Properties

Label 840.2.u.e.629.19
Level $840$
Weight $2$
Character 840.629
Analytic conductor $6.707$
Analytic rank $0$
Dimension $160$
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [840,2,Mod(629,840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(840, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("840.629"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 840.u (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [160,0,0,-24,0,0,0,0,-32,0,0,0,0,0,-48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.70743376979\)
Analytic rank: \(0\)
Dimension: \(160\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 629.19
Character \(\chi\) \(=\) 840.629
Dual form 840.2.u.e.629.24

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.25943 - 0.643305i) q^{2} +(1.72207 - 0.185637i) q^{3} +(1.17232 + 1.62039i) q^{4} +(0.799234 + 2.08835i) q^{5} +(-2.28825 - 0.874023i) q^{6} +(-2.00372 - 1.72775i) q^{7} +(-0.434041 - 2.79493i) q^{8} +(2.93108 - 0.639360i) q^{9} +(0.336872 - 3.14428i) q^{10} +2.99129 q^{11} +(2.31962 + 2.57281i) q^{12} +3.88403i q^{13} +(1.41207 + 3.46498i) q^{14} +(1.76402 + 3.44793i) q^{15} +(-1.25135 + 3.79923i) q^{16} -5.87186i q^{17} +(-4.10279 - 1.08035i) q^{18} +0.253401 q^{19} +(-2.44700 + 3.74329i) q^{20} +(-3.77129 - 2.60334i) q^{21} +(-3.76732 - 1.92431i) q^{22} +7.37014 q^{23} +(-1.26629 - 4.73249i) q^{24} +(-3.72245 + 3.33817i) q^{25} +(2.49862 - 4.89166i) q^{26} +(4.92884 - 1.64514i) q^{27} +(0.450635 - 5.27228i) q^{28} +3.74592 q^{29} +(-0.00357650 - 5.47722i) q^{30} +2.69635i q^{31} +(4.02004 - 3.97986i) q^{32} +(5.15123 - 0.555294i) q^{33} +(-3.77740 + 7.39519i) q^{34} +(2.00671 - 5.56535i) q^{35} +(4.47217 + 3.99997i) q^{36} -6.74382 q^{37} +(-0.319141 - 0.163014i) q^{38} +(0.721019 + 6.68859i) q^{39} +(5.48989 - 3.14023i) q^{40} -2.03838 q^{41} +(3.07492 + 5.70481i) q^{42} +10.3418 q^{43} +(3.50674 + 4.84707i) q^{44} +(3.67783 + 5.61013i) q^{45} +(-9.28216 - 4.74125i) q^{46} +9.01566i q^{47} +(-1.44963 + 6.77485i) q^{48} +(1.02978 + 6.92384i) q^{49} +(6.83562 - 1.80951i) q^{50} +(-1.09003 - 10.1118i) q^{51} +(-6.29366 + 4.55332i) q^{52} +1.26942i q^{53} +(-7.26585 - 1.09881i) q^{54} +(2.39074 + 6.24688i) q^{55} +(-3.95923 + 6.35016i) q^{56} +(0.436376 - 0.0470406i) q^{57} +(-4.71771 - 2.40977i) q^{58} +4.83995i q^{59} +(-3.51902 + 6.90047i) q^{60} +6.45642 q^{61} +(1.73458 - 3.39586i) q^{62} +(-6.97771 - 3.78306i) q^{63} +(-7.62322 + 2.42623i) q^{64} +(-8.11124 + 3.10425i) q^{65} +(-6.84482 - 2.61446i) q^{66} -1.43931 q^{67} +(9.51472 - 6.88368i) q^{68} +(12.6919 - 1.36817i) q^{69} +(-6.10752 + 5.71823i) q^{70} -7.63417i q^{71} +(-3.05917 - 7.91464i) q^{72} -14.7411 q^{73} +(8.49335 + 4.33833i) q^{74} +(-5.79065 + 6.43960i) q^{75} +(0.297067 + 0.410610i) q^{76} +(-5.99371 - 5.16820i) q^{77} +(3.39473 - 8.88763i) q^{78} -3.41532 q^{79} +(-8.93425 + 0.423218i) q^{80} +(8.18244 - 3.74803i) q^{81} +(2.56719 + 1.31130i) q^{82} +1.78238 q^{83} +(-0.202702 - 9.16291i) q^{84} +(12.2625 - 4.69299i) q^{85} +(-13.0247 - 6.65292i) q^{86} +(6.45074 - 0.695380i) q^{87} +(-1.29835 - 8.36044i) q^{88} +10.9341 q^{89} +(-1.02293 - 9.43152i) q^{90} +(6.71063 - 7.78251i) q^{91} +(8.64014 + 11.9425i) q^{92} +(0.500542 + 4.64332i) q^{93} +(5.79982 - 11.3546i) q^{94} +(0.202527 + 0.529192i) q^{95} +(6.18400 - 7.59987i) q^{96} +10.8736 q^{97} +(3.15721 - 9.38254i) q^{98} +(8.76771 - 1.91251i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 160 q - 24 q^{4} - 32 q^{9} - 48 q^{15} - 104 q^{16} - 16 q^{25} - 32 q^{30} + 48 q^{36} - 64 q^{39} - 64 q^{46} + 144 q^{49} + 16 q^{60} - 72 q^{64} + 8 q^{70} - 96 q^{79} + 16 q^{81} - 72 q^{84}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/840\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(281\) \(337\) \(421\) \(631\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.25943 0.643305i −0.890550 0.454885i
\(3\) 1.72207 0.185637i 0.994240 0.107177i
\(4\) 1.17232 + 1.62039i 0.586158 + 0.810196i
\(5\) 0.799234 + 2.08835i 0.357428 + 0.933941i
\(6\) −2.28825 0.874023i −0.934174 0.356818i
\(7\) −2.00372 1.72775i −0.757335 0.653027i
\(8\) −0.434041 2.79493i −0.153457 0.988155i
\(9\) 2.93108 0.639360i 0.977026 0.213120i
\(10\) 0.336872 3.14428i 0.106528 0.994310i
\(11\) 2.99129 0.901909 0.450954 0.892547i \(-0.351084\pi\)
0.450954 + 0.892547i \(0.351084\pi\)
\(12\) 2.31962 + 2.57281i 0.669617 + 0.742707i
\(13\) 3.88403i 1.07724i 0.842550 + 0.538618i \(0.181054\pi\)
−0.842550 + 0.538618i \(0.818946\pi\)
\(14\) 1.41207 + 3.46498i 0.377392 + 0.926054i
\(15\) 1.76402 + 3.44793i 0.455467 + 0.890253i
\(16\) −1.25135 + 3.79923i −0.312837 + 0.949807i
\(17\) 5.87186i 1.42414i −0.702111 0.712068i \(-0.747759\pi\)
0.702111 0.712068i \(-0.252241\pi\)
\(18\) −4.10279 1.08035i −0.967036 0.254641i
\(19\) 0.253401 0.0581343 0.0290671 0.999577i \(-0.490746\pi\)
0.0290671 + 0.999577i \(0.490746\pi\)
\(20\) −2.44700 + 3.74329i −0.547166 + 0.837024i
\(21\) −3.77129 2.60334i −0.822962 0.568096i
\(22\) −3.76732 1.92431i −0.803195 0.410265i
\(23\) 7.37014 1.53678 0.768390 0.639982i \(-0.221058\pi\)
0.768390 + 0.639982i \(0.221058\pi\)
\(24\) −1.26629 4.73249i −0.258481 0.966016i
\(25\) −3.72245 + 3.33817i −0.744490 + 0.667634i
\(26\) 2.49862 4.89166i 0.490019 0.959333i
\(27\) 4.92884 1.64514i 0.948557 0.316608i
\(28\) 0.450635 5.27228i 0.0851620 0.996367i
\(29\) 3.74592 0.695599 0.347800 0.937569i \(-0.386929\pi\)
0.347800 + 0.937569i \(0.386929\pi\)
\(30\) −0.00357650 5.47722i −0.000652976 1.00000i
\(31\) 2.69635i 0.484280i 0.970241 + 0.242140i \(0.0778493\pi\)
−0.970241 + 0.242140i \(0.922151\pi\)
\(32\) 4.02004 3.97986i 0.710650 0.703546i
\(33\) 5.15123 0.555294i 0.896714 0.0966643i
\(34\) −3.77740 + 7.39519i −0.647819 + 1.26826i
\(35\) 2.00671 5.56535i 0.339196 0.940716i
\(36\) 4.47217 + 3.99997i 0.745361 + 0.666661i
\(37\) −6.74382 −1.10868 −0.554338 0.832291i \(-0.687029\pi\)
−0.554338 + 0.832291i \(0.687029\pi\)
\(38\) −0.319141 0.163014i −0.0517715 0.0264444i
\(39\) 0.721019 + 6.68859i 0.115455 + 1.07103i
\(40\) 5.48989 3.14023i 0.868029 0.496514i
\(41\) −2.03838 −0.318342 −0.159171 0.987251i \(-0.550882\pi\)
−0.159171 + 0.987251i \(0.550882\pi\)
\(42\) 3.07492 + 5.70481i 0.474470 + 0.880272i
\(43\) 10.3418 1.57711 0.788553 0.614967i \(-0.210831\pi\)
0.788553 + 0.614967i \(0.210831\pi\)
\(44\) 3.50674 + 4.84707i 0.528661 + 0.730723i
\(45\) 3.67783 + 5.61013i 0.548258 + 0.836309i
\(46\) −9.28216 4.74125i −1.36858 0.699059i
\(47\) 9.01566i 1.31507i 0.753425 + 0.657534i \(0.228400\pi\)
−0.753425 + 0.657534i \(0.771600\pi\)
\(48\) −1.44963 + 6.77485i −0.209237 + 0.977865i
\(49\) 1.02978 + 6.92384i 0.147112 + 0.989120i
\(50\) 6.83562 1.80951i 0.966702 0.255903i
\(51\) −1.09003 10.1118i −0.152635 1.41593i
\(52\) −6.29366 + 4.55332i −0.872773 + 0.631431i
\(53\) 1.26942i 0.174369i 0.996192 + 0.0871844i \(0.0277869\pi\)
−0.996192 + 0.0871844i \(0.972213\pi\)
\(54\) −7.26585 1.09881i −0.988757 0.149530i
\(55\) 2.39074 + 6.24688i 0.322368 + 0.842329i
\(56\) −3.95923 + 6.35016i −0.529074 + 0.848576i
\(57\) 0.436376 0.0470406i 0.0577994 0.00623068i
\(58\) −4.71771 2.40977i −0.619466 0.316418i
\(59\) 4.83995i 0.630108i 0.949074 + 0.315054i \(0.102023\pi\)
−0.949074 + 0.315054i \(0.897977\pi\)
\(60\) −3.51902 + 6.90047i −0.454304 + 0.890847i
\(61\) 6.45642 0.826660 0.413330 0.910581i \(-0.364366\pi\)
0.413330 + 0.910581i \(0.364366\pi\)
\(62\) 1.73458 3.39586i 0.220292 0.431275i
\(63\) −6.97771 3.78306i −0.879109 0.476621i
\(64\) −7.62322 + 2.42623i −0.952902 + 0.303278i
\(65\) −8.11124 + 3.10425i −1.00608 + 0.385035i
\(66\) −6.84482 2.61446i −0.842540 0.321818i
\(67\) −1.43931 −0.175840 −0.0879199 0.996128i \(-0.528022\pi\)
−0.0879199 + 0.996128i \(0.528022\pi\)
\(68\) 9.51472 6.88368i 1.15383 0.834769i
\(69\) 12.6919 1.36817i 1.52793 0.164708i
\(70\) −6.10752 + 5.71823i −0.729989 + 0.683459i
\(71\) 7.63417i 0.906009i −0.891508 0.453005i \(-0.850352\pi\)
0.891508 0.453005i \(-0.149648\pi\)
\(72\) −3.05917 7.91464i −0.360527 0.932749i
\(73\) −14.7411 −1.72531 −0.862657 0.505790i \(-0.831201\pi\)
−0.862657 + 0.505790i \(0.831201\pi\)
\(74\) 8.49335 + 4.33833i 0.987332 + 0.504321i
\(75\) −5.79065 + 6.43960i −0.668646 + 0.743581i
\(76\) 0.297067 + 0.410610i 0.0340759 + 0.0471002i
\(77\) −5.99371 5.16820i −0.683047 0.588971i
\(78\) 3.39473 8.88763i 0.384378 1.00633i
\(79\) −3.41532 −0.384254 −0.192127 0.981370i \(-0.561539\pi\)
−0.192127 + 0.981370i \(0.561539\pi\)
\(80\) −8.93425 + 0.423218i −0.998880 + 0.0473172i
\(81\) 8.18244 3.74803i 0.909160 0.416448i
\(82\) 2.56719 + 1.31130i 0.283499 + 0.144809i
\(83\) 1.78238 0.195641 0.0978207 0.995204i \(-0.468813\pi\)
0.0978207 + 0.995204i \(0.468813\pi\)
\(84\) −0.202702 9.16291i −0.0221165 0.999755i
\(85\) 12.2625 4.69299i 1.33006 0.509027i
\(86\) −13.0247 6.65292i −1.40449 0.717402i
\(87\) 6.45074 0.695380i 0.691592 0.0745525i
\(88\) −1.29835 8.36044i −0.138404 0.891226i
\(89\) 10.9341 1.15902 0.579508 0.814966i \(-0.303245\pi\)
0.579508 + 0.814966i \(0.303245\pi\)
\(90\) −1.02293 9.43152i −0.107827 0.994170i
\(91\) 6.71063 7.78251i 0.703465 0.815829i
\(92\) 8.64014 + 11.9425i 0.900797 + 1.24509i
\(93\) 0.500542 + 4.64332i 0.0519038 + 0.481490i
\(94\) 5.79982 11.3546i 0.598206 1.17113i
\(95\) 0.202527 + 0.529192i 0.0207788 + 0.0542939i
\(96\) 6.18400 7.59987i 0.631152 0.775659i
\(97\) 10.8736 1.10405 0.552024 0.833828i \(-0.313856\pi\)
0.552024 + 0.833828i \(0.313856\pi\)
\(98\) 3.15721 9.38254i 0.318926 0.947780i
\(99\) 8.76771 1.91251i 0.881188 0.192215i
\(100\) −9.77303 2.11844i −0.977303 0.211844i
\(101\) 4.39714i 0.437531i −0.975777 0.218766i \(-0.929797\pi\)
0.975777 0.218766i \(-0.0702030\pi\)
\(102\) −5.13214 + 13.4363i −0.508158 + 1.33039i
\(103\) −9.07933 −0.894613 −0.447307 0.894381i \(-0.647617\pi\)
−0.447307 + 0.894381i \(0.647617\pi\)
\(104\) 10.8556 1.68583i 1.06448 0.165309i
\(105\) 2.42257 9.95646i 0.236418 0.971651i
\(106\) 0.816627 1.59875i 0.0793178 0.155284i
\(107\) 13.9960i 1.35304i −0.736423 0.676521i \(-0.763487\pi\)
0.736423 0.676521i \(-0.236513\pi\)
\(108\) 8.44394 + 6.05804i 0.812519 + 0.582935i
\(109\) 11.7924i 1.12950i −0.825261 0.564752i \(-0.808972\pi\)
0.825261 0.564752i \(-0.191028\pi\)
\(110\) 1.00768 9.40547i 0.0960787 0.896777i
\(111\) −11.6134 + 1.25190i −1.10229 + 0.118825i
\(112\) 9.07145 5.45058i 0.857172 0.515031i
\(113\) −8.64843 −0.813576 −0.406788 0.913523i \(-0.633351\pi\)
−0.406788 + 0.913523i \(0.633351\pi\)
\(114\) −0.579845 0.221479i −0.0543075 0.0207434i
\(115\) 5.89047 + 15.3915i 0.549289 + 1.43526i
\(116\) 4.39140 + 6.06986i 0.407731 + 0.563572i
\(117\) 2.48330 + 11.3844i 0.229581 + 1.05249i
\(118\) 3.11357 6.09557i 0.286627 0.561143i
\(119\) −10.1451 + 11.7656i −0.929999 + 1.07855i
\(120\) 8.87106 6.42684i 0.809814 0.586687i
\(121\) −2.05216 −0.186560
\(122\) −8.13140 4.15345i −0.736182 0.376036i
\(123\) −3.51024 + 0.378399i −0.316508 + 0.0341190i
\(124\) −4.36915 + 3.16098i −0.392362 + 0.283865i
\(125\) −9.94639 5.10582i −0.889632 0.456678i
\(126\) 6.35426 + 9.25329i 0.566082 + 0.824349i
\(127\) 1.83482i 0.162814i 0.996681 + 0.0814068i \(0.0259413\pi\)
−0.996681 + 0.0814068i \(0.974059\pi\)
\(128\) 11.1617 + 1.84840i 0.986564 + 0.163377i
\(129\) 17.8093 1.91981i 1.56802 0.169030i
\(130\) 12.2125 + 1.30842i 1.07111 + 0.114756i
\(131\) 7.74727i 0.676882i −0.940988 0.338441i \(-0.890100\pi\)
0.940988 0.338441i \(-0.109900\pi\)
\(132\) 6.93867 + 7.69603i 0.603933 + 0.669854i
\(133\) −0.507745 0.437813i −0.0440271 0.0379632i
\(134\) 1.81271 + 0.925917i 0.156594 + 0.0799870i
\(135\) 7.37494 + 8.97832i 0.634734 + 0.772731i
\(136\) −16.4114 + 2.54863i −1.40727 + 0.218543i
\(137\) −12.5120 −1.06897 −0.534485 0.845178i \(-0.679494\pi\)
−0.534485 + 0.845178i \(0.679494\pi\)
\(138\) −16.8647 6.44167i −1.43562 0.548352i
\(139\) −3.43413 −0.291279 −0.145640 0.989338i \(-0.546524\pi\)
−0.145640 + 0.989338i \(0.546524\pi\)
\(140\) 11.3706 3.27270i 0.960987 0.276594i
\(141\) 1.67364 + 15.5256i 0.140946 + 1.30749i
\(142\) −4.91110 + 9.61468i −0.412130 + 0.806846i
\(143\) 11.6183i 0.971569i
\(144\) −1.23872 + 11.9359i −0.103226 + 0.994658i
\(145\) 2.99386 + 7.82280i 0.248627 + 0.649648i
\(146\) 18.5653 + 9.48302i 1.53648 + 0.784820i
\(147\) 3.05868 + 11.7322i 0.252275 + 0.967655i
\(148\) −7.90589 10.9276i −0.649860 0.898246i
\(149\) −12.9889 −1.06409 −0.532047 0.846715i \(-0.678577\pi\)
−0.532047 + 0.846715i \(0.678577\pi\)
\(150\) 11.4355 4.38505i 0.933707 0.358038i
\(151\) 3.46307 0.281821 0.140911 0.990022i \(-0.454997\pi\)
0.140911 + 0.990022i \(0.454997\pi\)
\(152\) −0.109987 0.708238i −0.00892110 0.0574457i
\(153\) −3.75424 17.2109i −0.303512 1.39142i
\(154\) 4.22392 + 10.3648i 0.340373 + 0.835216i
\(155\) −5.63095 + 2.15502i −0.452288 + 0.173095i
\(156\) −9.99288 + 9.00948i −0.800071 + 0.721336i
\(157\) 16.2856i 1.29973i −0.760050 0.649864i \(-0.774826\pi\)
0.760050 0.649864i \(-0.225174\pi\)
\(158\) 4.30135 + 2.19709i 0.342197 + 0.174791i
\(159\) 0.235652 + 2.18604i 0.0186884 + 0.173364i
\(160\) 11.5243 + 5.21444i 0.911076 + 0.412238i
\(161\) −14.7677 12.7337i −1.16386 1.00356i
\(162\) −12.7163 0.543430i −0.999088 0.0426959i
\(163\) −9.53016 −0.746459 −0.373230 0.927739i \(-0.621750\pi\)
−0.373230 + 0.927739i \(0.621750\pi\)
\(164\) −2.38963 3.30298i −0.186599 0.257919i
\(165\) 5.27669 + 10.3138i 0.410790 + 0.802927i
\(166\) −2.24478 1.14661i −0.174228 0.0889944i
\(167\) 7.92521i 0.613271i 0.951827 + 0.306636i \(0.0992033\pi\)
−0.951827 + 0.306636i \(0.900797\pi\)
\(168\) −5.63926 + 11.6704i −0.435078 + 0.900393i
\(169\) −2.08571 −0.160439
\(170\) −18.4628 1.97806i −1.41603 0.151711i
\(171\) 0.742739 0.162015i 0.0567987 0.0123896i
\(172\) 12.1238 + 16.7577i 0.924434 + 1.27777i
\(173\) −21.4624 −1.63175 −0.815877 0.578225i \(-0.803746\pi\)
−0.815877 + 0.578225i \(0.803746\pi\)
\(174\) −8.57159 3.27402i −0.649810 0.248203i
\(175\) 13.2263 0.257301i 0.999811 0.0194501i
\(176\) −3.74314 + 11.3646i −0.282150 + 0.856639i
\(177\) 0.898473 + 8.33476i 0.0675334 + 0.626479i
\(178\) −13.7708 7.03399i −1.03216 0.527220i
\(179\) 15.3694 1.14877 0.574383 0.818587i \(-0.305242\pi\)
0.574383 + 0.818587i \(0.305242\pi\)
\(180\) −4.77904 + 12.5364i −0.356208 + 0.934407i
\(181\) −1.96261 −0.145880 −0.0729400 0.997336i \(-0.523238\pi\)
−0.0729400 + 0.997336i \(0.523238\pi\)
\(182\) −13.4581 + 5.48453i −0.997579 + 0.406540i
\(183\) 11.1184 1.19855i 0.821899 0.0885993i
\(184\) −3.19895 20.5990i −0.235829 1.51858i
\(185\) −5.38989 14.0835i −0.396272 1.03544i
\(186\) 2.35668 6.16993i 0.172800 0.452401i
\(187\) 17.5645i 1.28444i
\(188\) −14.6089 + 10.5692i −1.06546 + 0.770838i
\(189\) −12.7184 5.21939i −0.925128 0.379655i
\(190\) 0.0853637 0.796766i 0.00619294 0.0578035i
\(191\) 15.9387i 1.15328i −0.816998 0.576641i \(-0.804363\pi\)
0.816998 0.576641i \(-0.195637\pi\)
\(192\) −12.6773 + 5.59329i −0.914909 + 0.403661i
\(193\) 23.7979i 1.71301i −0.516136 0.856507i \(-0.672630\pi\)
0.516136 0.856507i \(-0.327370\pi\)
\(194\) −13.6945 6.99506i −0.983211 0.502216i
\(195\) −13.3919 + 6.85149i −0.959013 + 0.490646i
\(196\) −10.0121 + 9.78558i −0.715151 + 0.698970i
\(197\) 22.2134i 1.58264i 0.611402 + 0.791320i \(0.290606\pi\)
−0.611402 + 0.791320i \(0.709394\pi\)
\(198\) −12.2726 3.23164i −0.872178 0.229663i
\(199\) 6.08469i 0.431332i −0.976467 0.215666i \(-0.930808\pi\)
0.976467 0.215666i \(-0.0691922\pi\)
\(200\) 10.9456 + 8.95507i 0.773973 + 0.633219i
\(201\) −2.47860 + 0.267189i −0.174827 + 0.0188461i
\(202\) −2.82870 + 5.53787i −0.199027 + 0.389644i
\(203\) −7.50576 6.47200i −0.526801 0.454245i
\(204\) 15.1072 13.6205i 1.05772 0.953625i
\(205\) −1.62914 4.25686i −0.113784 0.297312i
\(206\) 11.4348 + 5.84078i 0.796698 + 0.406947i
\(207\) 21.6025 4.71218i 1.50147 0.327519i
\(208\) −14.7563 4.86027i −1.02317 0.336999i
\(209\) 0.757998 0.0524318
\(210\) −9.45609 + 10.9810i −0.652532 + 0.757761i
\(211\) 18.8683i 1.29895i 0.760385 + 0.649473i \(0.225010\pi\)
−0.760385 + 0.649473i \(0.774990\pi\)
\(212\) −2.05696 + 1.48817i −0.141273 + 0.102208i
\(213\) −1.41718 13.1466i −0.0971037 0.900790i
\(214\) −9.00369 + 17.6269i −0.615479 + 1.20495i
\(215\) 8.26550 + 21.5973i 0.563702 + 1.47292i
\(216\) −6.73737 13.0617i −0.458420 0.888736i
\(217\) 4.65862 5.40274i 0.316248 0.366762i
\(218\) −7.58609 + 14.8516i −0.513795 + 1.00588i
\(219\) −25.3852 + 2.73649i −1.71538 + 0.184915i
\(220\) −7.31969 + 11.1973i −0.493494 + 0.754920i
\(221\) 22.8065 1.53413
\(222\) 15.4315 + 5.89425i 1.03570 + 0.395596i
\(223\) −2.13715 −0.143114 −0.0715569 0.997437i \(-0.522797\pi\)
−0.0715569 + 0.997437i \(0.522797\pi\)
\(224\) −14.9312 + 1.02890i −0.997634 + 0.0687460i
\(225\) −8.77650 + 12.1644i −0.585100 + 0.810961i
\(226\) 10.8921 + 5.56358i 0.724530 + 0.370084i
\(227\) −1.65229 −0.109666 −0.0548332 0.998496i \(-0.517463\pi\)
−0.0548332 + 0.998496i \(0.517463\pi\)
\(228\) 0.587795 + 0.651954i 0.0389277 + 0.0431767i
\(229\) −23.2456 −1.53611 −0.768057 0.640381i \(-0.778776\pi\)
−0.768057 + 0.640381i \(0.778776\pi\)
\(230\) 2.48279 23.1738i 0.163710 1.52804i
\(231\) −11.2810 7.78737i −0.742237 0.512371i
\(232\) −1.62588 10.4696i −0.106744 0.687360i
\(233\) −16.4197 −1.07569 −0.537846 0.843043i \(-0.680762\pi\)
−0.537846 + 0.843043i \(0.680762\pi\)
\(234\) 4.19611 15.9354i 0.274308 1.04173i
\(235\) −18.8279 + 7.20562i −1.22820 + 0.470043i
\(236\) −7.84263 + 5.67396i −0.510512 + 0.369343i
\(237\) −5.88144 + 0.634009i −0.382040 + 0.0411833i
\(238\) 20.3459 8.29149i 1.31883 0.537457i
\(239\) 26.3343i 1.70342i 0.524011 + 0.851712i \(0.324435\pi\)
−0.524011 + 0.851712i \(0.675565\pi\)
\(240\) −15.3069 + 2.38734i −0.988055 + 0.154102i
\(241\) 11.7807i 0.758862i 0.925220 + 0.379431i \(0.123880\pi\)
−0.925220 + 0.379431i \(0.876120\pi\)
\(242\) 2.58455 + 1.32017i 0.166141 + 0.0848636i
\(243\) 13.3950 7.97335i 0.859289 0.511490i
\(244\) 7.56898 + 10.4619i 0.484554 + 0.669757i
\(245\) −13.6364 + 7.68432i −0.871197 + 0.490933i
\(246\) 4.66433 + 1.78159i 0.297387 + 0.113590i
\(247\) 0.984219i 0.0626244i
\(248\) 7.53611 1.17033i 0.478544 0.0743160i
\(249\) 3.06939 0.330875i 0.194515 0.0209683i
\(250\) 9.24216 + 12.8290i 0.584525 + 0.811375i
\(251\) 11.0385i 0.696741i −0.937357 0.348371i \(-0.886735\pi\)
0.937357 0.348371i \(-0.113265\pi\)
\(252\) −2.05004 15.7416i −0.129140 0.991626i
\(253\) 22.0462 1.38604
\(254\) 1.18035 2.31082i 0.0740615 0.144994i
\(255\) 20.2458 10.3581i 1.26784 0.648647i
\(256\) −12.8683 9.50830i −0.804267 0.594269i
\(257\) 7.02676i 0.438317i −0.975689 0.219159i \(-0.929669\pi\)
0.975689 0.219159i \(-0.0703313\pi\)
\(258\) −23.6646 9.03895i −1.47329 0.562740i
\(259\) 13.5127 + 11.6516i 0.839639 + 0.723996i
\(260\) −14.5390 9.50423i −0.901673 0.589427i
\(261\) 10.9796 2.39499i 0.679618 0.148246i
\(262\) −4.98386 + 9.75713i −0.307904 + 0.602797i
\(263\) −12.3592 −0.762100 −0.381050 0.924554i \(-0.624437\pi\)
−0.381050 + 0.924554i \(0.624437\pi\)
\(264\) −3.78785 14.1563i −0.233126 0.871259i
\(265\) −2.65101 + 1.01457i −0.162850 + 0.0623243i
\(266\) 0.357821 + 0.878030i 0.0219394 + 0.0538355i
\(267\) 18.8294 2.02978i 1.15234 0.124220i
\(268\) −1.68733 2.33225i −0.103070 0.142465i
\(269\) 1.88627i 0.115008i −0.998345 0.0575040i \(-0.981686\pi\)
0.998345 0.0575040i \(-0.0183142\pi\)
\(270\) −3.51240 16.0519i −0.213758 0.976887i
\(271\) 7.90779i 0.480364i 0.970728 + 0.240182i \(0.0772072\pi\)
−0.970728 + 0.240182i \(0.922793\pi\)
\(272\) 22.3085 + 7.34773i 1.35265 + 0.445522i
\(273\) 10.1115 14.6478i 0.611974 0.886525i
\(274\) 15.7579 + 8.04901i 0.951970 + 0.486258i
\(275\) −11.1349 + 9.98544i −0.671462 + 0.602145i
\(276\) 17.0959 + 18.9620i 1.02905 + 1.14138i
\(277\) −28.8336 −1.73244 −0.866221 0.499661i \(-0.833458\pi\)
−0.866221 + 0.499661i \(0.833458\pi\)
\(278\) 4.32504 + 2.20920i 0.259399 + 0.132499i
\(279\) 1.72394 + 7.90323i 0.103210 + 0.473154i
\(280\) −16.4257 3.19301i −0.981625 0.190819i
\(281\) 15.8864i 0.947704i −0.880604 0.473852i \(-0.842863\pi\)
0.880604 0.473852i \(-0.157137\pi\)
\(282\) 7.87989 20.6301i 0.469241 1.22850i
\(283\) 32.1369i 1.91034i 0.296053 + 0.955171i \(0.404329\pi\)
−0.296053 + 0.955171i \(0.595671\pi\)
\(284\) 12.3704 8.94966i 0.734045 0.531065i
\(285\) 0.447004 + 0.873711i 0.0264782 + 0.0517542i
\(286\) 7.47410 14.6324i 0.441953 0.865231i
\(287\) 4.08435 + 3.52181i 0.241091 + 0.207886i
\(288\) 9.23850 14.2355i 0.544384 0.838836i
\(289\) −17.4788 −1.02816
\(290\) 1.26189 11.7782i 0.0741009 0.691641i
\(291\) 18.7252 2.01854i 1.09769 0.118329i
\(292\) −17.2812 23.8864i −1.01131 1.39784i
\(293\) 23.2728 1.35961 0.679807 0.733391i \(-0.262064\pi\)
0.679807 + 0.733391i \(0.262064\pi\)
\(294\) 3.69520 16.7435i 0.215508 0.976502i
\(295\) −10.1075 + 3.86826i −0.588484 + 0.225219i
\(296\) 2.92710 + 18.8485i 0.170134 + 1.09554i
\(297\) 14.7436 4.92110i 0.855512 0.285551i
\(298\) 16.3586 + 8.35584i 0.947629 + 0.484041i
\(299\) 28.6259i 1.65548i
\(300\) −17.2232 1.83388i −0.994379 0.105879i
\(301\) −20.7220 17.8680i −1.19440 1.02989i
\(302\) −4.36149 2.22781i −0.250976 0.128196i
\(303\) −0.816270 7.57219i −0.0468935 0.435011i
\(304\) −0.317093 + 0.962730i −0.0181865 + 0.0552163i
\(305\) 5.16019 + 13.4833i 0.295472 + 0.772052i
\(306\) −6.34366 + 24.0910i −0.362643 + 1.37719i
\(307\) 16.8908i 0.964009i −0.876169 0.482005i \(-0.839909\pi\)
0.876169 0.482005i \(-0.160091\pi\)
\(308\) 1.34798 15.7709i 0.0768084 0.898632i
\(309\) −15.6353 + 1.68546i −0.889460 + 0.0958823i
\(310\) 8.47810 + 0.908326i 0.481524 + 0.0515894i
\(311\) −11.2659 −0.638829 −0.319415 0.947615i \(-0.603486\pi\)
−0.319415 + 0.947615i \(0.603486\pi\)
\(312\) 18.3812 4.91832i 1.04063 0.278445i
\(313\) −11.2529 −0.636052 −0.318026 0.948082i \(-0.603020\pi\)
−0.318026 + 0.948082i \(0.603020\pi\)
\(314\) −10.4766 + 20.5105i −0.591228 + 1.15747i
\(315\) 2.32355 17.5955i 0.130917 0.991393i
\(316\) −4.00384 5.53416i −0.225234 0.311321i
\(317\) 16.3815i 0.920078i −0.887899 0.460039i \(-0.847835\pi\)
0.887899 0.460039i \(-0.152165\pi\)
\(318\) 1.10951 2.90476i 0.0622180 0.162891i
\(319\) 11.2051 0.627367
\(320\) −11.1596 13.9809i −0.623838 0.781554i
\(321\) −2.59817 24.1021i −0.145016 1.34525i
\(322\) 10.4072 + 25.5374i 0.579968 + 1.42314i
\(323\) 1.48794i 0.0827911i
\(324\) 15.6657 + 8.86488i 0.870316 + 0.492494i
\(325\) −12.9656 14.4581i −0.719200 0.801992i
\(326\) 12.0025 + 6.13080i 0.664759 + 0.339554i
\(327\) −2.18910 20.3073i −0.121057 1.12300i
\(328\) 0.884742 + 5.69713i 0.0488517 + 0.314571i
\(329\) 15.5768 18.0648i 0.858775 0.995947i
\(330\) −0.0106983 16.3840i −0.000588925 0.901909i
\(331\) 20.4088i 1.12177i 0.827894 + 0.560884i \(0.189539\pi\)
−0.827894 + 0.560884i \(0.810461\pi\)
\(332\) 2.08951 + 2.88815i 0.114677 + 0.158508i
\(333\) −19.7667 + 4.31173i −1.08321 + 0.236281i
\(334\) 5.09833 9.98123i 0.278968 0.546148i
\(335\) −1.15035 3.00579i −0.0628502 0.164224i
\(336\) 14.6099 11.0703i 0.797034 0.603934i
\(337\) 29.0425i 1.58204i 0.611788 + 0.791022i \(0.290450\pi\)
−0.611788 + 0.791022i \(0.709550\pi\)
\(338\) 2.62680 + 1.34175i 0.142879 + 0.0729815i
\(339\) −14.8932 + 1.60547i −0.808890 + 0.0871970i
\(340\) 21.9801 + 14.3684i 1.19204 + 0.779238i
\(341\) 8.06559i 0.436776i
\(342\) −1.03965 0.273762i −0.0562179 0.0148034i
\(343\) 9.89925 15.6526i 0.534509 0.845163i
\(344\) −4.48876 28.9045i −0.242018 1.55843i
\(345\) 13.0010 + 25.4118i 0.699953 + 1.36812i
\(346\) 27.0303 + 13.8069i 1.45316 + 0.742261i
\(347\) 8.45703i 0.453997i 0.973895 + 0.226999i \(0.0728913\pi\)
−0.973895 + 0.226999i \(0.927109\pi\)
\(348\) 8.68911 + 9.63754i 0.465785 + 0.516626i
\(349\) −0.270566 −0.0144831 −0.00724153 0.999974i \(-0.502305\pi\)
−0.00724153 + 0.999974i \(0.502305\pi\)
\(350\) −16.8230 8.18447i −0.899229 0.437478i
\(351\) 6.38978 + 19.1438i 0.341061 + 1.02182i
\(352\) 12.0251 11.9049i 0.640942 0.634534i
\(353\) 23.4260i 1.24684i 0.781887 + 0.623420i \(0.214257\pi\)
−0.781887 + 0.623420i \(0.785743\pi\)
\(354\) 4.23023 11.0750i 0.224834 0.588631i
\(355\) 15.9429 6.10149i 0.846159 0.323833i
\(356\) 12.8183 + 17.7176i 0.679367 + 0.939031i
\(357\) −15.2865 + 22.1445i −0.809046 + 1.17201i
\(358\) −19.3567 9.88723i −1.02303 0.522556i
\(359\) 16.8560i 0.889628i −0.895623 0.444814i \(-0.853270\pi\)
0.895623 0.444814i \(-0.146730\pi\)
\(360\) 14.0836 12.7143i 0.742269 0.670102i
\(361\) −18.9358 −0.996620
\(362\) 2.47177 + 1.26256i 0.129913 + 0.0663587i
\(363\) −3.53398 + 0.380957i −0.185486 + 0.0199951i
\(364\) 20.4777 + 1.75028i 1.07332 + 0.0917397i
\(365\) −11.7816 30.7846i −0.616676 1.61134i
\(366\) −14.7739 5.64306i −0.772244 0.294968i
\(367\) 5.27587 0.275398 0.137699 0.990474i \(-0.456029\pi\)
0.137699 + 0.990474i \(0.456029\pi\)
\(368\) −9.22260 + 28.0008i −0.480761 + 1.45964i
\(369\) −5.97466 + 1.30326i −0.311028 + 0.0678450i
\(370\) −2.27180 + 21.2045i −0.118105 + 1.10237i
\(371\) 2.19324 2.54357i 0.113867 0.132055i
\(372\) −6.93721 + 6.25452i −0.359678 + 0.324282i
\(373\) 25.2464 1.30721 0.653604 0.756837i \(-0.273256\pi\)
0.653604 + 0.756837i \(0.273256\pi\)
\(374\) −11.2993 + 22.1212i −0.584273 + 1.14386i
\(375\) −18.0762 6.94618i −0.933453 0.358699i
\(376\) 25.1981 3.91317i 1.29949 0.201806i
\(377\) 14.5493i 0.749325i
\(378\) 12.6603 + 14.7553i 0.651173 + 0.758929i
\(379\) 4.79359i 0.246230i 0.992392 + 0.123115i \(0.0392885\pi\)
−0.992392 + 0.123115i \(0.960712\pi\)
\(380\) −0.620073 + 0.948554i −0.0318091 + 0.0486598i
\(381\) 0.340609 + 3.15969i 0.0174499 + 0.161876i
\(382\) −10.2534 + 20.0736i −0.524611 + 1.02705i
\(383\) 21.8231i 1.11511i −0.830141 0.557554i \(-0.811740\pi\)
0.830141 0.557554i \(-0.188260\pi\)
\(384\) 19.5644 + 1.11106i 0.998391 + 0.0566984i
\(385\) 6.00265 16.6476i 0.305923 0.848440i
\(386\) −15.3093 + 29.9718i −0.779225 + 1.52552i
\(387\) 30.3125 6.61212i 1.54087 0.336113i
\(388\) 12.7473 + 17.6195i 0.647148 + 0.894496i
\(389\) 18.1057 0.917996 0.458998 0.888437i \(-0.348209\pi\)
0.458998 + 0.888437i \(0.348209\pi\)
\(390\) 21.2737 0.0138912i 1.07724 0.000703410i
\(391\) 43.2764i 2.18858i
\(392\) 18.9046 5.88339i 0.954829 0.297156i
\(393\) −1.43818 13.3414i −0.0725465 0.672983i
\(394\) 14.2900 27.9762i 0.719920 1.40942i
\(395\) −2.72964 7.13240i −0.137343 0.358870i
\(396\) 13.3776 + 11.9651i 0.672248 + 0.601267i
\(397\) 25.2352i 1.26652i 0.773939 + 0.633260i \(0.218284\pi\)
−0.773939 + 0.633260i \(0.781716\pi\)
\(398\) −3.91431 + 7.66322i −0.196207 + 0.384123i
\(399\) −0.955649 0.659691i −0.0478423 0.0330259i
\(400\) −8.02439 18.3196i −0.401219 0.915982i
\(401\) 20.2402i 1.01075i 0.862901 + 0.505373i \(0.168645\pi\)
−0.862901 + 0.505373i \(0.831355\pi\)
\(402\) 3.29350 + 1.25799i 0.164265 + 0.0627429i
\(403\) −10.4727 −0.521684
\(404\) 7.12509 5.15484i 0.354486 0.256463i
\(405\) 14.3669 + 14.0923i 0.713897 + 0.700251i
\(406\) 5.28950 + 12.9795i 0.262513 + 0.644162i
\(407\) −20.1727 −0.999925
\(408\) −27.7886 + 7.43549i −1.37574 + 0.368112i
\(409\) 15.0121i 0.742301i −0.928573 0.371150i \(-0.878963\pi\)
0.928573 0.371150i \(-0.121037\pi\)
\(410\) −0.686673 + 6.40925i −0.0339124 + 0.316530i
\(411\) −21.5465 + 2.32268i −1.06281 + 0.114569i
\(412\) −10.6439 14.7121i −0.524385 0.724812i
\(413\) 8.36222 9.69791i 0.411478 0.477203i
\(414\) −30.2381 7.96233i −1.48612 0.391327i
\(415\) 1.42454 + 3.72224i 0.0699278 + 0.182717i
\(416\) 15.4579 + 15.6140i 0.757885 + 0.765538i
\(417\) −5.91383 + 0.637501i −0.289602 + 0.0312186i
\(418\) −0.954644 0.487624i −0.0466931 0.0238505i
\(419\) 9.20741i 0.449812i −0.974381 0.224906i \(-0.927793\pi\)
0.974381 0.224906i \(-0.0722074\pi\)
\(420\) 18.9734 7.74662i 0.925807 0.377996i
\(421\) 5.81872i 0.283587i −0.989896 0.141793i \(-0.954713\pi\)
0.989896 0.141793i \(-0.0452869\pi\)
\(422\) 12.1381 23.7632i 0.590872 1.15678i
\(423\) 5.76425 + 26.4256i 0.280268 + 1.28486i
\(424\) 3.54794 0.550982i 0.172303 0.0267581i
\(425\) 19.6013 + 21.8577i 0.950801 + 1.06025i
\(426\) −6.67244 + 17.4689i −0.323281 + 0.846370i
\(427\) −12.9369 11.1551i −0.626059 0.539832i
\(428\) 22.6790 16.4077i 1.09623 0.793097i
\(429\) 2.15678 + 20.0075i 0.104130 + 0.965973i
\(430\) 3.48385 32.5175i 0.168006 1.56813i
\(431\) 29.8724i 1.43890i −0.694543 0.719452i \(-0.744393\pi\)
0.694543 0.719452i \(-0.255607\pi\)
\(432\) 0.0825767 + 20.7844i 0.00397297 + 0.999992i
\(433\) 2.76341 0.132801 0.0664006 0.997793i \(-0.478848\pi\)
0.0664006 + 0.997793i \(0.478848\pi\)
\(434\) −9.34280 + 3.80744i −0.448469 + 0.182763i
\(435\) 6.60785 + 12.9157i 0.316822 + 0.619259i
\(436\) 19.1083 13.8244i 0.915121 0.662069i
\(437\) 1.86760 0.0893396
\(438\) 33.7313 + 12.8841i 1.61174 + 0.615624i
\(439\) 36.5869i 1.74620i −0.487543 0.873099i \(-0.662107\pi\)
0.487543 0.873099i \(-0.337893\pi\)
\(440\) 16.4219 9.39335i 0.782883 0.447811i
\(441\) 7.44520 + 19.6359i 0.354533 + 0.935043i
\(442\) −28.7231 14.6715i −1.36622 0.697854i
\(443\) 14.6025i 0.693784i −0.937905 0.346892i \(-0.887237\pi\)
0.937905 0.346892i \(-0.112763\pi\)
\(444\) −15.6431 17.3506i −0.742389 0.823422i
\(445\) 8.73894 + 22.8344i 0.414265 + 1.08245i
\(446\) 2.69158 + 1.37484i 0.127450 + 0.0651004i
\(447\) −22.3679 + 2.41122i −1.05796 + 0.114047i
\(448\) 19.4667 + 8.30951i 0.919715 + 0.392588i
\(449\) 21.7393i 1.02594i −0.858406 0.512971i \(-0.828545\pi\)
0.858406 0.512971i \(-0.171455\pi\)
\(450\) 18.8788 9.67424i 0.889955 0.456048i
\(451\) −6.09740 −0.287115
\(452\) −10.1387 14.0139i −0.476884 0.659156i
\(453\) 5.96367 0.642874i 0.280198 0.0302048i
\(454\) 2.08094 + 1.06293i 0.0976634 + 0.0498857i
\(455\) 21.6160 + 7.79412i 1.01337 + 0.365394i
\(456\) −0.320880 1.19922i −0.0150266 0.0561587i
\(457\) 0.703722i 0.0329187i 0.999865 + 0.0164594i \(0.00523941\pi\)
−0.999865 + 0.0164594i \(0.994761\pi\)
\(458\) 29.2762 + 14.9540i 1.36799 + 0.698756i
\(459\) −9.66005 28.9415i −0.450892 1.35087i
\(460\) −18.0347 + 27.5885i −0.840873 + 1.28632i
\(461\) 26.6508i 1.24125i −0.784107 0.620626i \(-0.786879\pi\)
0.784107 0.620626i \(-0.213121\pi\)
\(462\) 9.19798 + 17.0648i 0.427929 + 0.793925i
\(463\) 39.2373i 1.82351i 0.410733 + 0.911756i \(0.365273\pi\)
−0.410733 + 0.911756i \(0.634727\pi\)
\(464\) −4.68744 + 14.2316i −0.217609 + 0.660685i
\(465\) −9.29685 + 4.75641i −0.431131 + 0.220573i
\(466\) 20.6794 + 10.5629i 0.957957 + 0.489316i
\(467\) 21.0343 0.973353 0.486677 0.873582i \(-0.338209\pi\)
0.486677 + 0.873582i \(0.338209\pi\)
\(468\) −15.5360 + 17.3700i −0.718152 + 0.802931i
\(469\) 2.88398 + 2.48677i 0.133170 + 0.114828i
\(470\) 28.3478 + 3.03712i 1.30759 + 0.140092i
\(471\) −3.02320 28.0449i −0.139302 1.29224i
\(472\) 13.5273 2.10074i 0.622645 0.0966944i
\(473\) 30.9353 1.42241
\(474\) 7.81511 + 2.98507i 0.358960 + 0.137109i
\(475\) −0.943274 + 0.845897i −0.0432804 + 0.0388124i
\(476\) −30.9581 2.64607i −1.41896 0.121282i
\(477\) 0.811619 + 3.72078i 0.0371615 + 0.170363i
\(478\) 16.9410 33.1661i 0.774862 1.51698i
\(479\) −39.6811 −1.81308 −0.906539 0.422123i \(-0.861285\pi\)
−0.906539 + 0.422123i \(0.861285\pi\)
\(480\) 20.8137 + 6.84032i 0.950011 + 0.312216i
\(481\) 26.1932i 1.19431i
\(482\) 7.57859 14.8370i 0.345195 0.675805i
\(483\) −27.7949 19.1870i −1.26471 0.873039i
\(484\) −2.40579 3.32531i −0.109354 0.151151i
\(485\) 8.69057 + 22.7080i 0.394618 + 1.03112i
\(486\) −21.9993 + 1.42479i −0.997909 + 0.0646297i
\(487\) 27.2901i 1.23663i −0.785929 0.618317i \(-0.787815\pi\)
0.785929 0.618317i \(-0.212185\pi\)
\(488\) −2.80236 18.0452i −0.126857 0.816869i
\(489\) −16.4116 + 1.76915i −0.742160 + 0.0800036i
\(490\) 22.1174 0.905477i 0.999163 0.0409053i
\(491\) 30.8380 1.39170 0.695850 0.718187i \(-0.255028\pi\)
0.695850 + 0.718187i \(0.255028\pi\)
\(492\) −4.72827 5.24437i −0.213167 0.236435i
\(493\) 21.9955i 0.990628i
\(494\) 0.633153 1.23955i 0.0284869 0.0557701i
\(495\) 11.0015 + 16.7815i 0.494479 + 0.754275i
\(496\) −10.2441 3.37407i −0.459972 0.151500i
\(497\) −13.1899 + 15.2967i −0.591648 + 0.686152i
\(498\) −4.07853 1.55784i −0.182763 0.0698085i
\(499\) 13.9363i 0.623873i 0.950103 + 0.311936i \(0.100978\pi\)
−0.950103 + 0.311936i \(0.899022\pi\)
\(500\) −3.38689 22.1027i −0.151466 0.988462i
\(501\) 1.47121 + 13.6478i 0.0657288 + 0.609739i
\(502\) −7.10110 + 13.9021i −0.316938 + 0.620483i
\(503\) 6.73606i 0.300346i −0.988660 0.150173i \(-0.952017\pi\)
0.988660 0.150173i \(-0.0479831\pi\)
\(504\) −7.54476 + 21.1442i −0.336070 + 0.941837i
\(505\) 9.18278 3.51434i 0.408628 0.156386i
\(506\) −27.7657 14.1825i −1.23433 0.630488i
\(507\) −3.59175 + 0.387184i −0.159515 + 0.0171955i
\(508\) −2.97312 + 2.15099i −0.131911 + 0.0954345i
\(509\) 5.95889i 0.264123i −0.991242 0.132062i \(-0.957840\pi\)
0.991242 0.132062i \(-0.0421597\pi\)
\(510\) −32.1615 + 0.0210007i −1.42414 + 0.000929926i
\(511\) 29.5370 + 25.4689i 1.30664 + 1.12668i
\(512\) 10.0899 + 20.2532i 0.445915 + 0.895075i
\(513\) 1.24898 0.416881i 0.0551436 0.0184058i
\(514\) −4.52035 + 8.84970i −0.199384 + 0.390344i
\(515\) −7.25651 18.9609i −0.319760 0.835516i
\(516\) 23.9890 + 26.6074i 1.05606 + 1.17133i
\(517\) 26.9685i 1.18607i
\(518\) −9.52275 23.3672i −0.418406 1.02669i
\(519\) −36.9598 + 3.98421i −1.62236 + 0.174887i
\(520\) 12.1968 + 21.3229i 0.534863 + 0.935072i
\(521\) −42.1144 −1.84507 −0.922533 0.385919i \(-0.873885\pi\)
−0.922533 + 0.385919i \(0.873885\pi\)
\(522\) −15.3687 4.04690i −0.672669 0.177128i
\(523\) 1.74549i 0.0763247i 0.999272 + 0.0381624i \(0.0121504\pi\)
−0.999272 + 0.0381624i \(0.987850\pi\)
\(524\) 12.5536 9.08226i 0.548408 0.396760i
\(525\) 22.7288 2.89837i 0.991967 0.126495i
\(526\) 15.5655 + 7.95073i 0.678688 + 0.346668i
\(527\) 15.8326 0.689680
\(528\) −4.33628 + 20.2656i −0.188712 + 0.881945i
\(529\) 31.3190 1.36169
\(530\) 3.99143 + 0.427633i 0.173376 + 0.0185752i
\(531\) 3.09447 + 14.1863i 0.134289 + 0.615632i
\(532\) 0.114192 1.33600i 0.00495083 0.0579231i
\(533\) 7.91714i 0.342930i
\(534\) −25.0200 9.55669i −1.08272 0.413559i
\(535\) 29.2286 11.1861i 1.26366 0.483616i
\(536\) 0.624721 + 4.02277i 0.0269838 + 0.173757i
\(537\) 26.4673 2.85313i 1.14215 0.123122i
\(538\) −1.21345 + 2.37562i −0.0523154 + 0.102420i
\(539\) 3.08038 + 20.7112i 0.132681 + 0.892096i
\(540\) −5.90264 + 22.4757i −0.254009 + 0.967202i
\(541\) 2.88277i 0.123940i 0.998078 + 0.0619699i \(0.0197383\pi\)
−0.998078 + 0.0619699i \(0.980262\pi\)
\(542\) 5.08713 9.95930i 0.218511 0.427788i
\(543\) −3.37977 + 0.364333i −0.145040 + 0.0156350i
\(544\) −23.3692 23.6051i −1.00194 1.01206i
\(545\) 24.6267 9.42487i 1.05489 0.403717i
\(546\) −22.1577 + 11.9431i −0.948261 + 0.511117i
\(547\) 38.2217 1.63424 0.817120 0.576467i \(-0.195569\pi\)
0.817120 + 0.576467i \(0.195569\pi\)
\(548\) −14.6680 20.2743i −0.626585 0.866075i
\(549\) 18.9243 4.12798i 0.807669 0.176178i
\(550\) 20.4473 5.41278i 0.871877 0.230802i
\(551\) 0.949220 0.0404381
\(552\) −9.33275 34.8791i −0.397228 1.48456i
\(553\) 6.84335 + 5.90081i 0.291009 + 0.250928i
\(554\) 36.3138 + 18.5488i 1.54283 + 0.788063i
\(555\) −11.8962 23.2522i −0.504966 0.987002i
\(556\) −4.02589 5.56465i −0.170736 0.235994i
\(557\) 25.2043i 1.06794i −0.845503 0.533971i \(-0.820699\pi\)
0.845503 0.533971i \(-0.179301\pi\)
\(558\) 2.91301 11.0626i 0.123317 0.468316i
\(559\) 40.1678i 1.69892i
\(560\) 18.6329 + 14.5881i 0.787386 + 0.616461i
\(561\) −3.26061 30.2473i −0.137663 1.27704i
\(562\) −10.2198 + 20.0078i −0.431097 + 0.843978i
\(563\) −7.30365 −0.307812 −0.153906 0.988085i \(-0.549185\pi\)
−0.153906 + 0.988085i \(0.549185\pi\)
\(564\) −23.1956 + 20.9129i −0.976710 + 0.880592i
\(565\) −6.91212 18.0610i −0.290795 0.759832i
\(566\) 20.6739 40.4742i 0.868987 1.70126i
\(567\) −22.8710 6.62718i −0.960490 0.278315i
\(568\) −21.3369 + 3.31354i −0.895278 + 0.139033i
\(569\) 20.5442i 0.861257i 0.902529 + 0.430629i \(0.141708\pi\)
−0.902529 + 0.430629i \(0.858292\pi\)
\(570\) −0.000906289 1.38794i −3.79603e−5 0.0581343i
\(571\) 3.06852i 0.128414i 0.997937 + 0.0642068i \(0.0204517\pi\)
−0.997937 + 0.0642068i \(0.979548\pi\)
\(572\) −18.8262 + 13.6203i −0.787162 + 0.569494i
\(573\) −2.95880 27.4476i −0.123606 1.14664i
\(574\) −2.87834 7.06294i −0.120140 0.294802i
\(575\) −27.4350 + 24.6028i −1.14412 + 1.02601i
\(576\) −20.7930 + 11.9854i −0.866375 + 0.499393i
\(577\) −19.0536 −0.793212 −0.396606 0.917989i \(-0.629812\pi\)
−0.396606 + 0.917989i \(0.629812\pi\)
\(578\) 22.0132 + 11.2442i 0.915630 + 0.467696i
\(579\) −4.41777 40.9818i −0.183596 1.70315i
\(580\) −9.16625 + 14.0220i −0.380608 + 0.582233i
\(581\) −3.57139 3.07950i −0.148166 0.127759i
\(582\) −24.8816 9.50380i −1.03137 0.393945i
\(583\) 3.79722i 0.157265i
\(584\) 6.39824 + 41.2002i 0.264761 + 1.70488i
\(585\) −21.7899 + 14.2848i −0.900903 + 0.590604i
\(586\) −29.3105 14.9715i −1.21080 0.618468i
\(587\) −22.7767 −0.940095 −0.470047 0.882641i \(-0.655763\pi\)
−0.470047 + 0.882641i \(0.655763\pi\)
\(588\) −15.4250 + 18.7101i −0.636118 + 0.771592i
\(589\) 0.683260i 0.0281532i
\(590\) 15.2182 + 1.63044i 0.626523 + 0.0671243i
\(591\) 4.12363 + 38.2532i 0.169623 + 1.57352i
\(592\) 8.43885 25.6213i 0.346835 1.05303i
\(593\) 9.41677i 0.386700i −0.981130 0.193350i \(-0.938065\pi\)
0.981130 0.193350i \(-0.0619353\pi\)
\(594\) −21.7343 3.28688i −0.891769 0.134862i
\(595\) −32.6790 11.7831i −1.33971 0.483060i
\(596\) −15.2271 21.0472i −0.623728 0.862125i
\(597\) −1.12954 10.4783i −0.0462290 0.428847i
\(598\) 18.4152 36.0522i 0.753052 1.47428i
\(599\) 7.58493i 0.309912i −0.987921 0.154956i \(-0.950476\pi\)
0.987921 0.154956i \(-0.0495235\pi\)
\(600\) 20.5116 + 13.3894i 0.837381 + 0.546619i
\(601\) 5.56743i 0.227100i −0.993532 0.113550i \(-0.963778\pi\)
0.993532 0.113550i \(-0.0362222\pi\)
\(602\) 14.6033 + 35.8340i 0.595187 + 1.46048i
\(603\) −4.21873 + 0.920239i −0.171800 + 0.0374750i
\(604\) 4.05982 + 5.61154i 0.165192 + 0.228330i
\(605\) −1.64016 4.28565i −0.0666820 0.174236i
\(606\) −3.84320 + 10.0617i −0.156119 + 0.408730i
\(607\) −39.6108 −1.60775 −0.803876 0.594797i \(-0.797233\pi\)
−0.803876 + 0.594797i \(0.797233\pi\)
\(608\) 1.01868 1.00850i 0.0413131 0.0409001i
\(609\) −14.1269 9.75191i −0.572452 0.395167i
\(610\) 2.17499 20.3008i 0.0880626 0.821956i
\(611\) −35.0171 −1.41664
\(612\) 23.4872 26.2600i 0.949416 1.06150i
\(613\) 5.78624 0.233704 0.116852 0.993149i \(-0.462720\pi\)
0.116852 + 0.993149i \(0.462720\pi\)
\(614\) −10.8659 + 21.2728i −0.438514 + 0.858498i
\(615\) −3.59574 7.02821i −0.144994 0.283405i
\(616\) −11.8432 + 18.9952i −0.477176 + 0.765338i
\(617\) 41.6718 1.67764 0.838821 0.544407i \(-0.183245\pi\)
0.838821 + 0.544407i \(0.183245\pi\)
\(618\) 20.7758 + 7.93555i 0.835724 + 0.319214i
\(619\) −14.9019 −0.598957 −0.299479 0.954103i \(-0.596813\pi\)
−0.299479 + 0.954103i \(0.596813\pi\)
\(620\) −10.0932 6.59798i −0.405354 0.264981i
\(621\) 36.3263 12.1249i 1.45772 0.486556i
\(622\) 14.1886 + 7.24740i 0.568909 + 0.290594i
\(623\) −21.9090 18.8914i −0.877764 0.756869i
\(624\) −26.3137 5.63043i −1.05339 0.225398i
\(625\) 2.71326 24.8523i 0.108531 0.994093i
\(626\) 14.1722 + 7.23905i 0.566436 + 0.289331i
\(627\) 1.30533 0.140712i 0.0521298 0.00561951i
\(628\) 26.3890 19.0918i 1.05304 0.761847i
\(629\) 39.5988i 1.57891i
\(630\) −14.2456 + 20.6655i −0.567559 + 0.823333i
\(631\) −28.2349 −1.12401 −0.562006 0.827133i \(-0.689970\pi\)
−0.562006 + 0.827133i \(0.689970\pi\)
\(632\) 1.48239 + 9.54557i 0.0589663 + 0.379702i
\(633\) 3.50265 + 32.4926i 0.139218 + 1.29146i
\(634\) −10.5383 + 20.6313i −0.418530 + 0.819375i
\(635\) −3.83175 + 1.46645i −0.152058 + 0.0581942i
\(636\) −3.26599 + 2.94458i −0.129505 + 0.116760i
\(637\) −26.8924 + 3.99970i −1.06552 + 0.158474i
\(638\) −14.1121 7.20832i −0.558702 0.285380i
\(639\) −4.88098 22.3763i −0.193089 0.885194i
\(640\) 5.06070 + 24.7869i 0.200042 + 0.979787i
\(641\) 23.0269i 0.909506i 0.890618 + 0.454753i \(0.150273\pi\)
−0.890618 + 0.454753i \(0.849727\pi\)
\(642\) −12.2328 + 32.0263i −0.482791 + 1.26398i
\(643\) 19.4192i 0.765818i 0.923786 + 0.382909i \(0.125078\pi\)
−0.923786 + 0.382909i \(0.874922\pi\)
\(644\) 3.32124 38.8574i 0.130875 1.53120i
\(645\) 18.2431 + 35.6578i 0.718319 + 1.40402i
\(646\) −0.957198 + 1.87395i −0.0376605 + 0.0737296i
\(647\) 34.9106i 1.37248i −0.727376 0.686240i \(-0.759260\pi\)
0.727376 0.686240i \(-0.240740\pi\)
\(648\) −14.0270 21.2425i −0.551032 0.834484i
\(649\) 14.4777i 0.568300i
\(650\) 7.02820 + 26.5498i 0.275669 + 1.04137i
\(651\) 7.01954 10.1687i 0.275117 0.398544i
\(652\) −11.1724 15.4426i −0.437543 0.604779i
\(653\) 18.7225i 0.732669i 0.930483 + 0.366335i \(0.119387\pi\)
−0.930483 + 0.366335i \(0.880613\pi\)
\(654\) −10.3068 + 26.9839i −0.403028 + 1.05515i
\(655\) 16.1791 6.19188i 0.632168 0.241937i
\(656\) 2.55072 7.74428i 0.0995889 0.302363i
\(657\) −43.2073 + 9.42487i −1.68568 + 0.367699i
\(658\) −31.2390 + 12.7307i −1.21782 + 0.496296i
\(659\) 14.4188 0.561679 0.280839 0.959755i \(-0.409387\pi\)
0.280839 + 0.959755i \(0.409387\pi\)
\(660\) −10.5264 + 20.6413i −0.409741 + 0.803463i
\(661\) 4.56203 0.177442 0.0887212 0.996056i \(-0.471722\pi\)
0.0887212 + 0.996056i \(0.471722\pi\)
\(662\) 13.1291 25.7034i 0.510276 0.998991i
\(663\) 39.2745 4.23372i 1.52529 0.164424i
\(664\) −0.773626 4.98161i −0.0300225 0.193324i
\(665\) 0.508503 1.41027i 0.0197189 0.0546878i
\(666\) 27.6684 + 7.28568i 1.07213 + 0.282314i
\(667\) 27.6079 1.06898
\(668\) −12.8420 + 9.29086i −0.496870 + 0.359474i
\(669\) −3.68032 + 0.396733i −0.142290 + 0.0153386i
\(670\) −0.484863 + 4.52560i −0.0187319 + 0.174839i
\(671\) 19.3131 0.745572
\(672\) −25.5217 + 4.54362i −0.984520 + 0.175274i
\(673\) 31.4986i 1.21418i 0.794633 + 0.607091i \(0.207663\pi\)
−0.794633 + 0.607091i \(0.792337\pi\)
\(674\) 18.6832 36.5769i 0.719648 1.40889i
\(675\) −12.8556 + 22.5773i −0.494813 + 0.869000i
\(676\) −2.44511 3.37967i −0.0940428 0.129987i
\(677\) 20.6023 0.791810 0.395905 0.918291i \(-0.370431\pi\)
0.395905 + 0.918291i \(0.370431\pi\)
\(678\) 19.7898 + 7.55893i 0.760021 + 0.290299i
\(679\) −21.7877 18.7869i −0.836134 0.720974i
\(680\) −18.4390 32.2359i −0.707104 1.23619i
\(681\) −2.84537 + 0.306726i −0.109035 + 0.0117538i
\(682\) 5.18863 10.1580i 0.198683 0.388971i
\(683\) 35.3045i 1.35089i 0.737411 + 0.675444i \(0.236048\pi\)
−0.737411 + 0.675444i \(0.763952\pi\)
\(684\) 1.13325 + 1.01360i 0.0433310 + 0.0387558i
\(685\) −9.99999 26.1294i −0.382080 0.998354i
\(686\) −22.5368 + 13.3451i −0.860459 + 0.509519i
\(687\) −40.0307 + 4.31524i −1.52727 + 0.164637i
\(688\) −12.9411 + 39.2908i −0.493376 + 1.49795i
\(689\) −4.93048 −0.187836
\(690\) −0.0263593 40.3679i −0.00100348 1.53678i
\(691\) 0.799384 0.0304100 0.0152050 0.999884i \(-0.495160\pi\)
0.0152050 + 0.999884i \(0.495160\pi\)
\(692\) −25.1607 34.7775i −0.956467 1.32204i
\(693\) −20.8724 11.3162i −0.792876 0.429869i
\(694\) 5.44045 10.6510i 0.206517 0.404307i
\(695\) −2.74468 7.17169i −0.104112 0.272038i
\(696\) −4.74342 17.7275i −0.179799 0.671960i
\(697\) 11.9691i 0.453362i
\(698\) 0.340758 + 0.174056i 0.0128979 + 0.00658813i
\(699\) −28.2760 + 3.04810i −1.06950 + 0.115290i
\(700\) 15.9223 + 21.1301i 0.601806 + 0.798642i
\(701\) −9.07828 −0.342882 −0.171441 0.985194i \(-0.554842\pi\)
−0.171441 + 0.985194i \(0.554842\pi\)
\(702\) 4.26783 28.2208i 0.161079 1.06513i
\(703\) −1.70889 −0.0644521
\(704\) −22.8033 + 7.25755i −0.859431 + 0.273529i
\(705\) −31.0854 + 15.9038i −1.17074 + 0.598970i
\(706\) 15.0701 29.5033i 0.567169 1.11037i
\(707\) −7.59714 + 8.81062i −0.285720 + 0.331358i
\(708\) −12.4523 + 11.2269i −0.467986 + 0.421931i
\(709\) 1.97120i 0.0740300i 0.999315 + 0.0370150i \(0.0117849\pi\)
−0.999315 + 0.0370150i \(0.988215\pi\)
\(710\) −24.0040 2.57173i −0.900854 0.0965155i
\(711\) −10.0106 + 2.18362i −0.375426 + 0.0818922i
\(712\) −4.74587 30.5601i −0.177859 1.14529i
\(713\) 19.8725i 0.744231i
\(714\) 33.4979 18.0555i 1.25363 0.675710i
\(715\) −24.2631 + 9.28573i −0.907388 + 0.347266i
\(716\) 18.0178 + 24.9045i 0.673358 + 0.930725i
\(717\) 4.88861 + 45.3496i 0.182568 + 1.69361i
\(718\) −10.8436 + 21.2290i −0.404679 + 0.792258i
\(719\) 32.9955 1.23052 0.615262 0.788323i \(-0.289050\pi\)
0.615262 + 0.788323i \(0.289050\pi\)
\(720\) −25.9164 + 6.95269i −0.965847 + 0.259112i
\(721\) 18.1924 + 15.6868i 0.677522 + 0.584207i
\(722\) 23.8483 + 12.1815i 0.887540 + 0.453348i
\(723\) 2.18693 + 20.2873i 0.0813329 + 0.754491i
\(724\) −2.30081 3.18021i −0.0855088 0.118191i
\(725\) −13.9440 + 12.5045i −0.517867 + 0.464405i
\(726\) 4.69586 + 1.79364i 0.174280 + 0.0665682i
\(727\) 18.0873 0.670822 0.335411 0.942072i \(-0.391125\pi\)
0.335411 + 0.942072i \(0.391125\pi\)
\(728\) −24.6642 15.3778i −0.914117 0.569938i
\(729\) 21.5870 16.2173i 0.799519 0.600641i
\(730\) −4.96585 + 46.3502i −0.183795 + 1.71550i
\(731\) 60.7255i 2.24601i
\(732\) 14.9765 + 16.6112i 0.553546 + 0.613966i
\(733\) 13.9719i 0.516065i 0.966136 + 0.258033i \(0.0830742\pi\)
−0.966136 + 0.258033i \(0.916926\pi\)
\(734\) −6.64458 3.39400i −0.245256 0.125275i
\(735\) −22.0564 + 15.7644i −0.813562 + 0.581478i
\(736\) 29.6283 29.3321i 1.09211 1.08120i
\(737\) −4.30540 −0.158592
\(738\) 8.36304 + 2.20216i 0.307848 + 0.0810628i
\(739\) 22.5660i 0.830104i −0.909798 0.415052i \(-0.863763\pi\)
0.909798 0.415052i \(-0.136237\pi\)
\(740\) 16.5021 25.2440i 0.606630 0.927989i
\(741\) 0.182707 + 1.69490i 0.00671192 + 0.0622637i
\(742\) −4.39852 + 1.79252i −0.161475 + 0.0658053i
\(743\) 9.63430 0.353448 0.176724 0.984260i \(-0.443450\pi\)
0.176724 + 0.984260i \(0.443450\pi\)
\(744\) 12.7605 3.41437i 0.467822 0.125177i
\(745\) −10.3812 27.1255i −0.380337 0.993800i
\(746\) −31.7960 16.2411i −1.16413 0.594630i
\(747\) 5.22429 1.13958i 0.191147 0.0416951i
\(748\) 28.4613 20.5911i 1.04065 0.752886i
\(749\) −24.1815 + 28.0440i −0.883573 + 1.02471i
\(750\) 18.2972 + 20.3768i 0.668120 + 0.744054i
\(751\) 36.1635 1.31962 0.659812 0.751430i \(-0.270636\pi\)
0.659812 + 0.751430i \(0.270636\pi\)
\(752\) −34.2525 11.2817i −1.24906 0.411401i
\(753\) −2.04914 19.0090i −0.0746749 0.692728i
\(754\) 9.35961 18.3237i 0.340857 0.667311i
\(755\) 2.76781 + 7.23213i 0.100731 + 0.263204i
\(756\) −6.45254 26.7276i −0.234676 0.972074i
\(757\) −2.68528 −0.0975981 −0.0487991 0.998809i \(-0.515539\pi\)
−0.0487991 + 0.998809i \(0.515539\pi\)
\(758\) 3.08374 6.03719i 0.112007 0.219280i
\(759\) 37.9653 4.09259i 1.37805 0.148552i
\(760\) 1.39115 0.795739i 0.0504622 0.0288645i
\(761\) −12.1152 −0.439175 −0.219588 0.975593i \(-0.570471\pi\)
−0.219588 + 0.975593i \(0.570471\pi\)
\(762\) 1.60367 4.19852i 0.0580949 0.152096i
\(763\) −20.3742 + 23.6286i −0.737597 + 0.855413i
\(764\) 25.8269 18.6852i 0.934384 0.676006i
\(765\) 32.9419 21.5957i 1.19102 0.780794i
\(766\) −14.0389 + 27.4846i −0.507246 + 0.993059i
\(767\) −18.7985 −0.678776
\(768\) −23.9252 13.9852i −0.863326 0.504646i
\(769\) 34.3566i 1.23893i 0.785025 + 0.619465i \(0.212650\pi\)
−0.785025 + 0.619465i \(0.787350\pi\)
\(770\) −18.2694 + 17.1049i −0.658383 + 0.616418i
\(771\) −1.30443 12.1006i −0.0469777 0.435793i
\(772\) 38.5620 27.8987i 1.38788 1.00410i
\(773\) 15.8817 0.571224 0.285612 0.958345i \(-0.407803\pi\)
0.285612 + 0.958345i \(0.407803\pi\)
\(774\) −42.4301 11.1727i −1.52512 0.401595i
\(775\) −9.00089 10.0370i −0.323321 0.360541i
\(776\) −4.71960 30.3910i −0.169424 1.09097i
\(777\) 25.4329 + 17.5565i 0.912399 + 0.629835i
\(778\) −22.8028 11.6475i −0.817521 0.417583i
\(779\) −0.516529 −0.0185066
\(780\) −26.8016 13.6680i −0.959653 0.489393i
\(781\) 22.8360i 0.817138i
\(782\) −27.8400 + 54.5036i −0.995555 + 1.94904i
\(783\) 18.4630 6.16256i 0.659815 0.220232i
\(784\) −27.5939 4.75175i −0.985495 0.169705i
\(785\) 34.0100 13.0160i 1.21387 0.464560i
\(786\) −6.77129 + 17.7277i −0.241524 + 0.632326i
\(787\) 11.5166i 0.410522i −0.978707 0.205261i \(-0.934196\pi\)
0.978707 0.205261i \(-0.0658043\pi\)
\(788\) −35.9945 + 26.0412i −1.28225 + 0.927678i
\(789\) −21.2834 + 2.29432i −0.757710 + 0.0816799i
\(790\) −1.15053 + 10.7387i −0.0409338 + 0.382067i
\(791\) 17.3290 + 14.9423i 0.616149 + 0.531287i
\(792\) −9.15089 23.6750i −0.325163 0.841254i
\(793\) 25.0770i 0.890509i
\(794\) 16.2340 31.7820i 0.576122 1.12790i
\(795\) −4.37689 + 2.23928i −0.155232 + 0.0794192i
\(796\) 9.85958 7.13318i 0.349464 0.252829i
\(797\) −34.9066 −1.23645 −0.618227 0.785999i \(-0.712149\pi\)
−0.618227 + 0.785999i \(0.712149\pi\)
\(798\) 0.779188 + 1.44561i 0.0275830 + 0.0511739i
\(799\) 52.9387 1.87284
\(800\) −1.67898 + 28.2344i −0.0593609 + 0.998237i
\(801\) 32.0488 6.99086i 1.13239 0.247010i
\(802\) 13.0206 25.4910i 0.459774 0.900120i
\(803\) −44.0949 −1.55608
\(804\) −3.33866 3.70308i −0.117745 0.130597i
\(805\) 14.7897 41.0174i 0.521269 1.44567i
\(806\) 13.1896 + 6.73716i 0.464586 + 0.237306i
\(807\) −0.350161 3.24830i −0.0123263 0.114345i
\(808\) −12.2897 + 1.90854i −0.432349 + 0.0671422i
\(809\) 49.2988i 1.73325i 0.498957 + 0.866627i \(0.333717\pi\)
−0.498957 + 0.866627i \(0.666283\pi\)
\(810\) −9.02844 26.9905i −0.317227 0.948350i
\(811\) 48.4514 1.70136 0.850679 0.525686i \(-0.176191\pi\)
0.850679 + 0.525686i \(0.176191\pi\)
\(812\) 1.68804 19.7495i 0.0592386 0.693072i
\(813\) 1.46798 + 13.6178i 0.0514842 + 0.477597i
\(814\) 25.4061 + 12.9772i 0.890483 + 0.454851i
\(815\) −7.61682 19.9023i −0.266806 0.697149i
\(816\) 39.7810 + 8.51206i 1.39261 + 0.297982i
\(817\) 2.62062 0.0916839
\(818\) −9.65736 + 18.9067i −0.337662 + 0.661056i
\(819\) 14.6935 27.1017i 0.513434 0.947008i
\(820\) 4.98792 7.63025i 0.174186 0.266460i
\(821\) 28.0461 0.978815 0.489408 0.872055i \(-0.337213\pi\)
0.489408 + 0.872055i \(0.337213\pi\)
\(822\) 28.6305 + 10.9357i 0.998603 + 0.381428i
\(823\) 24.0162i 0.837151i 0.908182 + 0.418576i \(0.137470\pi\)
−0.908182 + 0.418576i \(0.862530\pi\)
\(824\) 3.94081 + 25.3761i 0.137284 + 0.884017i
\(825\) −17.3215 + 19.2627i −0.603058 + 0.670642i
\(826\) −16.7703 + 6.83436i −0.583514 + 0.237798i
\(827\) 53.9732i 1.87683i 0.345507 + 0.938416i \(0.387707\pi\)
−0.345507 + 0.938416i \(0.612293\pi\)
\(828\) 32.9605 + 29.4803i 1.14546 + 1.02451i
\(829\) 36.2547 1.25918 0.629590 0.776928i \(-0.283223\pi\)
0.629590 + 0.776928i \(0.283223\pi\)
\(830\) 0.600433 5.60430i 0.0208413 0.194528i
\(831\) −49.6536 + 5.35257i −1.72246 + 0.185679i
\(832\) −9.42354 29.6088i −0.326703 1.02650i
\(833\) 40.6558 6.04673i 1.40864 0.209507i
\(834\) 7.85815 + 3.00151i 0.272106 + 0.103934i
\(835\) −16.5506 + 6.33410i −0.572759 + 0.219200i
\(836\) 0.888614 + 1.22825i 0.0307333 + 0.0424801i
\(837\) 4.43589 + 13.2899i 0.153327 + 0.459367i
\(838\) −5.92318 + 11.5961i −0.204613 + 0.400580i
\(839\) 23.0566 0.796004 0.398002 0.917385i \(-0.369704\pi\)
0.398002 + 0.917385i \(0.369704\pi\)
\(840\) −28.8791 2.44937i −0.996423 0.0845114i
\(841\) −14.9681 −0.516142
\(842\) −3.74321 + 7.32826i −0.129000 + 0.252548i
\(843\) −2.94910 27.3576i −0.101573 0.942245i
\(844\) −30.5740 + 22.1196i −1.05240 + 0.761388i
\(845\) −1.66697 4.35570i −0.0573455 0.149841i
\(846\) 9.74006 36.9893i 0.334870 1.27172i
\(847\) 4.11196 + 3.54562i 0.141289 + 0.121829i
\(848\) −4.82283 1.58849i −0.165617 0.0545489i
\(849\) 5.96580 + 55.3422i 0.204746 + 1.89934i
\(850\) −10.6252 40.1378i −0.364441 1.37672i
\(851\) −49.7029 −1.70379
\(852\) 19.6413 17.7084i 0.672899 0.606679i
\(853\) 15.8822i 0.543795i 0.962326 + 0.271898i \(0.0876512\pi\)
−0.962326 + 0.271898i \(0.912349\pi\)
\(854\) 9.11693 + 22.3714i 0.311975 + 0.765532i
\(855\) 0.931967 + 1.42162i 0.0318726 + 0.0486182i
\(856\) −39.1177 + 6.07484i −1.33702 + 0.207634i
\(857\) 13.4521i 0.459515i −0.973248 0.229757i \(-0.926207\pi\)
0.973248 0.229757i \(-0.0737933\pi\)
\(858\) 10.1546 26.5855i 0.346674 0.907615i
\(859\) 56.7046 1.93474 0.967369 0.253373i \(-0.0815399\pi\)
0.967369 + 0.253373i \(0.0815399\pi\)
\(860\) −25.3063 + 38.7122i −0.862938 + 1.32008i
\(861\) 7.68732 + 5.30661i 0.261983 + 0.180849i
\(862\) −19.2171 + 37.6221i −0.654536 + 1.28142i
\(863\) 29.1364 0.991815 0.495908 0.868375i \(-0.334835\pi\)
0.495908 + 0.868375i \(0.334835\pi\)
\(864\) 13.2667 26.2296i 0.451344 0.892350i
\(865\) −17.1535 44.8211i −0.583235 1.52396i
\(866\) −3.48032 1.77772i −0.118266 0.0604093i
\(867\) −30.0997 + 3.24470i −1.02224 + 0.110196i
\(868\) 14.2159 + 1.21507i 0.482520 + 0.0412422i
\(869\) −10.2162 −0.346562
\(870\) −0.0133973 20.5172i −0.000454209 0.695599i
\(871\) 5.59033i 0.189421i
\(872\) −32.9588 + 5.11838i −1.11613 + 0.173330i
\(873\) 31.8714 6.95216i 1.07868 0.235295i
\(874\) −2.35211 1.20144i −0.0795614 0.0406393i
\(875\) 11.1082 + 27.4155i 0.375526 + 0.926812i
\(876\) −34.1937 37.9260i −1.15530 1.28140i
\(877\) 3.83638 0.129545 0.0647726 0.997900i \(-0.479368\pi\)
0.0647726 + 0.997900i \(0.479368\pi\)
\(878\) −23.5365 + 46.0786i −0.794320 + 1.55508i
\(879\) 40.0775 4.32029i 1.35178 0.145720i
\(880\) −26.7250 + 1.26597i −0.900899 + 0.0426758i
\(881\) −14.7572 −0.497183 −0.248591 0.968608i \(-0.579968\pi\)
−0.248591 + 0.968608i \(0.579968\pi\)
\(882\) 3.25520 29.5195i 0.109608 0.993975i
\(883\) 17.1334 0.576586 0.288293 0.957542i \(-0.406912\pi\)
0.288293 + 0.957542i \(0.406912\pi\)
\(884\) 26.7365 + 36.9555i 0.899244 + 1.24295i
\(885\) −16.6878 + 8.53775i −0.560956 + 0.286993i
\(886\) −9.39384 + 18.3907i −0.315592 + 0.617849i
\(887\) 46.8206i 1.57208i −0.618174 0.786042i \(-0.712127\pi\)
0.618174 0.786042i \(-0.287873\pi\)
\(888\) 8.53964 + 31.9151i 0.286572 + 1.07100i
\(889\) 3.17010 3.67646i 0.106322 0.123304i
\(890\) 3.68340 34.3800i 0.123468 1.15242i
\(891\) 24.4761 11.2115i 0.819979 0.375598i
\(892\) −2.50541 3.46302i −0.0838874 0.115950i
\(893\) 2.28458i 0.0764505i
\(894\) 29.7219 + 11.3526i 0.994048 + 0.379688i
\(895\) 12.2838 + 32.0968i 0.410601 + 1.07288i
\(896\) −19.1713 22.9883i −0.640469 0.767984i
\(897\) 5.31401 + 49.2959i 0.177430 + 1.64594i
\(898\) −13.9850 + 27.3791i −0.466686 + 0.913652i
\(899\) 10.1003i 0.336865i
\(900\) −30.0000 + 0.0391785i −0.999999 + 0.00130595i
\(901\) 7.45388 0.248325
\(902\) 7.67923 + 3.92249i 0.255690 + 0.130605i
\(903\) −39.0018 26.9232i −1.29790 0.895948i
\(904\) 3.75378 + 24.1717i 0.124849 + 0.803939i
\(905\) −1.56859 4.09864i −0.0521417 0.136243i
\(906\) −7.92438 3.02681i −0.263270 0.100559i
\(907\) 28.6735 0.952087 0.476043 0.879422i \(-0.342071\pi\)
0.476043 + 0.879422i \(0.342071\pi\)
\(908\) −1.93701 2.67736i −0.0642819 0.0888513i
\(909\) −2.81135 12.8883i −0.0932467 0.427479i
\(910\) −22.2098 23.7218i −0.736248 0.786371i
\(911\) 1.90619i 0.0631550i −0.999501 0.0315775i \(-0.989947\pi\)
0.999501 0.0315775i \(-0.0100531\pi\)
\(912\) −0.367339 + 1.71676i −0.0121638 + 0.0568475i
\(913\) 5.33162 0.176451
\(914\) 0.452708 0.886287i 0.0149742 0.0293158i
\(915\) 11.3892 + 22.2613i 0.376516 + 0.735937i
\(916\) −27.2512 37.6671i −0.900407 1.24455i
\(917\) −13.3853 + 15.5234i −0.442022 + 0.512626i
\(918\) −6.45209 + 42.6641i −0.212951 + 1.40812i
\(919\) −19.4420 −0.641334 −0.320667 0.947192i \(-0.603907\pi\)
−0.320667 + 0.947192i \(0.603907\pi\)
\(920\) 40.4613 23.1439i 1.33397 0.763033i
\(921\) −3.13555 29.0872i −0.103320 0.958457i
\(922\) −17.1446 + 33.5648i −0.564627 + 1.10540i
\(923\) 29.6514 0.975986
\(924\) −0.606340 27.4090i −0.0199471 0.901688i
\(925\) 25.1035 22.5120i 0.825399 0.740190i
\(926\) 25.2415 49.4165i 0.829489 1.62393i
\(927\) −26.6122 + 5.80497i −0.874060 + 0.190660i
\(928\) 15.0587 14.9082i 0.494328 0.489386i
\(929\) −30.4309 −0.998407 −0.499203 0.866485i \(-0.666374\pi\)
−0.499203 + 0.866485i \(0.666374\pi\)
\(930\) 14.7685 0.00964350i 0.484280 0.000316223i
\(931\) 0.260948 + 1.75451i 0.00855222 + 0.0575018i
\(932\) −19.2491 26.6064i −0.630525 0.871521i
\(933\) −19.4007 + 2.09136i −0.635150 + 0.0684681i
\(934\) −26.4912 13.5315i −0.866820 0.442764i
\(935\) 36.6808 14.0381i 1.19959 0.459096i
\(936\) 30.7407 11.8819i 1.00479 0.388373i
\(937\) 47.3032 1.54533 0.772664 0.634815i \(-0.218924\pi\)
0.772664 + 0.634815i \(0.218924\pi\)
\(938\) −2.03241 4.98718i −0.0663605 0.162837i
\(939\) −19.3783 + 2.08895i −0.632388 + 0.0681704i
\(940\) −33.7482 22.0613i −1.10074 0.719560i
\(941\) 9.65922i 0.314881i 0.987528 + 0.157441i \(0.0503243\pi\)
−0.987528 + 0.157441i \(0.949676\pi\)
\(942\) −14.2340 + 37.2654i −0.463767 + 1.21417i
\(943\) −15.0232 −0.489221
\(944\) −18.3881 6.05646i −0.598481 0.197121i
\(945\) 0.734961 30.7321i 0.0239083 0.999714i
\(946\) −38.9608 19.9008i −1.26672 0.647032i
\(947\) 8.12123i 0.263905i 0.991256 + 0.131952i \(0.0421246\pi\)
−0.991256 + 0.131952i \(0.957875\pi\)
\(948\) −7.92225 8.78698i −0.257303 0.285388i
\(949\) 57.2549i 1.85857i
\(950\) 1.73216 0.458533i 0.0561985 0.0148768i
\(951\) −3.04101 28.2102i −0.0986115 0.914778i
\(952\) 37.2873 + 23.2480i 1.20849 + 0.753473i
\(953\) −20.6108 −0.667651 −0.333825 0.942635i \(-0.608340\pi\)
−0.333825 + 0.942635i \(0.608340\pi\)
\(954\) 1.37142 5.20817i 0.0444014 0.168621i
\(955\) 33.2856 12.7387i 1.07710 0.412215i
\(956\) −42.6719 + 30.8721i −1.38011 + 0.998476i
\(957\) 19.2961 2.08008i 0.623753 0.0672396i
\(958\) 49.9755 + 25.5271i 1.61464 + 0.824743i
\(959\) 25.0705 + 21.6175i 0.809567 + 0.698066i
\(960\) −21.8129 22.0044i −0.704010 0.710190i
\(961\) 23.7297 0.765473
\(962\) −16.8502 + 32.9885i −0.543273 + 1.06359i
\(963\) −8.94848 41.0233i −0.288361 1.32196i
\(964\) −19.0894 + 13.8107i −0.614827 + 0.444813i
\(965\) 49.6985 19.0201i 1.59985 0.612280i
\(966\) 22.6626 + 42.0453i 0.729156 + 1.35278i
\(967\) 21.1743i 0.680920i −0.940259 0.340460i \(-0.889417\pi\)
0.940259 0.340460i \(-0.110583\pi\)
\(968\) 0.890724 + 5.73565i 0.0286290 + 0.184351i
\(969\) −0.276216 2.56234i −0.00887333 0.0823142i
\(970\) 3.66301 34.1897i 0.117612 1.09777i
\(971\) 21.3754i 0.685970i −0.939341 0.342985i \(-0.888562\pi\)
0.939341 0.342985i \(-0.111438\pi\)
\(972\) 28.6231 + 12.3579i 0.918087 + 0.396378i
\(973\) 6.88104 + 5.93331i 0.220596 + 0.190213i
\(974\) −17.5559 + 34.3700i −0.562527 + 1.10128i
\(975\) −25.0116 22.4911i −0.801012 0.720291i
\(976\) −8.07922 + 24.5294i −0.258610 + 0.785168i
\(977\) 21.9942 0.703657 0.351829 0.936064i \(-0.385560\pi\)
0.351829 + 0.936064i \(0.385560\pi\)
\(978\) 21.8074 + 8.32958i 0.697323 + 0.266350i
\(979\) 32.7072 1.04533
\(980\) −28.4378 13.0879i −0.908412 0.418077i
\(981\) −7.53958 34.5644i −0.240720 1.10356i
\(982\) −38.8383 19.8383i −1.23938 0.633065i
\(983\) 1.36406i 0.0435066i −0.999763 0.0217533i \(-0.993075\pi\)
0.999763 0.0217533i \(-0.00692484\pi\)
\(984\) 2.58119 + 9.64663i 0.0822852 + 0.307523i
\(985\) −46.3895 + 17.7537i −1.47809 + 0.565681i
\(986\) −14.1498 + 27.7018i −0.450622 + 0.882203i
\(987\) 23.4709 34.0006i 0.747086 1.08225i
\(988\) −1.59482 + 1.15382i −0.0507380 + 0.0367078i
\(989\) 76.2203 2.42367
\(990\) −3.05989 28.2124i −0.0972498 0.896650i
\(991\) −11.1590 −0.354477 −0.177238 0.984168i \(-0.556716\pi\)
−0.177238 + 0.984168i \(0.556716\pi\)
\(992\) 10.7311 + 10.8395i 0.340713 + 0.344153i
\(993\) 3.78862 + 35.1454i 0.120228 + 1.11531i
\(994\) 26.4522 10.7800i 0.839013 0.341920i
\(995\) 12.7070 4.86309i 0.402838 0.154170i
\(996\) 4.13444 + 4.58572i 0.131005 + 0.145304i
\(997\) 18.8707i 0.597642i 0.954309 + 0.298821i \(0.0965934\pi\)
−0.954309 + 0.298821i \(0.903407\pi\)
\(998\) 8.96527 17.5517i 0.283791 0.555590i
\(999\) −33.2392 + 11.0945i −1.05164 + 0.351016i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 840.2.u.e.629.19 yes 160
3.2 odd 2 inner 840.2.u.e.629.141 yes 160
5.4 even 2 inner 840.2.u.e.629.142 yes 160
7.6 odd 2 inner 840.2.u.e.629.18 yes 160
8.5 even 2 inner 840.2.u.e.629.22 yes 160
15.14 odd 2 inner 840.2.u.e.629.20 yes 160
21.20 even 2 inner 840.2.u.e.629.144 yes 160
24.5 odd 2 inner 840.2.u.e.629.140 yes 160
35.34 odd 2 inner 840.2.u.e.629.143 yes 160
40.29 even 2 inner 840.2.u.e.629.139 yes 160
56.13 odd 2 inner 840.2.u.e.629.23 yes 160
105.104 even 2 inner 840.2.u.e.629.17 160
120.29 odd 2 inner 840.2.u.e.629.21 yes 160
168.125 even 2 inner 840.2.u.e.629.137 yes 160
280.69 odd 2 inner 840.2.u.e.629.138 yes 160
840.629 even 2 inner 840.2.u.e.629.24 yes 160
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.u.e.629.17 160 105.104 even 2 inner
840.2.u.e.629.18 yes 160 7.6 odd 2 inner
840.2.u.e.629.19 yes 160 1.1 even 1 trivial
840.2.u.e.629.20 yes 160 15.14 odd 2 inner
840.2.u.e.629.21 yes 160 120.29 odd 2 inner
840.2.u.e.629.22 yes 160 8.5 even 2 inner
840.2.u.e.629.23 yes 160 56.13 odd 2 inner
840.2.u.e.629.24 yes 160 840.629 even 2 inner
840.2.u.e.629.137 yes 160 168.125 even 2 inner
840.2.u.e.629.138 yes 160 280.69 odd 2 inner
840.2.u.e.629.139 yes 160 40.29 even 2 inner
840.2.u.e.629.140 yes 160 24.5 odd 2 inner
840.2.u.e.629.141 yes 160 3.2 odd 2 inner
840.2.u.e.629.142 yes 160 5.4 even 2 inner
840.2.u.e.629.143 yes 160 35.34 odd 2 inner
840.2.u.e.629.144 yes 160 21.20 even 2 inner