Newspace parameters
Level: | \( N \) | \(=\) | \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 840.j (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(6.70743376979\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
589.1 | −1.41390 | − | 0.0297183i | −1.00000 | 1.99823 | + | 0.0840375i | −1.06062 | + | 1.96852i | 1.41390 | + | 0.0297183i | 1.00000i | −2.82281 | − | 0.178205i | 1.00000 | 1.55812 | − | 2.75178i | ||||||
589.2 | −1.41390 | + | 0.0297183i | −1.00000 | 1.99823 | − | 0.0840375i | −1.06062 | − | 1.96852i | 1.41390 | − | 0.0297183i | − | 1.00000i | −2.82281 | + | 0.178205i | 1.00000 | 1.55812 | + | 2.75178i | |||||
589.3 | −1.39151 | − | 0.252412i | −1.00000 | 1.87258 | + | 0.702466i | 2.03532 | − | 0.926004i | 1.39151 | + | 0.252412i | − | 1.00000i | −2.42839 | − | 1.45015i | 1.00000 | −3.06589 | + | 0.774802i | |||||
589.4 | −1.39151 | + | 0.252412i | −1.00000 | 1.87258 | − | 0.702466i | 2.03532 | + | 0.926004i | 1.39151 | − | 0.252412i | 1.00000i | −2.42839 | + | 1.45015i | 1.00000 | −3.06589 | − | 0.774802i | ||||||
589.5 | −1.24401 | − | 0.672631i | −1.00000 | 1.09514 | + | 1.67352i | 0.123450 | + | 2.23266i | 1.24401 | + | 0.672631i | − | 1.00000i | −0.236701 | − | 2.81851i | 1.00000 | 1.34818 | − | 2.86049i | |||||
589.6 | −1.24401 | + | 0.672631i | −1.00000 | 1.09514 | − | 1.67352i | 0.123450 | − | 2.23266i | 1.24401 | − | 0.672631i | 1.00000i | −0.236701 | + | 2.81851i | 1.00000 | 1.34818 | + | 2.86049i | ||||||
589.7 | −1.20719 | − | 0.736672i | −1.00000 | 0.914630 | + | 1.77861i | −1.64475 | − | 1.51486i | 1.20719 | + | 0.736672i | 1.00000i | 0.206117 | − | 2.82091i | 1.00000 | 0.869577 | + | 3.04037i | ||||||
589.8 | −1.20719 | + | 0.736672i | −1.00000 | 0.914630 | − | 1.77861i | −1.64475 | + | 1.51486i | 1.20719 | − | 0.736672i | − | 1.00000i | 0.206117 | + | 2.82091i | 1.00000 | 0.869577 | − | 3.04037i | |||||
589.9 | −0.870129 | − | 1.11484i | −1.00000 | −0.485751 | + | 1.94012i | 1.48054 | + | 1.67571i | 0.870129 | + | 1.11484i | 1.00000i | 2.58559 | − | 1.14661i | 1.00000 | 0.579891 | − | 3.10865i | ||||||
589.10 | −0.870129 | + | 1.11484i | −1.00000 | −0.485751 | − | 1.94012i | 1.48054 | − | 1.67571i | 0.870129 | − | 1.11484i | − | 1.00000i | 2.58559 | + | 1.14661i | 1.00000 | 0.579891 | + | 3.10865i | |||||
589.11 | −0.538709 | − | 1.30759i | −1.00000 | −1.41959 | + | 1.40882i | 0.725275 | − | 2.11518i | 0.538709 | + | 1.30759i | 1.00000i | 2.60690 | + | 1.09729i | 1.00000 | −3.15650 | + | 0.191102i | ||||||
589.12 | −0.538709 | + | 1.30759i | −1.00000 | −1.41959 | − | 1.40882i | 0.725275 | + | 2.11518i | 0.538709 | − | 1.30759i | − | 1.00000i | 2.60690 | − | 1.09729i | 1.00000 | −3.15650 | − | 0.191102i | |||||
589.13 | −0.453365 | − | 1.33957i | −1.00000 | −1.58892 | + | 1.21463i | −2.12585 | − | 0.693382i | 0.453365 | + | 1.33957i | − | 1.00000i | 2.34745 | + | 1.57780i | 1.00000 | 0.0349481 | + | 3.16208i | |||||
589.14 | −0.453365 | + | 1.33957i | −1.00000 | −1.58892 | − | 1.21463i | −2.12585 | + | 0.693382i | 0.453365 | − | 1.33957i | 1.00000i | 2.34745 | − | 1.57780i | 1.00000 | 0.0349481 | − | 3.16208i | ||||||
589.15 | −0.406657 | − | 1.35449i | −1.00000 | −1.66926 | + | 1.10162i | 0.836338 | − | 2.07377i | 0.406657 | + | 1.35449i | − | 1.00000i | 2.17095 | + | 1.81300i | 1.00000 | −3.14900 | − | 0.289491i | |||||
589.16 | −0.406657 | + | 1.35449i | −1.00000 | −1.66926 | − | 1.10162i | 0.836338 | + | 2.07377i | 0.406657 | − | 1.35449i | 1.00000i | 2.17095 | − | 1.81300i | 1.00000 | −3.14900 | + | 0.289491i | ||||||
589.17 | 0.0454850 | − | 1.41348i | −1.00000 | −1.99586 | − | 0.128585i | −1.37352 | + | 1.76449i | −0.0454850 | + | 1.41348i | 1.00000i | −0.272534 | + | 2.81527i | 1.00000 | 2.43160 | + | 2.02171i | ||||||
589.18 | 0.0454850 | + | 1.41348i | −1.00000 | −1.99586 | + | 0.128585i | −1.37352 | − | 1.76449i | −0.0454850 | − | 1.41348i | − | 1.00000i | −0.272534 | − | 2.81527i | 1.00000 | 2.43160 | − | 2.02171i | |||||
589.19 | 0.150941 | − | 1.40614i | −1.00000 | −1.95443 | − | 0.424487i | 2.20890 | + | 0.347530i | −0.150941 | + | 1.40614i | 1.00000i | −0.891891 | + | 2.68413i | 1.00000 | 0.822088 | − | 3.05355i | ||||||
589.20 | 0.150941 | + | 1.40614i | −1.00000 | −1.95443 | + | 0.424487i | 2.20890 | − | 0.347530i | −0.150941 | − | 1.40614i | − | 1.00000i | −0.891891 | − | 2.68413i | 1.00000 | 0.822088 | + | 3.05355i | |||||
See all 32 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
40.f | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 840.2.j.e | ✓ | 32 |
4.b | odd | 2 | 1 | 3360.2.j.f | 32 | ||
5.b | even | 2 | 1 | 840.2.j.f | yes | 32 | |
8.b | even | 2 | 1 | 840.2.j.f | yes | 32 | |
8.d | odd | 2 | 1 | 3360.2.j.e | 32 | ||
20.d | odd | 2 | 1 | 3360.2.j.e | 32 | ||
40.e | odd | 2 | 1 | 3360.2.j.f | 32 | ||
40.f | even | 2 | 1 | inner | 840.2.j.e | ✓ | 32 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
840.2.j.e | ✓ | 32 | 1.a | even | 1 | 1 | trivial |
840.2.j.e | ✓ | 32 | 40.f | even | 2 | 1 | inner |
840.2.j.f | yes | 32 | 5.b | even | 2 | 1 | |
840.2.j.f | yes | 32 | 8.b | even | 2 | 1 | |
3360.2.j.e | 32 | 8.d | odd | 2 | 1 | ||
3360.2.j.e | 32 | 20.d | odd | 2 | 1 | ||
3360.2.j.f | 32 | 4.b | odd | 2 | 1 | ||
3360.2.j.f | 32 | 40.e | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(840, [\chi])\):
\( T_{11}^{32} + 200 T_{11}^{30} + 17624 T_{11}^{28} + 901760 T_{11}^{26} + 29739664 T_{11}^{24} + \cdots + 1677721600 \)
|
\( T_{13}^{16} + 16 T_{13}^{15} + 24 T_{13}^{14} - 888 T_{13}^{13} - 5072 T_{13}^{12} + 6112 T_{13}^{11} + \cdots - 262144 \)
|