Properties

Label 84.8.a.d
Level $84$
Weight $8$
Character orbit 84.a
Self dual yes
Analytic conductor $26.240$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [84,8,Mod(1,84)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("84.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(84, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 84 = 2^{2} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 84.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,54] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.2403421407\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{21961}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 5490 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{21961}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 27 q^{3} + ( - \beta + 48) q^{5} - 343 q^{7} + 729 q^{9} + ( - 17 \beta + 2070) q^{11} + (24 \beta + 4614) q^{13} + ( - 27 \beta + 1296) q^{15} + (25 \beta + 15264) q^{17} + (78 \beta - 352) q^{19}+ \cdots + ( - 12393 \beta + 1509030) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 54 q^{3} + 96 q^{5} - 686 q^{7} + 1458 q^{9} + 4140 q^{11} + 9228 q^{13} + 2592 q^{15} + 30528 q^{17} - 704 q^{19} - 18522 q^{21} + 38628 q^{23} + 24046 q^{25} + 39366 q^{27} + 131988 q^{29} + 165384 q^{31}+ \cdots + 3018060 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
74.5962
−73.5962
0 27.0000 0 −248.385 0 −343.000 0 729.000 0
1.2 0 27.0000 0 344.385 0 −343.000 0 729.000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 84.8.a.d 2
3.b odd 2 1 252.8.a.d 2
4.b odd 2 1 336.8.a.k 2
7.b odd 2 1 588.8.a.e 2
7.c even 3 2 588.8.i.i 4
7.d odd 6 2 588.8.i.l 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
84.8.a.d 2 1.a even 1 1 trivial
252.8.a.d 2 3.b odd 2 1
336.8.a.k 2 4.b odd 2 1
588.8.a.e 2 7.b odd 2 1
588.8.i.i 4 7.c even 3 2
588.8.i.l 4 7.d odd 6 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} - 96T_{5} - 85540 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(84))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T - 27)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 96T - 85540 \) Copy content Toggle raw display
$7$ \( (T + 343)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 4140 T - 21102016 \) Copy content Toggle raw display
$13$ \( T^{2} - 9228 T - 29309148 \) Copy content Toggle raw display
$17$ \( T^{2} - 30528 T + 178087196 \) Copy content Toggle raw display
$19$ \( T^{2} + 704 T - 534318992 \) Copy content Toggle raw display
$23$ \( T^{2} - 38628 T - 354405568 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots - 28331544364 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots + 3394130688 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots - 1973834396 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots + 35838847980 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots + 209546701264 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots + 151386418944 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots - 970659712188 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots + 168887355056 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots - 9309192081228 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots - 26574813392 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots + 9479579570240 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 28271426136140 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots - 16619921043840 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 12879756857936 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 25558993834668 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 13653505590580 \) Copy content Toggle raw display
show more
show less