# Properties

 Label 8400.2.a.dj Level $8400$ Weight $2$ Character orbit 8400.a Self dual yes Analytic conductor $67.074$ Analytic rank $1$ Dimension $3$ CM no Inner twists $1$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$8400 = 2^{4} \cdot 3 \cdot 5^{2} \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 8400.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$67.0743376979$$ Analytic rank: $$1$$ Dimension: $$3$$ Coefficient field: 3.3.148.1 Defining polynomial: $$x^{3} - x^{2} - 3 x + 1$$ Coefficient ring: $$\Z[a_1, \ldots, a_{23}]$$ Coefficient ring index: $$2^{2}$$ Twist minimal: no (minimal twist has level 105) Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\beta_2$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + q^{3} + q^{7} + q^{9} +O(q^{10})$$ $$q + q^{3} + q^{7} + q^{9} -2 q^{11} + ( -2 + \beta_{2} ) q^{13} -\beta_{2} q^{17} + ( -2 - \beta_{2} ) q^{19} + q^{21} + ( -1 + \beta_{1} ) q^{23} + q^{27} -2 \beta_{1} q^{29} + ( 2 \beta_{1} + \beta_{2} ) q^{31} -2 q^{33} + ( -2 - 2 \beta_{1} - 2 \beta_{2} ) q^{37} + ( -2 + \beta_{2} ) q^{39} + ( 1 + \beta_{1} + 2 \beta_{2} ) q^{41} + ( -2 - 2 \beta_{1} + 2 \beta_{2} ) q^{43} + ( -2 + 2 \beta_{1} ) q^{47} + q^{49} -\beta_{2} q^{51} + ( 4 - 2 \beta_{1} - \beta_{2} ) q^{53} + ( -2 - \beta_{2} ) q^{57} + ( -6 - 2 \beta_{1} + 2 \beta_{2} ) q^{59} + ( -2 - 2 \beta_{2} ) q^{61} + q^{63} + ( -2 + 2 \beta_{1} ) q^{67} + ( -1 + \beta_{1} ) q^{69} -2 q^{71} + ( -6 - \beta_{2} ) q^{73} -2 q^{77} + ( -4 - 2 \beta_{2} ) q^{79} + q^{81} + ( -2 + 2 \beta_{1} + 2 \beta_{2} ) q^{83} -2 \beta_{1} q^{87} + ( 5 + \beta_{1} ) q^{89} + ( -2 + \beta_{2} ) q^{91} + ( 2 \beta_{1} + \beta_{2} ) q^{93} + ( -6 + 4 \beta_{1} + \beta_{2} ) q^{97} -2 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$3q + 3q^{3} + 3q^{7} + 3q^{9} + O(q^{10})$$ $$3q + 3q^{3} + 3q^{7} + 3q^{9} - 6q^{11} - 6q^{13} - 6q^{19} + 3q^{21} - 4q^{23} + 3q^{27} + 2q^{29} - 2q^{31} - 6q^{33} - 4q^{37} - 6q^{39} + 2q^{41} - 4q^{43} - 8q^{47} + 3q^{49} + 14q^{53} - 6q^{57} - 16q^{59} - 6q^{61} + 3q^{63} - 8q^{67} - 4q^{69} - 6q^{71} - 18q^{73} - 6q^{77} - 12q^{79} + 3q^{81} - 8q^{83} + 2q^{87} + 14q^{89} - 6q^{91} - 2q^{93} - 22q^{97} - 6q^{99} + O(q^{100})$$

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{3} - x^{2} - 3 x + 1$$:

 $$\beta_{0}$$ $$=$$ $$1$$ $$\beta_{1}$$ $$=$$ $$2 \nu - 1$$ $$\beta_{2}$$ $$=$$ $$2 \nu^{2} - 2 \nu - 4$$
 $$1$$ $$=$$ $$\beta_0$$ $$\nu$$ $$=$$ $$($$$$\beta_{1} + 1$$$$)/2$$ $$\nu^{2}$$ $$=$$ $$($$$$\beta_{2} + \beta_{1} + 5$$$$)/2$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0.311108 2.17009 −1.48119
0 1.00000 0 0 0 1.00000 0 1.00000 0
1.2 0 1.00000 0 0 0 1.00000 0 1.00000 0
1.3 0 1.00000 0 0 0 1.00000 0 1.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$3$$ $$-1$$
$$5$$ $$-1$$
$$7$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8400.2.a.dj 3
4.b odd 2 1 525.2.a.k 3
5.b even 2 1 8400.2.a.dg 3
5.c odd 4 2 1680.2.t.k 6
12.b even 2 1 1575.2.a.w 3
15.e even 4 2 5040.2.t.v 6
20.d odd 2 1 525.2.a.j 3
20.e even 4 2 105.2.d.b 6
28.d even 2 1 3675.2.a.bj 3
60.h even 2 1 1575.2.a.x 3
60.l odd 4 2 315.2.d.e 6
140.c even 2 1 3675.2.a.bi 3
140.j odd 4 2 735.2.d.b 6
140.w even 12 4 735.2.q.e 12
140.x odd 12 4 735.2.q.f 12
420.w even 4 2 2205.2.d.l 6

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
105.2.d.b 6 20.e even 4 2
315.2.d.e 6 60.l odd 4 2
525.2.a.j 3 20.d odd 2 1
525.2.a.k 3 4.b odd 2 1
735.2.d.b 6 140.j odd 4 2
735.2.q.e 12 140.w even 12 4
735.2.q.f 12 140.x odd 12 4
1575.2.a.w 3 12.b even 2 1
1575.2.a.x 3 60.h even 2 1
1680.2.t.k 6 5.c odd 4 2
2205.2.d.l 6 420.w even 4 2
3675.2.a.bi 3 140.c even 2 1
3675.2.a.bj 3 28.d even 2 1
5040.2.t.v 6 15.e even 4 2
8400.2.a.dg 3 5.b even 2 1
8400.2.a.dj 3 1.a even 1 1 trivial

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(8400))$$:

 $$T_{11} + 2$$ $$T_{13}^{3} + 6 T_{13}^{2} - 4 T_{13} - 8$$ $$T_{17}^{3} - 16 T_{17} - 16$$ $$T_{19}^{3} + 6 T_{19}^{2} - 4 T_{19} - 40$$ $$T_{23}^{3} + 4 T_{23}^{2} - 8 T_{23} - 16$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{3}$$
$3$ $$( -1 + T )^{3}$$
$5$ $$T^{3}$$
$7$ $$( -1 + T )^{3}$$
$11$ $$( 2 + T )^{3}$$
$13$ $$-8 - 4 T + 6 T^{2} + T^{3}$$
$17$ $$-16 - 16 T + T^{3}$$
$19$ $$-40 - 4 T + 6 T^{2} + T^{3}$$
$23$ $$-16 - 8 T + 4 T^{2} + T^{3}$$
$29$ $$40 - 52 T - 2 T^{2} + T^{3}$$
$31$ $$-184 - 52 T + 2 T^{2} + T^{3}$$
$37$ $$-64 - 80 T + 4 T^{2} + T^{3}$$
$41$ $$200 - 60 T - 2 T^{2} + T^{3}$$
$43$ $$-832 - 144 T + 4 T^{2} + T^{3}$$
$47$ $$-128 - 32 T + 8 T^{2} + T^{3}$$
$53$ $$296 + 12 T - 14 T^{2} + T^{3}$$
$59$ $$-1280 - 64 T + 16 T^{2} + T^{3}$$
$61$ $$-248 - 52 T + 6 T^{2} + T^{3}$$
$67$ $$-128 - 32 T + 8 T^{2} + T^{3}$$
$71$ $$( 2 + T )^{3}$$
$73$ $$104 + 92 T + 18 T^{2} + T^{3}$$
$79$ $$-320 - 16 T + 12 T^{2} + T^{3}$$
$83$ $$-256 - 64 T + 8 T^{2} + T^{3}$$
$89$ $$-40 + 52 T - 14 T^{2} + T^{3}$$
$97$ $$-1864 - 36 T + 22 T^{2} + T^{3}$$