0.710165
\(460\) 7.70820 0.359397
\(461\) −38.9787 −1.81542 −0.907710 0.419598i \(-0.862171\pi\)
−0.907710 + 0.419598i \(0.862171\pi\)
\(462\) −1.18034 −0.0549144
\(463\) 10.7082 0.497652 0.248826 0.968548i \(-0.419955\pi\)
0.248826 + 0.968548i \(0.419955\pi\)
\(464\) 0 0
\(465\) 24.0344 1.11457
\(466\) 9.41641 0.436207
\(467\) −17.9443 −0.830362 −0.415181 0.909739i \(-0.636282\pi\)
−0.415181 + 0.909739i \(0.636282\pi\)
\(468\) −1.00000 −0.0462250
\(469\) 3.41641 0.157755
\(470\) −16.6738 −0.769103
\(471\) −9.00000 −0.414698
\(472\) −13.6180 −0.626821
\(473\) 10.0000 0.459800
\(474\) 2.32624 0.106848
\(475\) −47.8328 −2.19472
\(476\) −15.8541 −0.726672
\(477\) 5.23607 0.239743
\(478\) −17.1459 −0.784235
\(479\) −11.1803 −0.510843 −0.255421 0.966830i \(-0.582214\pi\)
−0.255421 + 0.966830i \(0.582214\pi\)
\(480\) −13.3820 −0.610800
\(481\) −1.11146 −0.0506780
\(482\) −2.87539 −0.130970
\(483\) −1.70820 −0.0777260
\(484\) 14.7082 0.668555
\(485\) 13.7295 0.623424
\(486\) −8.61803 −0.390922
\(487\) 42.5623 1.92868 0.964341 0.264663i \(-0.0852606\pi\)
0.964341 + 0.264663i \(0.0852606\pi\)
\(488\) 1.38197 0.0625587
\(489\) 3.72949 0.168653
\(490\) −4.76393 −0.215213
\(491\) −15.1246 −0.682564 −0.341282 0.939961i \(-0.610861\pi\)
−0.341282 + 0.939961i \(0.610861\pi\)
\(492\) 3.85410 0.173756
\(493\) 0 0
\(494\) 0.708204 0.0318636
\(495\) 13.9443 0.626748
\(496\) −18.7082 −0.840023
\(497\) −23.4164 −1.05037
\(498\) 3.79837 0.170209
\(499\) 24.6869 1.10514 0.552569 0.833467i \(-0.313648\pi\)
0.552569 + 0.833467i \(0.313648\pi\)
\(500\) −30.2705 −1.35374
\(501\) −6.50658 −0.290692
\(502\) −12.1459 −0.542098
\(503\) 14.2705 0.636291 0.318145 0.948042i \(-0.396940\pi\)
0.318145 + 0.948042i \(0.396940\pi\)
\(504\) −13.0902 −0.583083
\(505\) −2.38197 −0.105996
\(506\) 1.05573 0.0469328
\(507\) 8.00000 0.355292
\(508\) −25.7984 −1.14462
\(509\) 31.5623 1.39897 0.699487 0.714645i \(-0.253412\pi\)
0.699487 + 0.714645i \(0.253412\pi\)
\(510\) 6.45085 0.285648
\(511\) 30.6525 1.35599
\(512\) 18.7082 0.826794
\(513\) −16.8541 −0.744127
\(514\) −14.3262 −0.631903
\(515\) 35.3820 1.55912
\(516\) −7.23607 −0.318550
\(517\) 9.67376 0.425452
\(518\) −6.50658 −0.285883
\(519\) −2.52786 −0.110961
\(520\) 2.03444 0.0892162
\(521\) 4.09017 0.179194 0.0895968 0.995978i \(-0.471442\pi\)
0.0895968 + 0.995978i \(0.471442\pi\)
\(522\) 0 0
\(523\) −20.3820 −0.891241 −0.445621 0.895222i \(-0.647017\pi\)
−0.445621 + 0.895222i \(0.647017\pi\)
\(524\) −23.1803 −1.01264
\(525\) 13.6180 0.594340
\(526\) −10.3262 −0.450245
\(527\) 44.2148 1.92603
\(528\) 1.58359 0.0689170
\(529\) −21.4721 −0.933571
\(530\) −4.76393 −0.206932
\(531\) −15.9443 −0.691922
\(532\) −17.5623 −0.761423
\(533\) −0.909830 −0.0394091
\(534\) −1.79837 −0.0778232
\(535\) 26.0689 1.12706
\(536\) 3.41641 0.147566
\(537\) 9.88854 0.426722
\(538\) −3.70820 −0.159872
\(539\) 2.76393 0.119051
\(540\) −21.6525 −0.931774
\(541\) −14.5967 −0.627563 −0.313782 0.949495i \(-0.601596\pi\)
−0.313782 + 0.949495i \(0.601596\pi\)
\(542\) 6.29180 0.270256
\(543\) −3.67376 −0.157656
\(544\) −24.6180 −1.05549
\(545\) −55.4296 −2.37434
\(546\) −0.201626 −0.00862880
\(547\) 7.38197 0.315630 0.157815 0.987469i \(-0.449555\pi\)
0.157815 + 0.987469i \(0.449555\pi\)
\(548\) −11.5623 −0.493917
\(549\) 1.61803 0.0690560
\(550\) −8.41641 −0.358877
\(551\) 0 0
\(552\) −1.70820 −0.0727060
\(553\) 13.6180 0.579098
\(554\) −13.2148 −0.561442
\(555\) −11.2148 −0.476041
\(556\) −2.09017 −0.0886430
\(557\) −5.50658 −0.233321 −0.116661 0.993172i \(-0.537219\pi\)
−0.116661 + 0.993172i \(0.537219\pi\)
\(558\) 16.3262 0.691145
\(559\) 1.70820 0.0722493
\(560\) −15.9787 −0.675224
\(561\) −3.74265 −0.158015
\(562\) 14.2918 0.602863
\(563\) 28.3951 1.19671 0.598356 0.801230i \(-0.295821\pi\)
0.598356 + 0.801230i \(0.295821\pi\)
\(564\) −7.00000 −0.294753
\(565\) 30.6180 1.28811
\(566\) −3.23607 −0.136022
\(567\) −12.7639 −0.536035
\(568\) −23.4164 −0.982531
\(569\) −1.94427 −0.0815081 −0.0407541 0.999169i \(-0.512976\pi\)
−0.0407541 + 0.999169i \(0.512976\pi\)
\(570\) 7.14590 0.299309
\(571\) −34.5066 −1.44406 −0.722028 0.691864i \(-0.756790\pi\)
−0.722028 + 0.691864i \(0.756790\pi\)
\(572\) −0.527864 −0.0220711
\(573\) −10.5279 −0.439808
\(574\) −5.32624 −0.222313
\(575\) −12.1803 −0.507955
\(576\) 0.618034 0.0257514
\(577\) −2.76393 −0.115064 −0.0575320 0.998344i \(-0.518323\pi\)
−0.0575320 + 0.998344i \(0.518323\pi\)
\(578\) 1.36068 0.0565968
\(579\) −7.70820 −0.320342
\(580\) 0 0
\(581\) 22.2361 0.922508
\(582\) −1.36068 −0.0564020
\(583\) 2.76393 0.114470
\(584\) 30.6525 1.26841
\(585\) 2.38197 0.0984822
\(586\) 5.27051 0.217723
\(587\) 46.6180 1.92413 0.962066 0.272816i \(-0.0879552\pi\)
0.962066 + 0.272816i \(0.0879552\pi\)
\(588\) −2.00000 −0.0824786
\(589\) 48.9787 2.01813
\(590\) 14.5066 0.597226
\(591\) 3.88854 0.159953
\(592\) 8.72949 0.358780
\(593\) −14.4377 −0.592885 −0.296443 0.955051i \(-0.595800\pi\)
−0.296443 + 0.955051i \(0.595800\pi\)
\(594\) −2.96556 −0.121678
\(595\) 37.7639 1.54817
\(596\) −15.5623 −0.637457
\(597\) 3.61803 0.148076
\(598\) 0.180340 0.00737465
\(599\) 13.0689 0.533980 0.266990 0.963699i \(-0.413971\pi\)
0.266990 + 0.963699i \(0.413971\pi\)
\(600\) 13.6180 0.555954
\(601\) 29.1591 1.18942 0.594711 0.803939i \(-0.297266\pi\)
0.594711 + 0.803939i \(0.297266\pi\)
\(602\) 10.0000 0.407570
\(603\) 4.00000 0.162893
\(604\) −4.32624 −0.176032
\(605\) −35.0344 −1.42435
\(606\) 0.236068 0.00958961
\(607\) 10.9787 0.445612 0.222806 0.974863i \(-0.428478\pi\)
0.222806 + 0.974863i \(0.428478\pi\)
\(608\) −27.2705 −1.10597
\(609\) 0 0
\(610\) −1.47214 −0.0596050
\(611\) 1.65248 0.0668520
\(612\) −18.5623 −0.750337
\(613\) 27.5410 1.11237 0.556186 0.831058i \(-0.312264\pi\)
0.556186 + 0.831058i \(0.312264\pi\)
\(614\) −11.8541 −0.478393
\(615\) −9.18034 −0.370187
\(616\) −6.90983 −0.278405
\(617\) −14.1803 −0.570879 −0.285439 0.958397i \(-0.592140\pi\)
−0.285439 + 0.958397i \(0.592140\pi\)
\(618\) −3.50658 −0.141055
\(619\) 7.05573 0.283594 0.141797 0.989896i \(-0.454712\pi\)
0.141797 + 0.989896i \(0.454712\pi\)
\(620\) 62.9230 2.52705
\(621\) −4.29180 −0.172224
\(622\) 1.29180 0.0517963
\(623\) −10.5279 −0.421790
\(624\) 0.270510 0.0108291
\(625\) 22.8328 0.913313
\(626\) −7.97871 −0.318894
\(627\) −4.14590 −0.165571
\(628\) −23.5623 −0.940238
\(629\) −20.6312 −0.822619
\(630\) 13.9443 0.555553
\(631\) −28.2148 −1.12321 −0.561606 0.827405i \(-0.689816\pi\)
−0.561606 + 0.827405i \(0.689816\pi\)
\(632\) 13.6180 0.541696
\(633\) 7.20163 0.286239
\(634\) 17.1246 0.680105
\(635\) 61.4508 2.43860
\(636\) −2.00000 −0.0793052
\(637\) 0.472136 0.0187067
\(638\) 0 0
\(639\) −27.4164 −1.08458
\(640\) −43.8673 −1.73401
\(641\) 11.0557 0.436675 0.218338 0.975873i \(-0.429937\pi\)
0.218338 + 0.975873i \(0.429937\pi\)
\(642\) −2.58359 −0.101966
\(643\) −37.4164 −1.47556 −0.737780 0.675042i \(-0.764126\pi\)
−0.737780 + 0.675042i \(0.764126\pi\)
\(644\) −4.47214 −0.176227
\(645\) 17.2361 0.678670
\(646\) 13.1459 0.517218
\(647\) −30.5279 −1.20017 −0.600087 0.799935i \(-0.704867\pi\)
−0.600087 + 0.799935i \(0.704867\pi\)
\(648\) −12.7639 −0.501415
\(649\) −8.41641 −0.330373
\(650\) −1.43769 −0.0563910
\(651\) −13.9443 −0.546519
\(652\) 9.76393 0.382385
\(653\) 48.0132 1.87890 0.939450 0.342686i \(-0.111337\pi\)
0.939450 + 0.342686i \(0.111337\pi\)
\(654\) 5.49342 0.214810
\(655\) 55.2148 2.15742
\(656\) 7.14590 0.279000
\(657\) 35.8885 1.40015
\(658\) 9.67376 0.377123
\(659\) −7.05573 −0.274852 −0.137426 0.990512i \(-0.543883\pi\)
−0.137426 + 0.990512i \(0.543883\pi\)
\(660\) −5.32624 −0.207324
\(661\) −37.4508 −1.45667 −0.728335 0.685222i \(-0.759705\pi\)
−0.728335 + 0.685222i \(0.759705\pi\)
\(662\) 13.0902 0.508764
\(663\) −0.639320 −0.0248291
\(664\) 22.2361 0.862927
\(665\) 41.8328 1.62221
\(666\) −7.61803 −0.295193
\(667\) 0 0
\(668\) −17.0344 −0.659082
\(669\) −1.65248 −0.0638884
\(670\) −3.63932 −0.140599
\(671\) 0.854102 0.0329722
\(672\) 7.76393 0.299500
\(673\) −6.47214 −0.249483 −0.124741 0.992189i \(-0.539810\pi\)
−0.124741 + 0.992189i \(0.539810\pi\)
\(674\) −21.0557 −0.811036
\(675\) 34.2148 1.31693
\(676\) 20.9443 0.805549
\(677\) −40.8328 −1.56933 −0.784666 0.619918i \(-0.787166\pi\)
−0.784666 + 0.619918i \(0.787166\pi\)
\(678\) −3.03444 −0.116537
\(679\) −7.96556 −0.305690
\(680\) 37.7639 1.44818
\(681\) 12.9098 0.494706
\(682\) 8.61803 0.330002
\(683\) 20.8541 0.797960 0.398980 0.916960i \(-0.369364\pi\)
0.398980 + 0.916960i \(0.369364\pi\)
\(684\) −20.5623 −0.786219
\(685\) 27.5410 1.05229
\(686\) 12.4377 0.474873
\(687\) −1.41641 −0.0540393
\(688\) −13.4164 −0.511496
\(689\) 0.472136 0.0179869
\(690\) 1.81966 0.0692733
\(691\) 11.8328 0.450142 0.225071 0.974342i \(-0.427739\pi\)
0.225071 + 0.974342i \(0.427739\pi\)
\(692\) −6.61803 −0.251580
\(693\) −8.09017 −0.307320
\(694\) −19.8541 −0.753651
\(695\) 4.97871 0.188853
\(696\) 0 0
\(697\) −16.8885 −0.639699
\(698\) 2.79837 0.105920
\(699\) −9.41641 −0.356161
\(700\) 35.6525 1.34754
\(701\) −21.0557 −0.795264 −0.397632 0.917545i \(-0.630168\pi\)
−0.397632 + 0.917545i \(0.630168\pi\)
\(702\) −0.506578 −0.0191195
\(703\) −22.8541 −0.861959
\(704\) 0.326238 0.0122956
\(705\) 16.6738 0.627970
\(706\) −11.8197 −0.444839
\(707\) 1.38197 0.0519742
\(708\) 6.09017 0.228883
\(709\) −41.5066 −1.55881 −0.779406 0.626519i \(-0.784479\pi\)
−0.779406 + 0.626519i \(0.784479\pi\)
\(710\) 24.9443 0.936142
\(711\) 15.9443 0.597957
\(712\) −10.5279 −0.394548
\(713\) 12.4721 0.467085
\(714\) −3.74265 −0.140065
\(715\) 1.25735 0.0470224
\(716\) 25.8885 0.967500
\(717\) 17.1459 0.640325
\(718\) −14.6869 −0.548111
\(719\) 8.50658 0.317242 0.158621 0.987340i \(-0.449295\pi\)
0.158621 + 0.987340i \(0.449295\pi\)
\(720\) −18.7082 −0.697214
\(721\) −20.5279 −0.764498
\(722\) 2.81966 0.104937
\(723\) 2.87539 0.106937
\(724\) −9.61803 −0.357451
\(725\) 0 0
\(726\) 3.47214 0.128863
\(727\) 28.0557 1.04053 0.520265 0.854005i \(-0.325833\pi\)
0.520265 + 0.854005i \(0.325833\pi\)
\(728\) −1.18034 −0.0437463
\(729\) −8.50658 −0.315058
\(730\) −32.6525 −1.20852
\(731\) 31.7082 1.17277
\(732\) −0.618034 −0.0228432
\(733\) 14.8197 0.547377 0.273688 0.961818i \(-0.411756\pi\)
0.273688 + 0.961818i \(0.411756\pi\)
\(734\) 16.8541 0.622096
\(735\) 4.76393 0.175720
\(736\) −6.94427 −0.255969
\(737\) 2.11146 0.0777765
\(738\) −6.23607 −0.229553
\(739\) −50.0689 −1.84181 −0.920907 0.389783i \(-0.872550\pi\)
−0.920907 + 0.389783i \(0.872550\pi\)
\(740\) −29.3607 −1.07932
\(741\) −0.708204 −0.0260165
\(742\) 2.76393 0.101467
\(743\) 35.2361 1.29269 0.646343 0.763047i \(-0.276298\pi\)
0.646343 + 0.763047i \(0.276298\pi\)
\(744\) −13.9443 −0.511222
\(745\) 37.0689 1.35810
\(746\) 12.7426 0.466541
\(747\) 26.0344 0.952550
\(748\) −9.79837 −0.358264
\(749\) −15.1246 −0.552641
\(750\) −7.14590 −0.260931
\(751\) −18.5279 −0.676091 −0.338046 0.941130i \(-0.609766\pi\)
−0.338046 + 0.941130i \(0.609766\pi\)
\(752\) −12.9787 −0.473285
\(753\) 12.1459 0.442621
\(754\) 0 0
\(755\) 10.3050 0.375036
\(756\) 12.5623 0.456887
\(757\) −0.0212862 −0.000773661 0 −0.000386831 1.00000i \(-0.500123\pi\)
−0.000386831 1.00000i \(0.500123\pi\)
\(758\) −15.0132 −0.545302
\(759\) −1.05573 −0.0383205
\(760\) 41.8328 1.51744
\(761\) 25.2016 0.913558 0.456779 0.889580i \(-0.349003\pi\)
0.456779 + 0.889580i \(0.349003\pi\)
\(762\) −6.09017 −0.220624
\(763\) 32.1591 1.16424
\(764\) −27.5623 −0.997169
\(765\) 44.2148 1.59859
\(766\) −17.8328 −0.644326
\(767\) −1.43769 −0.0519121
\(768\) 4.05573 0.146348
\(769\) −19.3607 −0.698164 −0.349082 0.937092i \(-0.613507\pi\)
−0.349082 + 0.937092i \(0.613507\pi\)
\(770\) 7.36068 0.265260
\(771\) 14.3262 0.515947
\(772\) −20.1803 −0.726306
\(773\) −14.0000 −0.503545 −0.251773 0.967786i \(-0.581013\pi\)
−0.251773 + 0.967786i \(0.581013\pi\)
\(774\) 11.7082 0.420843
\(775\) −99.4296 −3.57162
\(776\) −7.96556 −0.285947
\(777\) 6.50658 0.233422
\(778\) −11.8197 −0.423755
\(779\) −18.7082 −0.670291
\(780\) −0.909830 −0.0325771
\(781\) −14.4721 −0.517854
\(782\) 3.34752 0.119707
\(783\) 0 0
\(784\) −3.70820 −0.132436
\(785\) 56.1246 2.00317
\(786\) −5.47214 −0.195185
\(787\) 19.3607 0.690134 0.345067 0.938578i \(-0.387856\pi\)
0.345067 + 0.938578i \(0.387856\pi\)
\(788\) 10.1803 0.362660
\(789\) 10.3262 0.367624
\(790\) −14.5066 −0.516121
\(791\) −17.7639 −0.631613
\(792\) −8.09017 −0.287472
\(793\) 0.145898 0.00518099
\(794\) −8.68692 −0.308287
\(795\) 4.76393 0.168959
\(796\) 9.47214 0.335731
\(797\) 43.1803 1.52953 0.764763 0.644312i \(-0.222856\pi\)
0.764763 + 0.644312i \(0.222856\pi\)
\(798\) −4.14590 −0.146763
\(799\) 30.6738 1.08516
\(800\) 55.3607 1.95730
\(801\) −12.3262 −0.435526
\(802\) 15.4934 0.547092
\(803\) 18.9443 0.668529
\(804\) −1.52786 −0.0538836
\(805\) 10.6525 0.375450
\(806\) 1.47214 0.0518538
\(807\) 3.70820 0.130535
\(808\) 1.38197 0.0486174
\(809\) −43.0689 −1.51422 −0.757111 0.653287i \(-0.773390\pi\)
−0.757111 + 0.653287i \(0.773390\pi\)
\(810\) 13.5967 0.477741
\(811\) 5.65248 0.198485 0.0992426 0.995063i \(-0.468358\pi\)
0.0992426 + 0.995063i \(0.468358\pi\)
\(812\) 0 0
\(813\) −6.29180 −0.220663
\(814\) −4.02129 −0.140946
\(815\) −23.2574 −0.814670
\(816\) 5.02129 0.175780
\(817\) 35.1246 1.22885
\(818\) 16.9443 0.592443
\(819\) −1.38197 −0.0482898
\(820\) −24.0344 −0.839319
\(821\) 8.58359 0.299569 0.149785 0.988719i \(-0.452142\pi\)
0.149785 + 0.988719i \(0.452142\pi\)
\(822\) −2.72949 −0.0952019
\(823\) −5.47214 −0.190747 −0.0953733 0.995442i \(-0.530404\pi\)
−0.0953733 + 0.995442i \(0.530404\pi\)
\(824\) −20.5279 −0.715122
\(825\) 8.41641 0.293022
\(826\) −8.41641 −0.292844
\(827\) 26.9656 0.937684 0.468842 0.883282i \(-0.344671\pi\)
0.468842 + 0.883282i \(0.344671\pi\)
\(828\) −5.23607 −0.181966
\(829\) 32.7984 1.13913 0.569567 0.821945i \(-0.307111\pi\)
0.569567 + 0.821945i \(0.307111\pi\)
\(830\) −23.6869 −0.822185
\(831\) 13.2148 0.458416
\(832\) 0.0557281 0.00193202
\(833\) 8.76393 0.303652
\(834\) −0.493422 −0.0170858
\(835\) 40.5755 1.40417
\(836\) −10.8541 −0.375397
\(837\) −35.0344 −1.21097
\(838\) −10.8541 −0.374949
\(839\) −48.2148 −1.66456 −0.832280 0.554356i \(-0.812965\pi\)
−0.832280 + 0.554356i \(0.812965\pi\)
\(840\) −11.9098 −0.410928
\(841\) 0 0
\(842\) −19.1803 −0.660998
\(843\) −14.2918 −0.492236
\(844\) 18.8541 0.648985
\(845\) −49.8885 −1.71622
\(846\) 11.3262 0.389404
\(847\) 20.3262 0.698418
\(848\) −3.70820 −0.127340
\(849\) 3.23607 0.111062
\(850\) −26.6869 −0.915354
\(851\) −5.81966 −0.199495
\(852\) 10.4721 0.358769
\(853\) −45.0000 −1.54077 −0.770385 0.637579i \(-0.779936\pi\)
−0.770385 + 0.637579i \(0.779936\pi\)
\(854\) 0.854102 0.0292268
\(855\) 48.9787 1.67504
\(856\) −15.1246 −0.516949
\(857\) −45.3262 −1.54831 −0.774157 0.632993i \(-0.781826\pi\)
−0.774157 + 0.632993i \(0.781826\pi\)
\(858\) −0.124612 −0.00425418
\(859\) 32.7082 1.11599 0.557995 0.829844i \(-0.311571\pi\)
0.557995 + 0.829844i \(0.311571\pi\)
\(860\) 45.1246 1.53874
\(861\) 5.32624 0.181518
\(862\) 9.02129 0.307266
\(863\) 17.7426 0.603967 0.301983 0.953313i \(-0.402351\pi\)
0.301983 + 0.953313i \(0.402351\pi\)
\(864\) 19.5066 0.663627
\(865\) 15.7639 0.535990
\(866\) 6.41641 0.218038
\(867\) −1.36068 −0.0462111
\(868\) −36.5066 −1.23911
\(869\) 8.41641 0.285507
\(870\) 0 0
\(871\) 0.360680 0.0122212
\(872\) 32.1591 1.08904
\(873\) −9.32624 −0.315645
\(874\) 3.70820 0.125432
\(875\) −41.8328 −1.41421
\(876\) −13.7082 −0.463157
\(877\) 4.38197 0.147968 0.0739842 0.997259i \(-0.476429\pi\)
0.0739842 + 0.997259i \(0.476429\pi\)
\(878\) −12.9443 −0.436848
\(879\) −5.27051 −0.177770
\(880\) −9.87539 −0.332899
\(881\) 4.27051 0.143877 0.0719386 0.997409i \(-0.477081\pi\)
0.0719386 + 0.997409i \(0.477081\pi\)
\(882\) 3.23607 0.108964
\(883\) −20.6869 −0.696170 −0.348085 0.937463i \(-0.613168\pi\)
−0.348085 + 0.937463i \(0.613168\pi\)
\(884\) −1.67376 −0.0562947
\(885\) −14.5066 −0.487633
\(886\) −1.18034 −0.0396543
\(887\) −38.0689 −1.27823 −0.639114 0.769112i \(-0.720699\pi\)
−0.639114 + 0.769112i \(0.720699\pi\)
\(888\) 6.50658 0.218346
\(889\) −35.6525 −1.19575
\(890\) 11.2148 0.375920
\(891\) −7.88854 −0.264276
\(892\) −4.32624 −0.144853
\(893\) 33.9787 1.13705
\(894\) −3.67376 −0.122869
\(895\) −61.6656 −2.06125
\(896\) 25.4508 0.850253
\(897\) −0.180340 −0.00602137
\(898\) −16.1459 −0.538796
\(899\) 0 0
\(900\) 41.7426 1.39142
\(901\) 8.76393 0.291969
\(902\) −3.29180 −0.109605
\(903\) −10.0000 −0.332779
\(904\) −17.7639 −0.590820
\(905\) 22.9098 0.761549
\(906\) −1.02129 −0.0339300
\(907\) 9.76393 0.324206 0.162103 0.986774i \(-0.448172\pi\)
0.162103 + 0.986774i \(0.448172\pi\)
\(908\) 33.7984 1.12164
\(909\) 1.61803 0.0536668
\(910\) 1.25735 0.0416809
\(911\) −10.9443 −0.362600 −0.181300 0.983428i \(-0.558030\pi\)
−0.181300 + 0.983428i \(0.558030\pi\)
\(912\) 5.56231 0.184186
\(913\) 13.7426 0.454815
\(914\) 11.5623 0.382447
\(915\) 1.47214 0.0486673
\(916\) −3.70820 −0.122523
\(917\) −32.0344 −1.05787
\(918\) −9.40325 −0.310354
\(919\) 31.3050 1.03266 0.516328 0.856391i \(-0.327299\pi\)
0.516328 + 0.856391i \(0.327299\pi\)
\(920\) 10.6525 0.351202
\(921\) 11.8541 0.390606
\(922\) −24.0902 −0.793367
\(923\) −2.47214 −0.0813713
\(924\) 3.09017 0.101659
\(925\) 46.3951 1.52546
\(926\) 6.61803 0.217482
\(927\) −24.0344 −0.789395
\(928\) 0 0
\(929\) −3.65248 −0.119834 −0.0599169 0.998203i \(-0.519084\pi\)
−0.0599169 + 0.998203i \(0.519084\pi\)
\(930\) 14.8541 0.487085
\(931\) 9.70820 0.318174
\(932\) −24.6525 −0.807519
\(933\) −1.29180 −0.0422915
\(934\) −11.0902 −0.362881
\(935\) 23.3394 0.763280
\(936\) −1.38197 −0.0451710
\(937\) 6.65248 0.217327 0.108663 0.994079i \(-0.465343\pi\)
0.108663 + 0.994079i \(0.465343\pi\)
\(938\) 2.11146 0.0689415
\(939\) 7.97871 0.260375
\(940\) 43.6525 1.42379
\(941\) −34.8885 −1.13733 −0.568667 0.822568i \(-0.692541\pi\)
−0.568667 + 0.822568i \(0.692541\pi\)
\(942\) −5.56231 −0.181230
\(943\) −4.76393 −0.155135
\(944\) 11.2918 0.367517
\(945\) −29.9230 −0.973395
\(946\) 6.18034 0.200940
\(947\) 43.0344 1.39843 0.699216 0.714911i \(-0.253533\pi\)
0.699216 + 0.714911i \(0.253533\pi\)
\(948\) −6.09017 −0.197800
\(949\) 3.23607 0.105047
\(950\) −29.5623 −0.959128
\(951\) −17.1246 −0.555304
\(952\) −21.9098 −0.710102
\(953\) 42.6312 1.38096 0.690480 0.723352i \(-0.257399\pi\)
0.690480 + 0.723352i \(0.257399\pi\)
\(954\) 3.23607 0.104772
\(955\) 65.6525 2.12446
\(956\) 44.8885 1.45180
\(957\) 0 0
\(958\) −6.90983 −0.223246
\(959\) −15.9787 −0.515980
\(960\) 0.562306 0.0181483
\(961\) 70.8115 2.28424
\(962\) −0.686918 −0.0221471
\(963\) −17.7082 −0.570639
\(964\) 7.52786 0.242456
\(965\) 48.0689 1.54739
\(966\) −1.05573 −0.0339675
\(967\) 3.56231 0.114556 0.0572780 0.998358i \(-0.481758\pi\)
0.0572780 + 0.998358i \(0.481758\pi\)
\(968\) 20.3262 0.653310
\(969\) −13.1459 −0.422307
\(970\) 8.48529 0.272446
\(971\) −19.5066 −0.625996 −0.312998 0.949754i \(-0.601333\pi\)
−0.312998 + 0.949754i \(0.601333\pi\)
\(972\) 22.5623 0.723686
\(973\) −2.88854 −0.0926025
\(974\) 26.3050 0.842865
\(975\) 1.43769 0.0460431
\(976\) −1.14590 −0.0366793
\(977\) −45.2148 −1.44655 −0.723275 0.690561i \(-0.757364\pi\)
−0.723275 + 0.690561i \(0.757364\pi\)
\(978\) 2.30495 0.0737042
\(979\) −6.50658 −0.207951
\(980\) 12.4721 0.398408
\(981\) 37.6525 1.20215
\(982\) −9.34752 −0.298291
\(983\) −10.9443 −0.349068 −0.174534 0.984651i \(-0.555842\pi\)
−0.174534 + 0.984651i \(0.555842\pi\)
\(984\) 5.32624 0.169794
\(985\) −24.2492 −0.772645
\(986\) 0 0
\(987\) −9.67376 −0.307919
\(988\) −1.85410 −0.0589868
\(989\) 8.94427 0.284411
\(990\) 8.61803 0.273899
\(991\) 7.34752 0.233402 0.116701 0.993167i \(-0.462768\pi\)
0.116701 + 0.993167i \(0.462768\pi\)
\(992\) −56.6869 −1.79981
\(993\) −13.0902 −0.415404
\(994\) −14.4721 −0.459028
\(995\) −22.5623 −0.715273
\(996\) −9.94427 −0.315096
\(997\) 16.9098 0.535540 0.267770 0.963483i \(-0.413713\pi\)
0.267770 + 0.963483i \(0.413713\pi\)
\(998\) 15.2574 0.482963
\(999\) 16.3475 0.517213
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 841.2.a.a.1.2 2
3.2 odd 2 7569.2.a.l.1.1 2
29.2 odd 28 841.2.e.j.236.3 24
29.3 odd 28 841.2.e.j.270.3 24
29.4 even 14 841.2.d.g.190.2 12
29.5 even 14 841.2.d.g.605.2 12
29.6 even 14 841.2.d.g.645.2 12
29.7 even 7 841.2.d.i.571.1 12
29.8 odd 28 841.2.e.j.267.3 24
29.9 even 14 841.2.d.g.574.1 12
29.10 odd 28 841.2.e.j.651.3 24
29.11 odd 28 841.2.e.j.63.3 24
29.12 odd 4 841.2.b.b.840.3 4
29.13 even 14 841.2.d.g.778.1 12
29.14 odd 28 841.2.e.j.196.2 24
29.15 odd 28 841.2.e.j.196.3 24
29.16 even 7 841.2.d.i.778.2 12
29.17 odd 4 841.2.b.b.840.2 4
29.18 odd 28 841.2.e.j.63.2 24
29.19 odd 28 841.2.e.j.651.2 24
29.20 even 7 841.2.d.i.574.2 12
29.21 odd 28 841.2.e.j.267.2 24
29.22 even 14 841.2.d.g.571.2 12
29.23 even 7 841.2.d.i.645.1 12
29.24 even 7 841.2.d.i.605.1 12
29.25 even 7 841.2.d.i.190.1 12
29.26 odd 28 841.2.e.j.270.2 24
29.27 odd 28 841.2.e.j.236.2 24
29.28 even 2 841.2.a.c.1.1 yes 2
87.86 odd 2 7569.2.a.d.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
841.2.a.a.1.2 2 1.1 even 1 trivial
841.2.a.c.1.1 yes 2 29.28 even 2
841.2.b.b.840.2 4 29.17 odd 4
841.2.b.b.840.3 4 29.12 odd 4
841.2.d.g.190.2 12 29.4 even 14
841.2.d.g.571.2 12 29.22 even 14
841.2.d.g.574.1 12 29.9 even 14
841.2.d.g.605.2 12 29.5 even 14
841.2.d.g.645.2 12 29.6 even 14
841.2.d.g.778.1 12 29.13 even 14
841.2.d.i.190.1 12 29.25 even 7
841.2.d.i.571.1 12 29.7 even 7
841.2.d.i.574.2 12 29.20 even 7
841.2.d.i.605.1 12 29.24 even 7
841.2.d.i.645.1 12 29.23 even 7
841.2.d.i.778.2 12 29.16 even 7
841.2.e.j.63.2 24 29.18 odd 28
841.2.e.j.63.3 24 29.11 odd 28
841.2.e.j.196.2 24 29.14 odd 28
841.2.e.j.196.3 24 29.15 odd 28
841.2.e.j.236.2 24 29.27 odd 28
841.2.e.j.236.3 24 29.2 odd 28
841.2.e.j.267.2 24 29.21 odd 28
841.2.e.j.267.3 24 29.8 odd 28
841.2.e.j.270.2 24 29.26 odd 28
841.2.e.j.270.3 24 29.3 odd 28
841.2.e.j.651.2 24 29.19 odd 28
841.2.e.j.651.3 24 29.10 odd 28
7569.2.a.d.1.2 2 87.86 odd 2
7569.2.a.l.1.1 2 3.2 odd 2