Defining parameters
Level: | \( N \) | \(=\) | \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 840.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 11 \) | ||
Sturm bound: | \(384\) | ||
Trace bound: | \(11\) | ||
Distinguishing \(T_p\): | \(11\), \(13\), \(17\), \(19\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(840))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 208 | 12 | 196 |
Cusp forms | 177 | 12 | 165 |
Eisenstein series | 31 | 0 | 31 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(5\) | \(7\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(11\) | \(1\) | \(10\) | \(10\) | \(1\) | \(9\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(14\) | \(1\) | \(13\) | \(12\) | \(1\) | \(11\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(12\) | \(1\) | \(11\) | \(10\) | \(1\) | \(9\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(13\) | \(0\) | \(13\) | \(11\) | \(0\) | \(11\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(13\) | \(1\) | \(12\) | \(11\) | \(1\) | \(10\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(14\) | \(0\) | \(14\) | \(12\) | \(0\) | \(12\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(12\) | \(0\) | \(12\) | \(10\) | \(0\) | \(10\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(15\) | \(2\) | \(13\) | \(13\) | \(2\) | \(11\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(15\) | \(0\) | \(15\) | \(13\) | \(0\) | \(13\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(12\) | \(1\) | \(11\) | \(10\) | \(1\) | \(9\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(14\) | \(1\) | \(13\) | \(12\) | \(1\) | \(11\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(13\) | \(1\) | \(12\) | \(11\) | \(1\) | \(10\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(13\) | \(1\) | \(12\) | \(11\) | \(1\) | \(10\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(12\) | \(1\) | \(11\) | \(10\) | \(1\) | \(9\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(14\) | \(1\) | \(13\) | \(12\) | \(1\) | \(11\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(11\) | \(0\) | \(11\) | \(9\) | \(0\) | \(9\) | \(2\) | \(0\) | \(2\) | |||
Plus space | \(+\) | \(100\) | \(4\) | \(96\) | \(85\) | \(4\) | \(81\) | \(15\) | \(0\) | \(15\) | ||||||
Minus space | \(-\) | \(108\) | \(8\) | \(100\) | \(92\) | \(8\) | \(84\) | \(16\) | \(0\) | \(16\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(840))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(840))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(840)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(56))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(70))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(84))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(105))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(120))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(140))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(168))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(210))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(280))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(420))\)\(^{\oplus 2}\)