Properties

Label 84.8.a.d
Level $84$
Weight $8$
Character orbit 84.a
Self dual yes
Analytic conductor $26.240$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [84,8,Mod(1,84)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(84, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("84.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 84 = 2^{2} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 84.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.2403421407\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{21961}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 5490 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{21961}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 27 q^{3} + ( - \beta + 48) q^{5} - 343 q^{7} + 729 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + 27 q^{3} + ( - \beta + 48) q^{5} - 343 q^{7} + 729 q^{9} + ( - 17 \beta + 2070) q^{11} + (24 \beta + 4614) q^{13} + ( - 27 \beta + 1296) q^{15} + (25 \beta + 15264) q^{17} + (78 \beta - 352) q^{19} - 9261 q^{21} + (91 \beta + 19314) q^{23} + ( - 96 \beta + 12023) q^{25} + 19683 q^{27} + ( - 610 \beta + 65994) q^{29} + (198 \beta + 82692) q^{31} + ( - 459 \beta + 55890) q^{33} + (343 \beta - 16464) q^{35} + (660 \beta + 190502) q^{37} + (648 \beta + 124578) q^{39} + ( - 33 \beta + 189564) q^{41} + (60 \beta + 458108) q^{43} + ( - 729 \beta + 34992) q^{45} + ( - 810 \beta + 457188) q^{47} + 117649 q^{49} + (675 \beta + 412128) q^{51} + (4176 \beta + 749166) q^{53} + ( - 2886 \beta + 1592708) q^{55} + (2106 \beta - 9504) q^{57} + (590 \beta + 446616) q^{59} + ( - 10326 \beta + 239346) q^{61} - 250047 q^{63} + ( - 3462 \beta - 1886784) q^{65} + ( - 582 \beta + 56392) q^{67} + (2457 \beta + 521478) q^{69} + ( - 2843 \beta - 3192114) q^{71} + (18102 \beta - 716594) q^{73} + ( - 2592 \beta + 324621) q^{75} + (5831 \beta - 710010) q^{77} + (16734 \beta - 2824668) q^{79} + 531441 q^{81} + ( - 6284 \beta - 4043340) q^{83} + ( - 14064 \beta - 1463428) q^{85} + ( - 16470 \beta + 1781838) q^{87} + ( - 393 \beta - 5056932) q^{89} + ( - 8232 \beta - 1582602) q^{91} + (5346 \beta + 2232684) q^{93} + (4096 \beta - 6868728) q^{95} + (42 \beta + 3695086) q^{97} + ( - 12393 \beta + 1509030) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 54 q^{3} + 96 q^{5} - 686 q^{7} + 1458 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 54 q^{3} + 96 q^{5} - 686 q^{7} + 1458 q^{9} + 4140 q^{11} + 9228 q^{13} + 2592 q^{15} + 30528 q^{17} - 704 q^{19} - 18522 q^{21} + 38628 q^{23} + 24046 q^{25} + 39366 q^{27} + 131988 q^{29} + 165384 q^{31} + 111780 q^{33} - 32928 q^{35} + 381004 q^{37} + 249156 q^{39} + 379128 q^{41} + 916216 q^{43} + 69984 q^{45} + 914376 q^{47} + 235298 q^{49} + 824256 q^{51} + 1498332 q^{53} + 3185416 q^{55} - 19008 q^{57} + 893232 q^{59} + 478692 q^{61} - 500094 q^{63} - 3773568 q^{65} + 112784 q^{67} + 1042956 q^{69} - 6384228 q^{71} - 1433188 q^{73} + 649242 q^{75} - 1420020 q^{77} - 5649336 q^{79} + 1062882 q^{81} - 8086680 q^{83} - 2926856 q^{85} + 3563676 q^{87} - 10113864 q^{89} - 3165204 q^{91} + 4465368 q^{93} - 13737456 q^{95} + 7390172 q^{97} + 3018060 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
74.5962
−73.5962
0 27.0000 0 −248.385 0 −343.000 0 729.000 0
1.2 0 27.0000 0 344.385 0 −343.000 0 729.000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 84.8.a.d 2
3.b odd 2 1 252.8.a.d 2
4.b odd 2 1 336.8.a.k 2
7.b odd 2 1 588.8.a.e 2
7.c even 3 2 588.8.i.i 4
7.d odd 6 2 588.8.i.l 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
84.8.a.d 2 1.a even 1 1 trivial
252.8.a.d 2 3.b odd 2 1
336.8.a.k 2 4.b odd 2 1
588.8.a.e 2 7.b odd 2 1
588.8.i.i 4 7.c even 3 2
588.8.i.l 4 7.d odd 6 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} - 96T_{5} - 85540 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(84))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T - 27)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 96T - 85540 \) Copy content Toggle raw display
$7$ \( (T + 343)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 4140 T - 21102016 \) Copy content Toggle raw display
$13$ \( T^{2} - 9228 T - 29309148 \) Copy content Toggle raw display
$17$ \( T^{2} - 30528 T + 178087196 \) Copy content Toggle raw display
$19$ \( T^{2} + 704 T - 534318992 \) Copy content Toggle raw display
$23$ \( T^{2} - 38628 T - 354405568 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots - 28331544364 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots + 3394130688 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots - 1973834396 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots + 35838847980 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots + 209546701264 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots + 151386418944 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots - 970659712188 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots + 168887355056 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots - 9309192081228 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots - 26574813392 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots + 9479579570240 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 28271426136140 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots - 16619921043840 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 12879756857936 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 25558993834668 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 13653505590580 \) Copy content Toggle raw display
show more
show less