Properties

 Label 8400.2.a.u Level $8400$ Weight $2$ Character orbit 8400.a Self dual yes Analytic conductor $67.074$ Analytic rank $1$ Dimension $1$ CM no Inner twists $1$

Related objects

Newspace parameters

 Level: $$N$$ $$=$$ $$8400 = 2^{4} \cdot 3 \cdot 5^{2} \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 8400.a (trivial)

Newform invariants

 Self dual: yes Analytic conductor: $$67.0743376979$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 840) Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

 $$f(q)$$ $$=$$ $$q - q^{3} + q^{7} + q^{9} + O(q^{10})$$ $$q - q^{3} + q^{7} + q^{9} - 2 q^{11} + 2 q^{13} - 2 q^{19} - q^{21} - 8 q^{23} - q^{27} + 2 q^{29} + 6 q^{31} + 2 q^{33} + 8 q^{37} - 2 q^{39} - 10 q^{41} + 12 q^{47} + q^{49} - 2 q^{53} + 2 q^{57} + 2 q^{61} + q^{63} - 4 q^{67} + 8 q^{69} - 14 q^{71} - 2 q^{73} - 2 q^{77} - 4 q^{79} + q^{81} - 16 q^{83} - 2 q^{87} - 6 q^{89} + 2 q^{91} - 6 q^{93} + 2 q^{97} - 2 q^{99} + O(q^{100})$$

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 −1.00000 0 0 0 1.00000 0 1.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$1$$
$$3$$ $$1$$
$$5$$ $$-1$$
$$7$$ $$-1$$

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8400.2.a.u 1
4.b odd 2 1 4200.2.a.x 1
5.b even 2 1 8400.2.a.br 1
5.c odd 4 2 1680.2.t.c 2
15.e even 4 2 5040.2.t.n 2
20.d odd 2 1 4200.2.a.k 1
20.e even 4 2 840.2.t.a 2
60.l odd 4 2 2520.2.t.c 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
840.2.t.a 2 20.e even 4 2
1680.2.t.c 2 5.c odd 4 2
2520.2.t.c 2 60.l odd 4 2
4200.2.a.k 1 20.d odd 2 1
4200.2.a.x 1 4.b odd 2 1
5040.2.t.n 2 15.e even 4 2
8400.2.a.u 1 1.a even 1 1 trivial
8400.2.a.br 1 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(8400))$$:

 $$T_{11} + 2$$ $$T_{13} - 2$$ $$T_{17}$$ $$T_{19} + 2$$ $$T_{23} + 8$$

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$1 + T$$
$5$ $$T$$
$7$ $$-1 + T$$
$11$ $$2 + T$$
$13$ $$-2 + T$$
$17$ $$T$$
$19$ $$2 + T$$
$23$ $$8 + T$$
$29$ $$-2 + T$$
$31$ $$-6 + T$$
$37$ $$-8 + T$$
$41$ $$10 + T$$
$43$ $$T$$
$47$ $$-12 + T$$
$53$ $$2 + T$$
$59$ $$T$$
$61$ $$-2 + T$$
$67$ $$4 + T$$
$71$ $$14 + T$$
$73$ $$2 + T$$
$79$ $$4 + T$$
$83$ $$16 + T$$
$89$ $$6 + T$$
$97$ $$-2 + T$$