Properties

Label 84.8.a.c.1.2
Level $84$
Weight $8$
Character 84.1
Self dual yes
Analytic conductor $26.240$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [84,8,Mod(1,84)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(84, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("84.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 84 = 2^{2} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 84.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.2403421407\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{3649}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 912 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 3 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-29.7035\) of defining polynomial
Character \(\chi\) \(=\) 84.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-27.0000 q^{3} +494.442 q^{5} +343.000 q^{7} +729.000 q^{9} +47.0920 q^{11} +3624.60 q^{13} -13349.9 q^{15} -14642.7 q^{17} -3395.95 q^{19} -9261.00 q^{21} -17982.5 q^{23} +166348. q^{25} -19683.0 q^{27} +139916. q^{29} +228888. q^{31} -1271.48 q^{33} +169594. q^{35} +438263. q^{37} -97864.2 q^{39} +312110. q^{41} -556478. q^{43} +360448. q^{45} -794234. q^{47} +117649. q^{49} +395353. q^{51} +2.04720e6 q^{53} +23284.3 q^{55} +91690.7 q^{57} +2.56746e6 q^{59} -2.46108e6 q^{61} +250047. q^{63} +1.79215e6 q^{65} +2.15480e6 q^{67} +485527. q^{69} -2.38723e6 q^{71} -1.97256e6 q^{73} -4.49139e6 q^{75} +16152.6 q^{77} +117694. q^{79} +531441. q^{81} -509356. q^{83} -7.23997e6 q^{85} -3.77773e6 q^{87} -4.16031e6 q^{89} +1.24324e6 q^{91} -6.17998e6 q^{93} -1.67910e6 q^{95} +8.40834e6 q^{97} +34330.1 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 54 q^{3} + 264 q^{5} + 686 q^{7} + 1458 q^{9} - 4980 q^{11} - 10148 q^{13} - 7128 q^{15} + 17832 q^{17} + 6256 q^{19} - 18522 q^{21} + 14052 q^{23} + 141326 q^{25} - 39366 q^{27} + 243588 q^{29} + 470824 q^{31}+ \cdots - 3630420 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −27.0000 −0.577350
\(4\) 0 0
\(5\) 494.442 1.76897 0.884484 0.466570i \(-0.154510\pi\)
0.884484 + 0.466570i \(0.154510\pi\)
\(6\) 0 0
\(7\) 343.000 0.377964
\(8\) 0 0
\(9\) 729.000 0.333333
\(10\) 0 0
\(11\) 47.0920 0.0106678 0.00533388 0.999986i \(-0.498302\pi\)
0.00533388 + 0.999986i \(0.498302\pi\)
\(12\) 0 0
\(13\) 3624.60 0.457571 0.228786 0.973477i \(-0.426525\pi\)
0.228786 + 0.973477i \(0.426525\pi\)
\(14\) 0 0
\(15\) −13349.9 −1.02131
\(16\) 0 0
\(17\) −14642.7 −0.722854 −0.361427 0.932401i \(-0.617710\pi\)
−0.361427 + 0.932401i \(0.617710\pi\)
\(18\) 0 0
\(19\) −3395.95 −0.113586 −0.0567929 0.998386i \(-0.518087\pi\)
−0.0567929 + 0.998386i \(0.518087\pi\)
\(20\) 0 0
\(21\) −9261.00 −0.218218
\(22\) 0 0
\(23\) −17982.5 −0.308178 −0.154089 0.988057i \(-0.549244\pi\)
−0.154089 + 0.988057i \(0.549244\pi\)
\(24\) 0 0
\(25\) 166348. 2.12925
\(26\) 0 0
\(27\) −19683.0 −0.192450
\(28\) 0 0
\(29\) 139916. 1.06531 0.532653 0.846334i \(-0.321195\pi\)
0.532653 + 0.846334i \(0.321195\pi\)
\(30\) 0 0
\(31\) 228888. 1.37993 0.689965 0.723843i \(-0.257626\pi\)
0.689965 + 0.723843i \(0.257626\pi\)
\(32\) 0 0
\(33\) −1271.48 −0.00615903
\(34\) 0 0
\(35\) 169594. 0.668607
\(36\) 0 0
\(37\) 438263. 1.42242 0.711211 0.702979i \(-0.248147\pi\)
0.711211 + 0.702979i \(0.248147\pi\)
\(38\) 0 0
\(39\) −97864.2 −0.264179
\(40\) 0 0
\(41\) 312110. 0.707236 0.353618 0.935390i \(-0.384951\pi\)
0.353618 + 0.935390i \(0.384951\pi\)
\(42\) 0 0
\(43\) −556478. −1.06735 −0.533676 0.845689i \(-0.679190\pi\)
−0.533676 + 0.845689i \(0.679190\pi\)
\(44\) 0 0
\(45\) 360448. 0.589656
\(46\) 0 0
\(47\) −794234. −1.11585 −0.557925 0.829891i \(-0.688402\pi\)
−0.557925 + 0.829891i \(0.688402\pi\)
\(48\) 0 0
\(49\) 117649. 0.142857
\(50\) 0 0
\(51\) 395353. 0.417340
\(52\) 0 0
\(53\) 2.04720e6 1.88884 0.944421 0.328739i \(-0.106624\pi\)
0.944421 + 0.328739i \(0.106624\pi\)
\(54\) 0 0
\(55\) 23284.3 0.0188709
\(56\) 0 0
\(57\) 91690.7 0.0655788
\(58\) 0 0
\(59\) 2.56746e6 1.62750 0.813750 0.581215i \(-0.197422\pi\)
0.813750 + 0.581215i \(0.197422\pi\)
\(60\) 0 0
\(61\) −2.46108e6 −1.38826 −0.694130 0.719850i \(-0.744211\pi\)
−0.694130 + 0.719850i \(0.744211\pi\)
\(62\) 0 0
\(63\) 250047. 0.125988
\(64\) 0 0
\(65\) 1.79215e6 0.809429
\(66\) 0 0
\(67\) 2.15480e6 0.875277 0.437638 0.899151i \(-0.355815\pi\)
0.437638 + 0.899151i \(0.355815\pi\)
\(68\) 0 0
\(69\) 485527. 0.177927
\(70\) 0 0
\(71\) −2.38723e6 −0.791570 −0.395785 0.918343i \(-0.629528\pi\)
−0.395785 + 0.918343i \(0.629528\pi\)
\(72\) 0 0
\(73\) −1.97256e6 −0.593473 −0.296736 0.954959i \(-0.595898\pi\)
−0.296736 + 0.954959i \(0.595898\pi\)
\(74\) 0 0
\(75\) −4.49139e6 −1.22932
\(76\) 0 0
\(77\) 16152.6 0.00403203
\(78\) 0 0
\(79\) 117694. 0.0268572 0.0134286 0.999910i \(-0.495725\pi\)
0.0134286 + 0.999910i \(0.495725\pi\)
\(80\) 0 0
\(81\) 531441. 0.111111
\(82\) 0 0
\(83\) −509356. −0.0977796 −0.0488898 0.998804i \(-0.515568\pi\)
−0.0488898 + 0.998804i \(0.515568\pi\)
\(84\) 0 0
\(85\) −7.23997e6 −1.27871
\(86\) 0 0
\(87\) −3.77773e6 −0.615055
\(88\) 0 0
\(89\) −4.16031e6 −0.625548 −0.312774 0.949828i \(-0.601258\pi\)
−0.312774 + 0.949828i \(0.601258\pi\)
\(90\) 0 0
\(91\) 1.24324e6 0.172946
\(92\) 0 0
\(93\) −6.17998e6 −0.796703
\(94\) 0 0
\(95\) −1.67910e6 −0.200930
\(96\) 0 0
\(97\) 8.40834e6 0.935425 0.467713 0.883881i \(-0.345078\pi\)
0.467713 + 0.883881i \(0.345078\pi\)
\(98\) 0 0
\(99\) 34330.1 0.00355592
\(100\) 0 0
\(101\) 8.43612e6 0.814738 0.407369 0.913264i \(-0.366446\pi\)
0.407369 + 0.913264i \(0.366446\pi\)
\(102\) 0 0
\(103\) −220795. −0.0199094 −0.00995471 0.999950i \(-0.503169\pi\)
−0.00995471 + 0.999950i \(0.503169\pi\)
\(104\) 0 0
\(105\) −4.57902e6 −0.386021
\(106\) 0 0
\(107\) −1.33020e7 −1.04972 −0.524861 0.851188i \(-0.675883\pi\)
−0.524861 + 0.851188i \(0.675883\pi\)
\(108\) 0 0
\(109\) −2.11624e7 −1.56521 −0.782605 0.622518i \(-0.786110\pi\)
−0.782605 + 0.622518i \(0.786110\pi\)
\(110\) 0 0
\(111\) −1.18331e7 −0.821235
\(112\) 0 0
\(113\) 2.23896e7 1.45972 0.729862 0.683594i \(-0.239584\pi\)
0.729862 + 0.683594i \(0.239584\pi\)
\(114\) 0 0
\(115\) −8.89129e6 −0.545158
\(116\) 0 0
\(117\) 2.64233e6 0.152524
\(118\) 0 0
\(119\) −5.02245e6 −0.273213
\(120\) 0 0
\(121\) −1.94850e7 −0.999886
\(122\) 0 0
\(123\) −8.42698e6 −0.408323
\(124\) 0 0
\(125\) 4.36209e7 1.99761
\(126\) 0 0
\(127\) −3.45607e7 −1.49716 −0.748582 0.663042i \(-0.769265\pi\)
−0.748582 + 0.663042i \(0.769265\pi\)
\(128\) 0 0
\(129\) 1.50249e7 0.616237
\(130\) 0 0
\(131\) 4.06358e7 1.57928 0.789641 0.613569i \(-0.210267\pi\)
0.789641 + 0.613569i \(0.210267\pi\)
\(132\) 0 0
\(133\) −1.16481e6 −0.0429314
\(134\) 0 0
\(135\) −9.73210e6 −0.340438
\(136\) 0 0
\(137\) 3.35277e7 1.11399 0.556995 0.830516i \(-0.311954\pi\)
0.556995 + 0.830516i \(0.311954\pi\)
\(138\) 0 0
\(139\) 3.42048e7 1.08028 0.540139 0.841576i \(-0.318372\pi\)
0.540139 + 0.841576i \(0.318372\pi\)
\(140\) 0 0
\(141\) 2.14443e7 0.644236
\(142\) 0 0
\(143\) 170690. 0.00488126
\(144\) 0 0
\(145\) 6.91804e7 1.88449
\(146\) 0 0
\(147\) −3.17652e6 −0.0824786
\(148\) 0 0
\(149\) 2.21749e7 0.549174 0.274587 0.961562i \(-0.411459\pi\)
0.274587 + 0.961562i \(0.411459\pi\)
\(150\) 0 0
\(151\) −6.18743e7 −1.46248 −0.731241 0.682119i \(-0.761059\pi\)
−0.731241 + 0.682119i \(0.761059\pi\)
\(152\) 0 0
\(153\) −1.06745e7 −0.240951
\(154\) 0 0
\(155\) 1.13172e8 2.44105
\(156\) 0 0
\(157\) −2.00578e7 −0.413652 −0.206826 0.978378i \(-0.566313\pi\)
−0.206826 + 0.978378i \(0.566313\pi\)
\(158\) 0 0
\(159\) −5.52745e7 −1.09052
\(160\) 0 0
\(161\) −6.16799e6 −0.116480
\(162\) 0 0
\(163\) 2.15447e7 0.389658 0.194829 0.980837i \(-0.437585\pi\)
0.194829 + 0.980837i \(0.437585\pi\)
\(164\) 0 0
\(165\) −628675. −0.0108951
\(166\) 0 0
\(167\) −3.48173e7 −0.578479 −0.289239 0.957257i \(-0.593402\pi\)
−0.289239 + 0.957257i \(0.593402\pi\)
\(168\) 0 0
\(169\) −4.96108e7 −0.790629
\(170\) 0 0
\(171\) −2.47565e6 −0.0378619
\(172\) 0 0
\(173\) −8.84532e7 −1.29883 −0.649415 0.760434i \(-0.724986\pi\)
−0.649415 + 0.760434i \(0.724986\pi\)
\(174\) 0 0
\(175\) 5.70572e7 0.804781
\(176\) 0 0
\(177\) −6.93213e7 −0.939638
\(178\) 0 0
\(179\) −1.10608e8 −1.44146 −0.720729 0.693216i \(-0.756193\pi\)
−0.720729 + 0.693216i \(0.756193\pi\)
\(180\) 0 0
\(181\) 1.31624e8 1.64991 0.824955 0.565198i \(-0.191200\pi\)
0.824955 + 0.565198i \(0.191200\pi\)
\(182\) 0 0
\(183\) 6.64491e7 0.801512
\(184\) 0 0
\(185\) 2.16695e8 2.51622
\(186\) 0 0
\(187\) −689555. −0.00771122
\(188\) 0 0
\(189\) −6.75127e6 −0.0727393
\(190\) 0 0
\(191\) 4.48491e7 0.465733 0.232866 0.972509i \(-0.425190\pi\)
0.232866 + 0.972509i \(0.425190\pi\)
\(192\) 0 0
\(193\) 1.21202e7 0.121356 0.0606778 0.998157i \(-0.480674\pi\)
0.0606778 + 0.998157i \(0.480674\pi\)
\(194\) 0 0
\(195\) −4.83882e7 −0.467324
\(196\) 0 0
\(197\) −5.60365e7 −0.522202 −0.261101 0.965311i \(-0.584086\pi\)
−0.261101 + 0.965311i \(0.584086\pi\)
\(198\) 0 0
\(199\) −1.07524e8 −0.967211 −0.483606 0.875286i \(-0.660673\pi\)
−0.483606 + 0.875286i \(0.660673\pi\)
\(200\) 0 0
\(201\) −5.81796e7 −0.505341
\(202\) 0 0
\(203\) 4.79912e7 0.402648
\(204\) 0 0
\(205\) 1.54320e8 1.25108
\(206\) 0 0
\(207\) −1.31092e7 −0.102726
\(208\) 0 0
\(209\) −159922. −0.00121170
\(210\) 0 0
\(211\) −2.45877e8 −1.80190 −0.900948 0.433928i \(-0.857127\pi\)
−0.900948 + 0.433928i \(0.857127\pi\)
\(212\) 0 0
\(213\) 6.44551e7 0.457013
\(214\) 0 0
\(215\) −2.75146e8 −1.88811
\(216\) 0 0
\(217\) 7.85086e7 0.521565
\(218\) 0 0
\(219\) 5.32592e7 0.342642
\(220\) 0 0
\(221\) −5.30740e7 −0.330757
\(222\) 0 0
\(223\) −2.69676e8 −1.62845 −0.814226 0.580547i \(-0.802839\pi\)
−0.814226 + 0.580547i \(0.802839\pi\)
\(224\) 0 0
\(225\) 1.21267e8 0.709750
\(226\) 0 0
\(227\) −6.95068e7 −0.394400 −0.197200 0.980363i \(-0.563185\pi\)
−0.197200 + 0.980363i \(0.563185\pi\)
\(228\) 0 0
\(229\) −2.38154e8 −1.31049 −0.655245 0.755416i \(-0.727435\pi\)
−0.655245 + 0.755416i \(0.727435\pi\)
\(230\) 0 0
\(231\) −436119. −0.00232790
\(232\) 0 0
\(233\) −2.85310e8 −1.47765 −0.738825 0.673898i \(-0.764619\pi\)
−0.738825 + 0.673898i \(0.764619\pi\)
\(234\) 0 0
\(235\) −3.92702e8 −1.97390
\(236\) 0 0
\(237\) −3.17774e6 −0.0155060
\(238\) 0 0
\(239\) 2.74585e8 1.30102 0.650511 0.759497i \(-0.274555\pi\)
0.650511 + 0.759497i \(0.274555\pi\)
\(240\) 0 0
\(241\) 2.63747e8 1.21375 0.606874 0.794798i \(-0.292423\pi\)
0.606874 + 0.794798i \(0.292423\pi\)
\(242\) 0 0
\(243\) −1.43489e7 −0.0641500
\(244\) 0 0
\(245\) 5.81706e7 0.252710
\(246\) 0 0
\(247\) −1.23090e7 −0.0519735
\(248\) 0 0
\(249\) 1.37526e7 0.0564531
\(250\) 0 0
\(251\) −2.33340e8 −0.931391 −0.465695 0.884945i \(-0.654196\pi\)
−0.465695 + 0.884945i \(0.654196\pi\)
\(252\) 0 0
\(253\) −846832. −0.00328757
\(254\) 0 0
\(255\) 1.95479e8 0.738261
\(256\) 0 0
\(257\) −1.30277e8 −0.478742 −0.239371 0.970928i \(-0.576941\pi\)
−0.239371 + 0.970928i \(0.576941\pi\)
\(258\) 0 0
\(259\) 1.50324e8 0.537625
\(260\) 0 0
\(261\) 1.01999e8 0.355102
\(262\) 0 0
\(263\) −2.21134e8 −0.749566 −0.374783 0.927113i \(-0.622283\pi\)
−0.374783 + 0.927113i \(0.622283\pi\)
\(264\) 0 0
\(265\) 1.01222e9 3.34130
\(266\) 0 0
\(267\) 1.12328e8 0.361160
\(268\) 0 0
\(269\) −1.56343e8 −0.489717 −0.244859 0.969559i \(-0.578742\pi\)
−0.244859 + 0.969559i \(0.578742\pi\)
\(270\) 0 0
\(271\) 4.78673e8 1.46099 0.730494 0.682919i \(-0.239290\pi\)
0.730494 + 0.682919i \(0.239290\pi\)
\(272\) 0 0
\(273\) −3.35674e7 −0.0998502
\(274\) 0 0
\(275\) 7.83365e6 0.0227143
\(276\) 0 0
\(277\) −4.92210e8 −1.39146 −0.695730 0.718303i \(-0.744919\pi\)
−0.695730 + 0.718303i \(0.744919\pi\)
\(278\) 0 0
\(279\) 1.66859e8 0.459977
\(280\) 0 0
\(281\) −1.40370e8 −0.377401 −0.188700 0.982035i \(-0.560428\pi\)
−0.188700 + 0.982035i \(0.560428\pi\)
\(282\) 0 0
\(283\) 1.67907e8 0.440369 0.220184 0.975458i \(-0.429334\pi\)
0.220184 + 0.975458i \(0.429334\pi\)
\(284\) 0 0
\(285\) 4.53357e7 0.116007
\(286\) 0 0
\(287\) 1.07054e8 0.267310
\(288\) 0 0
\(289\) −1.95930e8 −0.477483
\(290\) 0 0
\(291\) −2.27025e8 −0.540068
\(292\) 0 0
\(293\) 4.28971e8 0.996302 0.498151 0.867090i \(-0.334013\pi\)
0.498151 + 0.867090i \(0.334013\pi\)
\(294\) 0 0
\(295\) 1.26946e9 2.87900
\(296\) 0 0
\(297\) −926913. −0.00205301
\(298\) 0 0
\(299\) −6.51793e7 −0.141013
\(300\) 0 0
\(301\) −1.90872e8 −0.403422
\(302\) 0 0
\(303\) −2.27775e8 −0.470389
\(304\) 0 0
\(305\) −1.21686e9 −2.45579
\(306\) 0 0
\(307\) 3.34691e8 0.660176 0.330088 0.943950i \(-0.392921\pi\)
0.330088 + 0.943950i \(0.392921\pi\)
\(308\) 0 0
\(309\) 5.96146e6 0.0114947
\(310\) 0 0
\(311\) 7.62982e8 1.43831 0.719155 0.694849i \(-0.244529\pi\)
0.719155 + 0.694849i \(0.244529\pi\)
\(312\) 0 0
\(313\) −4.65273e6 −0.00857636 −0.00428818 0.999991i \(-0.501365\pi\)
−0.00428818 + 0.999991i \(0.501365\pi\)
\(314\) 0 0
\(315\) 1.23634e8 0.222869
\(316\) 0 0
\(317\) −4.99816e8 −0.881258 −0.440629 0.897689i \(-0.645245\pi\)
−0.440629 + 0.897689i \(0.645245\pi\)
\(318\) 0 0
\(319\) 6.58893e6 0.0113644
\(320\) 0 0
\(321\) 3.59155e8 0.606057
\(322\) 0 0
\(323\) 4.97259e7 0.0821058
\(324\) 0 0
\(325\) 6.02944e8 0.974283
\(326\) 0 0
\(327\) 5.71386e8 0.903675
\(328\) 0 0
\(329\) −2.72422e8 −0.421752
\(330\) 0 0
\(331\) −3.89513e8 −0.590369 −0.295185 0.955440i \(-0.595381\pi\)
−0.295185 + 0.955440i \(0.595381\pi\)
\(332\) 0 0
\(333\) 3.19493e8 0.474141
\(334\) 0 0
\(335\) 1.06542e9 1.54834
\(336\) 0 0
\(337\) 1.70288e8 0.242371 0.121185 0.992630i \(-0.461330\pi\)
0.121185 + 0.992630i \(0.461330\pi\)
\(338\) 0 0
\(339\) −6.04518e8 −0.842772
\(340\) 0 0
\(341\) 1.07788e7 0.0147208
\(342\) 0 0
\(343\) 4.03536e7 0.0539949
\(344\) 0 0
\(345\) 2.40065e8 0.314747
\(346\) 0 0
\(347\) −6.84193e8 −0.879074 −0.439537 0.898224i \(-0.644858\pi\)
−0.439537 + 0.898224i \(0.644858\pi\)
\(348\) 0 0
\(349\) −7.67796e8 −0.966845 −0.483423 0.875387i \(-0.660607\pi\)
−0.483423 + 0.875387i \(0.660607\pi\)
\(350\) 0 0
\(351\) −7.13430e7 −0.0880596
\(352\) 0 0
\(353\) −1.27279e8 −0.154009 −0.0770046 0.997031i \(-0.524536\pi\)
−0.0770046 + 0.997031i \(0.524536\pi\)
\(354\) 0 0
\(355\) −1.18034e9 −1.40026
\(356\) 0 0
\(357\) 1.35606e8 0.157740
\(358\) 0 0
\(359\) 1.33959e8 0.152806 0.0764032 0.997077i \(-0.475656\pi\)
0.0764032 + 0.997077i \(0.475656\pi\)
\(360\) 0 0
\(361\) −8.82339e8 −0.987098
\(362\) 0 0
\(363\) 5.26094e8 0.577285
\(364\) 0 0
\(365\) −9.75317e8 −1.04983
\(366\) 0 0
\(367\) −1.18654e7 −0.0125300 −0.00626499 0.999980i \(-0.501994\pi\)
−0.00626499 + 0.999980i \(0.501994\pi\)
\(368\) 0 0
\(369\) 2.27528e8 0.235745
\(370\) 0 0
\(371\) 7.02191e8 0.713915
\(372\) 0 0
\(373\) −1.58982e9 −1.58623 −0.793117 0.609069i \(-0.791543\pi\)
−0.793117 + 0.609069i \(0.791543\pi\)
\(374\) 0 0
\(375\) −1.17777e9 −1.15332
\(376\) 0 0
\(377\) 5.07140e8 0.487453
\(378\) 0 0
\(379\) 4.80180e8 0.453072 0.226536 0.974003i \(-0.427260\pi\)
0.226536 + 0.974003i \(0.427260\pi\)
\(380\) 0 0
\(381\) 9.33139e8 0.864388
\(382\) 0 0
\(383\) −1.34744e9 −1.22550 −0.612752 0.790275i \(-0.709938\pi\)
−0.612752 + 0.790275i \(0.709938\pi\)
\(384\) 0 0
\(385\) 7.98650e6 0.00713254
\(386\) 0 0
\(387\) −4.05672e8 −0.355784
\(388\) 0 0
\(389\) 1.31503e8 0.113270 0.0566348 0.998395i \(-0.481963\pi\)
0.0566348 + 0.998395i \(0.481963\pi\)
\(390\) 0 0
\(391\) 2.63312e8 0.222768
\(392\) 0 0
\(393\) −1.09717e9 −0.911799
\(394\) 0 0
\(395\) 5.81929e7 0.0475095
\(396\) 0 0
\(397\) −2.42834e9 −1.94779 −0.973894 0.227001i \(-0.927108\pi\)
−0.973894 + 0.227001i \(0.927108\pi\)
\(398\) 0 0
\(399\) 3.14499e7 0.0247864
\(400\) 0 0
\(401\) 8.32155e8 0.644464 0.322232 0.946661i \(-0.395567\pi\)
0.322232 + 0.946661i \(0.395567\pi\)
\(402\) 0 0
\(403\) 8.29628e8 0.631416
\(404\) 0 0
\(405\) 2.62767e8 0.196552
\(406\) 0 0
\(407\) 2.06387e7 0.0151740
\(408\) 0 0
\(409\) 2.50268e9 1.80873 0.904364 0.426762i \(-0.140346\pi\)
0.904364 + 0.426762i \(0.140346\pi\)
\(410\) 0 0
\(411\) −9.05247e8 −0.643162
\(412\) 0 0
\(413\) 8.80638e8 0.615137
\(414\) 0 0
\(415\) −2.51847e8 −0.172969
\(416\) 0 0
\(417\) −9.23529e8 −0.623698
\(418\) 0 0
\(419\) 8.38811e8 0.557076 0.278538 0.960425i \(-0.410150\pi\)
0.278538 + 0.960425i \(0.410150\pi\)
\(420\) 0 0
\(421\) 2.01998e9 1.31935 0.659673 0.751553i \(-0.270695\pi\)
0.659673 + 0.751553i \(0.270695\pi\)
\(422\) 0 0
\(423\) −5.78996e8 −0.371950
\(424\) 0 0
\(425\) −2.43578e9 −1.53914
\(426\) 0 0
\(427\) −8.44150e8 −0.524713
\(428\) 0 0
\(429\) −4.60863e6 −0.00281819
\(430\) 0 0
\(431\) 2.61116e9 1.57095 0.785476 0.618893i \(-0.212418\pi\)
0.785476 + 0.618893i \(0.212418\pi\)
\(432\) 0 0
\(433\) −1.05965e9 −0.627270 −0.313635 0.949544i \(-0.601547\pi\)
−0.313635 + 0.949544i \(0.601547\pi\)
\(434\) 0 0
\(435\) −1.86787e9 −1.08801
\(436\) 0 0
\(437\) 6.10676e7 0.0350047
\(438\) 0 0
\(439\) −7.50659e8 −0.423465 −0.211732 0.977328i \(-0.567911\pi\)
−0.211732 + 0.977328i \(0.567911\pi\)
\(440\) 0 0
\(441\) 8.57661e7 0.0476190
\(442\) 0 0
\(443\) 1.40587e9 0.768300 0.384150 0.923271i \(-0.374495\pi\)
0.384150 + 0.923271i \(0.374495\pi\)
\(444\) 0 0
\(445\) −2.05703e9 −1.10657
\(446\) 0 0
\(447\) −5.98722e8 −0.317066
\(448\) 0 0
\(449\) −1.95998e9 −1.02186 −0.510928 0.859623i \(-0.670698\pi\)
−0.510928 + 0.859623i \(0.670698\pi\)
\(450\) 0 0
\(451\) 1.46979e7 0.00754462
\(452\) 0 0
\(453\) 1.67060e9 0.844365
\(454\) 0 0
\(455\) 6.14709e8 0.305935
\(456\) 0 0
\(457\) 1.85623e9 0.909755 0.454878 0.890554i \(-0.349683\pi\)
0.454878 + 0.890554i \(0.349683\pi\)
\(458\) 0 0
\(459\) 2.88212e8 0.139113
\(460\) 0 0
\(461\) −1.66716e9 −0.792546 −0.396273 0.918133i \(-0.629697\pi\)
−0.396273 + 0.918133i \(0.629697\pi\)
\(462\) 0 0
\(463\) −1.83551e7 −0.00859457 −0.00429728 0.999991i \(-0.501368\pi\)
−0.00429728 + 0.999991i \(0.501368\pi\)
\(464\) 0 0
\(465\) −3.05564e9 −1.40934
\(466\) 0 0
\(467\) 3.89247e9 1.76855 0.884273 0.466970i \(-0.154655\pi\)
0.884273 + 0.466970i \(0.154655\pi\)
\(468\) 0 0
\(469\) 7.39097e8 0.330824
\(470\) 0 0
\(471\) 5.41561e8 0.238822
\(472\) 0 0
\(473\) −2.62057e7 −0.0113863
\(474\) 0 0
\(475\) −5.64908e8 −0.241852
\(476\) 0 0
\(477\) 1.49241e9 0.629614
\(478\) 0 0
\(479\) 4.13175e9 1.71775 0.858875 0.512185i \(-0.171164\pi\)
0.858875 + 0.512185i \(0.171164\pi\)
\(480\) 0 0
\(481\) 1.58853e9 0.650859
\(482\) 0 0
\(483\) 1.66536e8 0.0672500
\(484\) 0 0
\(485\) 4.15743e9 1.65474
\(486\) 0 0
\(487\) 1.58468e9 0.621714 0.310857 0.950457i \(-0.399384\pi\)
0.310857 + 0.950457i \(0.399384\pi\)
\(488\) 0 0
\(489\) −5.81707e8 −0.224969
\(490\) 0 0
\(491\) 2.49037e9 0.949464 0.474732 0.880130i \(-0.342545\pi\)
0.474732 + 0.880130i \(0.342545\pi\)
\(492\) 0 0
\(493\) −2.04875e9 −0.770061
\(494\) 0 0
\(495\) 1.69742e7 0.00629031
\(496\) 0 0
\(497\) −8.18819e8 −0.299186
\(498\) 0 0
\(499\) −3.17754e9 −1.14483 −0.572413 0.819966i \(-0.693992\pi\)
−0.572413 + 0.819966i \(0.693992\pi\)
\(500\) 0 0
\(501\) 9.40067e8 0.333985
\(502\) 0 0
\(503\) 4.91322e9 1.72139 0.860693 0.509124i \(-0.170031\pi\)
0.860693 + 0.509124i \(0.170031\pi\)
\(504\) 0 0
\(505\) 4.17117e9 1.44125
\(506\) 0 0
\(507\) 1.33949e9 0.456470
\(508\) 0 0
\(509\) 9.09545e8 0.305711 0.152856 0.988249i \(-0.451153\pi\)
0.152856 + 0.988249i \(0.451153\pi\)
\(510\) 0 0
\(511\) −6.76589e8 −0.224312
\(512\) 0 0
\(513\) 6.68425e7 0.0218596
\(514\) 0 0
\(515\) −1.09170e8 −0.0352191
\(516\) 0 0
\(517\) −3.74021e7 −0.0119036
\(518\) 0 0
\(519\) 2.38824e9 0.749880
\(520\) 0 0
\(521\) 1.16113e9 0.359707 0.179853 0.983693i \(-0.442438\pi\)
0.179853 + 0.983693i \(0.442438\pi\)
\(522\) 0 0
\(523\) 1.80210e9 0.550837 0.275418 0.961324i \(-0.411184\pi\)
0.275418 + 0.961324i \(0.411184\pi\)
\(524\) 0 0
\(525\) −1.54055e9 −0.464640
\(526\) 0 0
\(527\) −3.35154e9 −0.997488
\(528\) 0 0
\(529\) −3.08146e9 −0.905026
\(530\) 0 0
\(531\) 1.87168e9 0.542500
\(532\) 0 0
\(533\) 1.13128e9 0.323611
\(534\) 0 0
\(535\) −6.57707e9 −1.85693
\(536\) 0 0
\(537\) 2.98643e9 0.832227
\(538\) 0 0
\(539\) 5.54033e6 0.00152397
\(540\) 0 0
\(541\) 5.32934e8 0.144705 0.0723525 0.997379i \(-0.476949\pi\)
0.0723525 + 0.997379i \(0.476949\pi\)
\(542\) 0 0
\(543\) −3.55385e9 −0.952576
\(544\) 0 0
\(545\) −1.04636e10 −2.76881
\(546\) 0 0
\(547\) −6.64324e9 −1.73550 −0.867750 0.497001i \(-0.834434\pi\)
−0.867750 + 0.497001i \(0.834434\pi\)
\(548\) 0 0
\(549\) −1.79413e9 −0.462753
\(550\) 0 0
\(551\) −4.75148e8 −0.121004
\(552\) 0 0
\(553\) 4.03691e7 0.0101511
\(554\) 0 0
\(555\) −5.85077e9 −1.45274
\(556\) 0 0
\(557\) 3.80213e9 0.932253 0.466127 0.884718i \(-0.345649\pi\)
0.466127 + 0.884718i \(0.345649\pi\)
\(558\) 0 0
\(559\) −2.01701e9 −0.488390
\(560\) 0 0
\(561\) 1.86180e7 0.00445208
\(562\) 0 0
\(563\) −5.42835e9 −1.28200 −0.641001 0.767540i \(-0.721481\pi\)
−0.641001 + 0.767540i \(0.721481\pi\)
\(564\) 0 0
\(565\) 1.10703e10 2.58221
\(566\) 0 0
\(567\) 1.82284e8 0.0419961
\(568\) 0 0
\(569\) 2.79698e9 0.636496 0.318248 0.948007i \(-0.396905\pi\)
0.318248 + 0.948007i \(0.396905\pi\)
\(570\) 0 0
\(571\) 7.26727e8 0.163360 0.0816799 0.996659i \(-0.473971\pi\)
0.0816799 + 0.996659i \(0.473971\pi\)
\(572\) 0 0
\(573\) −1.21093e9 −0.268891
\(574\) 0 0
\(575\) −2.99134e9 −0.656189
\(576\) 0 0
\(577\) 1.90887e9 0.413677 0.206838 0.978375i \(-0.433683\pi\)
0.206838 + 0.978375i \(0.433683\pi\)
\(578\) 0 0
\(579\) −3.27246e8 −0.0700647
\(580\) 0 0
\(581\) −1.74709e8 −0.0369572
\(582\) 0 0
\(583\) 9.64070e7 0.0201497
\(584\) 0 0
\(585\) 1.30648e9 0.269810
\(586\) 0 0
\(587\) −3.18149e9 −0.649228 −0.324614 0.945847i \(-0.605234\pi\)
−0.324614 + 0.945847i \(0.605234\pi\)
\(588\) 0 0
\(589\) −7.77293e8 −0.156740
\(590\) 0 0
\(591\) 1.51298e9 0.301494
\(592\) 0 0
\(593\) −5.59654e9 −1.10212 −0.551059 0.834466i \(-0.685776\pi\)
−0.551059 + 0.834466i \(0.685776\pi\)
\(594\) 0 0
\(595\) −2.48331e9 −0.483305
\(596\) 0 0
\(597\) 2.90316e9 0.558420
\(598\) 0 0
\(599\) 7.17615e9 1.36426 0.682130 0.731231i \(-0.261054\pi\)
0.682130 + 0.731231i \(0.261054\pi\)
\(600\) 0 0
\(601\) 7.05414e9 1.32551 0.662755 0.748836i \(-0.269387\pi\)
0.662755 + 0.748836i \(0.269387\pi\)
\(602\) 0 0
\(603\) 1.57085e9 0.291759
\(604\) 0 0
\(605\) −9.63417e9 −1.76877
\(606\) 0 0
\(607\) 8.51078e9 1.54457 0.772287 0.635274i \(-0.219113\pi\)
0.772287 + 0.635274i \(0.219113\pi\)
\(608\) 0 0
\(609\) −1.29576e9 −0.232469
\(610\) 0 0
\(611\) −2.87878e9 −0.510580
\(612\) 0 0
\(613\) −4.00820e8 −0.0702811 −0.0351405 0.999382i \(-0.511188\pi\)
−0.0351405 + 0.999382i \(0.511188\pi\)
\(614\) 0 0
\(615\) −4.16665e9 −0.722311
\(616\) 0 0
\(617\) −1.69988e9 −0.291353 −0.145677 0.989332i \(-0.546536\pi\)
−0.145677 + 0.989332i \(0.546536\pi\)
\(618\) 0 0
\(619\) −4.88473e9 −0.827796 −0.413898 0.910323i \(-0.635833\pi\)
−0.413898 + 0.910323i \(0.635833\pi\)
\(620\) 0 0
\(621\) 3.53949e8 0.0593090
\(622\) 0 0
\(623\) −1.42699e9 −0.236435
\(624\) 0 0
\(625\) 8.57211e9 1.40445
\(626\) 0 0
\(627\) 4.31790e6 0.000699578 0
\(628\) 0 0
\(629\) −6.41735e9 −1.02820
\(630\) 0 0
\(631\) −1.03079e10 −1.63331 −0.816653 0.577129i \(-0.804173\pi\)
−0.816653 + 0.577129i \(0.804173\pi\)
\(632\) 0 0
\(633\) 6.63868e9 1.04032
\(634\) 0 0
\(635\) −1.70883e10 −2.64844
\(636\) 0 0
\(637\) 4.26431e8 0.0653673
\(638\) 0 0
\(639\) −1.74029e9 −0.263857
\(640\) 0 0
\(641\) 6.20053e9 0.929878 0.464939 0.885343i \(-0.346076\pi\)
0.464939 + 0.885343i \(0.346076\pi\)
\(642\) 0 0
\(643\) −1.16268e10 −1.72474 −0.862368 0.506282i \(-0.831020\pi\)
−0.862368 + 0.506282i \(0.831020\pi\)
\(644\) 0 0
\(645\) 7.42893e9 1.09010
\(646\) 0 0
\(647\) 9.25127e9 1.34288 0.671439 0.741060i \(-0.265677\pi\)
0.671439 + 0.741060i \(0.265677\pi\)
\(648\) 0 0
\(649\) 1.20907e8 0.0173618
\(650\) 0 0
\(651\) −2.11973e9 −0.301126
\(652\) 0 0
\(653\) 1.81381e9 0.254915 0.127457 0.991844i \(-0.459318\pi\)
0.127457 + 0.991844i \(0.459318\pi\)
\(654\) 0 0
\(655\) 2.00921e10 2.79370
\(656\) 0 0
\(657\) −1.43800e9 −0.197824
\(658\) 0 0
\(659\) −8.29325e9 −1.12882 −0.564412 0.825493i \(-0.690897\pi\)
−0.564412 + 0.825493i \(0.690897\pi\)
\(660\) 0 0
\(661\) −1.00591e10 −1.35473 −0.677367 0.735645i \(-0.736879\pi\)
−0.677367 + 0.735645i \(0.736879\pi\)
\(662\) 0 0
\(663\) 1.43300e9 0.190963
\(664\) 0 0
\(665\) −5.75931e8 −0.0759442
\(666\) 0 0
\(667\) −2.51604e9 −0.328304
\(668\) 0 0
\(669\) 7.28125e9 0.940188
\(670\) 0 0
\(671\) −1.15897e8 −0.0148096
\(672\) 0 0
\(673\) −1.24551e10 −1.57505 −0.787524 0.616284i \(-0.788638\pi\)
−0.787524 + 0.616284i \(0.788638\pi\)
\(674\) 0 0
\(675\) −3.27422e9 −0.409774
\(676\) 0 0
\(677\) −1.07400e10 −1.33029 −0.665144 0.746715i \(-0.731630\pi\)
−0.665144 + 0.746715i \(0.731630\pi\)
\(678\) 0 0
\(679\) 2.88406e9 0.353558
\(680\) 0 0
\(681\) 1.87668e9 0.227707
\(682\) 0 0
\(683\) 7.36716e9 0.884764 0.442382 0.896827i \(-0.354133\pi\)
0.442382 + 0.896827i \(0.354133\pi\)
\(684\) 0 0
\(685\) 1.65775e10 1.97061
\(686\) 0 0
\(687\) 6.43016e9 0.756612
\(688\) 0 0
\(689\) 7.42030e9 0.864279
\(690\) 0 0
\(691\) 7.60126e9 0.876420 0.438210 0.898873i \(-0.355613\pi\)
0.438210 + 0.898873i \(0.355613\pi\)
\(692\) 0 0
\(693\) 1.17752e7 0.00134401
\(694\) 0 0
\(695\) 1.69123e10 1.91098
\(696\) 0 0
\(697\) −4.57014e9 −0.511228
\(698\) 0 0
\(699\) 7.70337e9 0.853121
\(700\) 0 0
\(701\) −7.13734e9 −0.782571 −0.391285 0.920269i \(-0.627969\pi\)
−0.391285 + 0.920269i \(0.627969\pi\)
\(702\) 0 0
\(703\) −1.48832e9 −0.161567
\(704\) 0 0
\(705\) 1.06030e10 1.13963
\(706\) 0 0
\(707\) 2.89359e9 0.307942
\(708\) 0 0
\(709\) 2.65758e9 0.280042 0.140021 0.990149i \(-0.455283\pi\)
0.140021 + 0.990149i \(0.455283\pi\)
\(710\) 0 0
\(711\) 8.57990e7 0.00895239
\(712\) 0 0
\(713\) −4.11597e9 −0.425265
\(714\) 0 0
\(715\) 8.43962e7 0.00863479
\(716\) 0 0
\(717\) −7.41381e9 −0.751146
\(718\) 0 0
\(719\) −7.05904e9 −0.708263 −0.354131 0.935196i \(-0.615223\pi\)
−0.354131 + 0.935196i \(0.615223\pi\)
\(720\) 0 0
\(721\) −7.57327e7 −0.00752506
\(722\) 0 0
\(723\) −7.12118e9 −0.700758
\(724\) 0 0
\(725\) 2.32747e10 2.26830
\(726\) 0 0
\(727\) 6.39475e9 0.617238 0.308619 0.951186i \(-0.400133\pi\)
0.308619 + 0.951186i \(0.400133\pi\)
\(728\) 0 0
\(729\) 3.87420e8 0.0370370
\(730\) 0 0
\(731\) 8.14834e9 0.771540
\(732\) 0 0
\(733\) −1.09324e10 −1.02530 −0.512651 0.858597i \(-0.671337\pi\)
−0.512651 + 0.858597i \(0.671337\pi\)
\(734\) 0 0
\(735\) −1.57061e9 −0.145902
\(736\) 0 0
\(737\) 1.01474e8 0.00933724
\(738\) 0 0
\(739\) 5.28969e9 0.482142 0.241071 0.970507i \(-0.422501\pi\)
0.241071 + 0.970507i \(0.422501\pi\)
\(740\) 0 0
\(741\) 3.32342e8 0.0300069
\(742\) 0 0
\(743\) −6.16099e9 −0.551048 −0.275524 0.961294i \(-0.588851\pi\)
−0.275524 + 0.961294i \(0.588851\pi\)
\(744\) 0 0
\(745\) 1.09642e10 0.971471
\(746\) 0 0
\(747\) −3.71321e8 −0.0325932
\(748\) 0 0
\(749\) −4.56259e9 −0.396758
\(750\) 0 0
\(751\) 4.20146e9 0.361960 0.180980 0.983487i \(-0.442073\pi\)
0.180980 + 0.983487i \(0.442073\pi\)
\(752\) 0 0
\(753\) 6.30019e9 0.537739
\(754\) 0 0
\(755\) −3.05932e10 −2.58709
\(756\) 0 0
\(757\) 1.33579e10 1.11918 0.559592 0.828768i \(-0.310958\pi\)
0.559592 + 0.828768i \(0.310958\pi\)
\(758\) 0 0
\(759\) 2.28645e7 0.00189808
\(760\) 0 0
\(761\) 5.02956e9 0.413699 0.206849 0.978373i \(-0.433679\pi\)
0.206849 + 0.978373i \(0.433679\pi\)
\(762\) 0 0
\(763\) −7.25871e9 −0.591594
\(764\) 0 0
\(765\) −5.27794e9 −0.426235
\(766\) 0 0
\(767\) 9.30601e9 0.744697
\(768\) 0 0
\(769\) −5.26581e9 −0.417564 −0.208782 0.977962i \(-0.566950\pi\)
−0.208782 + 0.977962i \(0.566950\pi\)
\(770\) 0 0
\(771\) 3.51748e9 0.276402
\(772\) 0 0
\(773\) −1.89624e10 −1.47661 −0.738303 0.674469i \(-0.764373\pi\)
−0.738303 + 0.674469i \(0.764373\pi\)
\(774\) 0 0
\(775\) 3.80750e10 2.93822
\(776\) 0 0
\(777\) −4.05875e9 −0.310398
\(778\) 0 0
\(779\) −1.05991e9 −0.0803319
\(780\) 0 0
\(781\) −1.12419e8 −0.00844428
\(782\) 0 0
\(783\) −2.75397e9 −0.205018
\(784\) 0 0
\(785\) −9.91743e9 −0.731737
\(786\) 0 0
\(787\) −1.07037e10 −0.782747 −0.391373 0.920232i \(-0.628000\pi\)
−0.391373 + 0.920232i \(0.628000\pi\)
\(788\) 0 0
\(789\) 5.97061e9 0.432762
\(790\) 0 0
\(791\) 7.67962e9 0.551724
\(792\) 0 0
\(793\) −8.92043e9 −0.635228
\(794\) 0 0
\(795\) −2.73300e10 −1.92910
\(796\) 0 0
\(797\) 1.72938e10 1.21000 0.605002 0.796224i \(-0.293172\pi\)
0.605002 + 0.796224i \(0.293172\pi\)
\(798\) 0 0
\(799\) 1.16297e10 0.806596
\(800\) 0 0
\(801\) −3.03287e9 −0.208516
\(802\) 0 0
\(803\) −9.28920e7 −0.00633102
\(804\) 0 0
\(805\) −3.04971e9 −0.206050
\(806\) 0 0
\(807\) 4.22126e9 0.282738
\(808\) 0 0
\(809\) 4.94516e9 0.328368 0.164184 0.986430i \(-0.447501\pi\)
0.164184 + 0.986430i \(0.447501\pi\)
\(810\) 0 0
\(811\) −1.58525e10 −1.04358 −0.521789 0.853074i \(-0.674735\pi\)
−0.521789 + 0.853074i \(0.674735\pi\)
\(812\) 0 0
\(813\) −1.29242e10 −0.843502
\(814\) 0 0
\(815\) 1.06526e10 0.689293
\(816\) 0 0
\(817\) 1.88977e9 0.121236
\(818\) 0 0
\(819\) 9.06321e8 0.0576485
\(820\) 0 0
\(821\) 3.27707e9 0.206674 0.103337 0.994646i \(-0.467048\pi\)
0.103337 + 0.994646i \(0.467048\pi\)
\(822\) 0 0
\(823\) −1.90874e10 −1.19357 −0.596784 0.802402i \(-0.703555\pi\)
−0.596784 + 0.802402i \(0.703555\pi\)
\(824\) 0 0
\(825\) −2.11508e8 −0.0131141
\(826\) 0 0
\(827\) 1.54063e9 0.0947173 0.0473587 0.998878i \(-0.484920\pi\)
0.0473587 + 0.998878i \(0.484920\pi\)
\(828\) 0 0
\(829\) −1.94769e10 −1.18735 −0.593675 0.804705i \(-0.702323\pi\)
−0.593675 + 0.804705i \(0.702323\pi\)
\(830\) 0 0
\(831\) 1.32897e10 0.803360
\(832\) 0 0
\(833\) −1.72270e9 −0.103265
\(834\) 0 0
\(835\) −1.72151e10 −1.02331
\(836\) 0 0
\(837\) −4.50520e9 −0.265568
\(838\) 0 0
\(839\) 1.55492e10 0.908950 0.454475 0.890759i \(-0.349827\pi\)
0.454475 + 0.890759i \(0.349827\pi\)
\(840\) 0 0
\(841\) 2.32663e9 0.134878
\(842\) 0 0
\(843\) 3.79000e9 0.217893
\(844\) 0 0
\(845\) −2.45296e10 −1.39860
\(846\) 0 0
\(847\) −6.68334e9 −0.377921
\(848\) 0 0
\(849\) −4.53349e9 −0.254247
\(850\) 0 0
\(851\) −7.88105e9 −0.438360
\(852\) 0 0
\(853\) 1.01163e10 0.558083 0.279041 0.960279i \(-0.409983\pi\)
0.279041 + 0.960279i \(0.409983\pi\)
\(854\) 0 0
\(855\) −1.22406e9 −0.0669765
\(856\) 0 0
\(857\) −1.22085e10 −0.662566 −0.331283 0.943531i \(-0.607481\pi\)
−0.331283 + 0.943531i \(0.607481\pi\)
\(858\) 0 0
\(859\) 7.41595e9 0.399200 0.199600 0.979877i \(-0.436036\pi\)
0.199600 + 0.979877i \(0.436036\pi\)
\(860\) 0 0
\(861\) −2.89045e9 −0.154332
\(862\) 0 0
\(863\) −1.01350e10 −0.536767 −0.268384 0.963312i \(-0.586489\pi\)
−0.268384 + 0.963312i \(0.586489\pi\)
\(864\) 0 0
\(865\) −4.37349e10 −2.29759
\(866\) 0 0
\(867\) 5.29010e9 0.275675
\(868\) 0 0
\(869\) 5.54246e6 0.000286506 0
\(870\) 0 0
\(871\) 7.81030e9 0.400501
\(872\) 0 0
\(873\) 6.12968e9 0.311808
\(874\) 0 0
\(875\) 1.49620e10 0.755024
\(876\) 0 0
\(877\) −3.80796e10 −1.90631 −0.953155 0.302482i \(-0.902185\pi\)
−0.953155 + 0.302482i \(0.902185\pi\)
\(878\) 0 0
\(879\) −1.15822e10 −0.575215
\(880\) 0 0
\(881\) 6.81088e9 0.335573 0.167787 0.985823i \(-0.446338\pi\)
0.167787 + 0.985823i \(0.446338\pi\)
\(882\) 0 0
\(883\) 1.00815e10 0.492792 0.246396 0.969169i \(-0.420754\pi\)
0.246396 + 0.969169i \(0.420754\pi\)
\(884\) 0 0
\(885\) −3.42754e10 −1.66219
\(886\) 0 0
\(887\) 1.01793e10 0.489761 0.244881 0.969553i \(-0.421251\pi\)
0.244881 + 0.969553i \(0.421251\pi\)
\(888\) 0 0
\(889\) −1.18543e10 −0.565875
\(890\) 0 0
\(891\) 2.50266e7 0.00118531
\(892\) 0 0
\(893\) 2.69718e9 0.126745
\(894\) 0 0
\(895\) −5.46894e10 −2.54990
\(896\) 0 0
\(897\) 1.75984e9 0.0814142
\(898\) 0 0
\(899\) 3.20251e10 1.47005
\(900\) 0 0
\(901\) −2.99766e10 −1.36536
\(902\) 0 0
\(903\) 5.15354e9 0.232916
\(904\) 0 0
\(905\) 6.50804e10 2.91864
\(906\) 0 0
\(907\) 2.44845e10 1.08960 0.544799 0.838567i \(-0.316606\pi\)
0.544799 + 0.838567i \(0.316606\pi\)
\(908\) 0 0
\(909\) 6.14993e9 0.271579
\(910\) 0 0
\(911\) 1.64923e10 0.722717 0.361358 0.932427i \(-0.382313\pi\)
0.361358 + 0.932427i \(0.382313\pi\)
\(912\) 0 0
\(913\) −2.39866e7 −0.00104309
\(914\) 0 0
\(915\) 3.28552e10 1.41785
\(916\) 0 0
\(917\) 1.39381e10 0.596913
\(918\) 0 0
\(919\) 2.67297e9 0.113603 0.0568016 0.998385i \(-0.481910\pi\)
0.0568016 + 0.998385i \(0.481910\pi\)
\(920\) 0 0
\(921\) −9.03666e9 −0.381153
\(922\) 0 0
\(923\) −8.65275e9 −0.362200
\(924\) 0 0
\(925\) 7.29039e10 3.02869
\(926\) 0 0
\(927\) −1.60959e8 −0.00663648
\(928\) 0 0
\(929\) −3.34696e10 −1.36961 −0.684803 0.728728i \(-0.740112\pi\)
−0.684803 + 0.728728i \(0.740112\pi\)
\(930\) 0 0
\(931\) −3.99530e8 −0.0162265
\(932\) 0 0
\(933\) −2.06005e10 −0.830409
\(934\) 0 0
\(935\) −3.40945e8 −0.0136409
\(936\) 0 0
\(937\) 2.18466e10 0.867552 0.433776 0.901021i \(-0.357181\pi\)
0.433776 + 0.901021i \(0.357181\pi\)
\(938\) 0 0
\(939\) 1.25624e8 0.00495156
\(940\) 0 0
\(941\) 2.23623e10 0.874890 0.437445 0.899245i \(-0.355883\pi\)
0.437445 + 0.899245i \(0.355883\pi\)
\(942\) 0 0
\(943\) −5.61252e9 −0.217955
\(944\) 0 0
\(945\) −3.33811e9 −0.128674
\(946\) 0 0
\(947\) 4.50399e10 1.72335 0.861673 0.507464i \(-0.169417\pi\)
0.861673 + 0.507464i \(0.169417\pi\)
\(948\) 0 0
\(949\) −7.14975e9 −0.271556
\(950\) 0 0
\(951\) 1.34950e10 0.508794
\(952\) 0 0
\(953\) −4.76726e10 −1.78420 −0.892100 0.451837i \(-0.850769\pi\)
−0.892100 + 0.451837i \(0.850769\pi\)
\(954\) 0 0
\(955\) 2.21753e10 0.823866
\(956\) 0 0
\(957\) −1.77901e8 −0.00656126
\(958\) 0 0
\(959\) 1.15000e10 0.421049
\(960\) 0 0
\(961\) 2.48771e10 0.904208
\(962\) 0 0
\(963\) −9.69717e9 −0.349907
\(964\) 0 0
\(965\) 5.99274e9 0.214674
\(966\) 0 0
\(967\) −8.80378e9 −0.313095 −0.156548 0.987670i \(-0.550036\pi\)
−0.156548 + 0.987670i \(0.550036\pi\)
\(968\) 0 0
\(969\) −1.34260e9 −0.0474038
\(970\) 0 0
\(971\) 2.02237e9 0.0708912 0.0354456 0.999372i \(-0.488715\pi\)
0.0354456 + 0.999372i \(0.488715\pi\)
\(972\) 0 0
\(973\) 1.17322e10 0.408306
\(974\) 0 0
\(975\) −1.62795e10 −0.562502
\(976\) 0 0
\(977\) 9.09480e9 0.312006 0.156003 0.987757i \(-0.450139\pi\)
0.156003 + 0.987757i \(0.450139\pi\)
\(978\) 0 0
\(979\) −1.95918e8 −0.00667319
\(980\) 0 0
\(981\) −1.54274e10 −0.521737
\(982\) 0 0
\(983\) 1.69966e10 0.570724 0.285362 0.958420i \(-0.407886\pi\)
0.285362 + 0.958420i \(0.407886\pi\)
\(984\) 0 0
\(985\) −2.77068e10 −0.923760
\(986\) 0 0
\(987\) 7.35540e9 0.243498
\(988\) 0 0
\(989\) 1.00068e10 0.328935
\(990\) 0 0
\(991\) 2.75492e10 0.899190 0.449595 0.893233i \(-0.351568\pi\)
0.449595 + 0.893233i \(0.351568\pi\)
\(992\) 0 0
\(993\) 1.05168e10 0.340850
\(994\) 0 0
\(995\) −5.31646e10 −1.71097
\(996\) 0 0
\(997\) 2.23696e10 0.714866 0.357433 0.933939i \(-0.383652\pi\)
0.357433 + 0.933939i \(0.383652\pi\)
\(998\) 0 0
\(999\) −8.62632e9 −0.273745
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 84.8.a.c.1.2 2
3.2 odd 2 252.8.a.c.1.1 2
4.3 odd 2 336.8.a.q.1.2 2
7.2 even 3 588.8.i.k.361.1 4
7.3 odd 6 588.8.i.j.373.2 4
7.4 even 3 588.8.i.k.373.1 4
7.5 odd 6 588.8.i.j.361.2 4
7.6 odd 2 588.8.a.f.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
84.8.a.c.1.2 2 1.1 even 1 trivial
252.8.a.c.1.1 2 3.2 odd 2
336.8.a.q.1.2 2 4.3 odd 2
588.8.a.f.1.1 2 7.6 odd 2
588.8.i.j.361.2 4 7.5 odd 6
588.8.i.j.373.2 4 7.3 odd 6
588.8.i.k.361.1 4 7.2 even 3
588.8.i.k.373.1 4 7.4 even 3