Properties

Label 84.8.a.c.1.1
Level $84$
Weight $8$
Character 84.1
Self dual yes
Analytic conductor $26.240$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [84,8,Mod(1,84)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(84, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("84.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 84 = 2^{2} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 84.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.2403421407\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{3649}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 912 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 3 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(30.7035\) of defining polynomial
Character \(\chi\) \(=\) 84.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-27.0000 q^{3} -230.442 q^{5} +343.000 q^{7} +729.000 q^{9} -5027.09 q^{11} -13772.6 q^{13} +6221.93 q^{15} +32474.7 q^{17} +9651.95 q^{19} -9261.00 q^{21} +32034.5 q^{23} -25021.6 q^{25} -19683.0 q^{27} +103672. q^{29} +241936. q^{31} +135731. q^{33} -79041.5 q^{35} -127147. q^{37} +371860. q^{39} +607138. q^{41} +443862. q^{43} -167992. q^{45} +691778. q^{47} +117649. q^{49} -876817. q^{51} +672824. q^{53} +1.15845e6 q^{55} -260603. q^{57} -2.58646e6 q^{59} +1.53593e6 q^{61} +250047. q^{63} +3.17378e6 q^{65} -4.20823e6 q^{67} -864931. q^{69} +1.51772e6 q^{71} +5.47779e6 q^{73} +675584. q^{75} -1.72429e6 q^{77} -6.75855e6 q^{79} +531441. q^{81} +8.36612e6 q^{83} -7.48353e6 q^{85} -2.79914e6 q^{87} -5.17007e6 q^{89} -4.72400e6 q^{91} -6.53227e6 q^{93} -2.22421e6 q^{95} -1.06286e7 q^{97} -3.66475e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 54 q^{3} + 264 q^{5} + 686 q^{7} + 1458 q^{9} - 4980 q^{11} - 10148 q^{13} - 7128 q^{15} + 17832 q^{17} + 6256 q^{19} - 18522 q^{21} + 14052 q^{23} + 141326 q^{25} - 39366 q^{27} + 243588 q^{29} + 470824 q^{31}+ \cdots - 3630420 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −27.0000 −0.577350
\(4\) 0 0
\(5\) −230.442 −0.824453 −0.412227 0.911081i \(-0.635249\pi\)
−0.412227 + 0.911081i \(0.635249\pi\)
\(6\) 0 0
\(7\) 343.000 0.377964
\(8\) 0 0
\(9\) 729.000 0.333333
\(10\) 0 0
\(11\) −5027.09 −1.13879 −0.569393 0.822065i \(-0.692822\pi\)
−0.569393 + 0.822065i \(0.692822\pi\)
\(12\) 0 0
\(13\) −13772.6 −1.73866 −0.869329 0.494234i \(-0.835449\pi\)
−0.869329 + 0.494234i \(0.835449\pi\)
\(14\) 0 0
\(15\) 6221.93 0.475998
\(16\) 0 0
\(17\) 32474.7 1.60315 0.801575 0.597894i \(-0.203996\pi\)
0.801575 + 0.597894i \(0.203996\pi\)
\(18\) 0 0
\(19\) 9651.95 0.322833 0.161416 0.986886i \(-0.448394\pi\)
0.161416 + 0.986886i \(0.448394\pi\)
\(20\) 0 0
\(21\) −9261.00 −0.218218
\(22\) 0 0
\(23\) 32034.5 0.548997 0.274499 0.961587i \(-0.411488\pi\)
0.274499 + 0.961587i \(0.411488\pi\)
\(24\) 0 0
\(25\) −25021.6 −0.320277
\(26\) 0 0
\(27\) −19683.0 −0.192450
\(28\) 0 0
\(29\) 103672. 0.789347 0.394674 0.918821i \(-0.370858\pi\)
0.394674 + 0.918821i \(0.370858\pi\)
\(30\) 0 0
\(31\) 241936. 1.45859 0.729297 0.684197i \(-0.239847\pi\)
0.729297 + 0.684197i \(0.239847\pi\)
\(32\) 0 0
\(33\) 135731. 0.657479
\(34\) 0 0
\(35\) −79041.5 −0.311614
\(36\) 0 0
\(37\) −127147. −0.412666 −0.206333 0.978482i \(-0.566153\pi\)
−0.206333 + 0.978482i \(0.566153\pi\)
\(38\) 0 0
\(39\) 371860. 1.00381
\(40\) 0 0
\(41\) 607138. 1.37576 0.687882 0.725823i \(-0.258541\pi\)
0.687882 + 0.725823i \(0.258541\pi\)
\(42\) 0 0
\(43\) 443862. 0.851350 0.425675 0.904876i \(-0.360037\pi\)
0.425675 + 0.904876i \(0.360037\pi\)
\(44\) 0 0
\(45\) −167992. −0.274818
\(46\) 0 0
\(47\) 691778. 0.971905 0.485953 0.873985i \(-0.338473\pi\)
0.485953 + 0.873985i \(0.338473\pi\)
\(48\) 0 0
\(49\) 117649. 0.142857
\(50\) 0 0
\(51\) −876817. −0.925579
\(52\) 0 0
\(53\) 672824. 0.620778 0.310389 0.950610i \(-0.399541\pi\)
0.310389 + 0.950610i \(0.399541\pi\)
\(54\) 0 0
\(55\) 1.15845e6 0.938877
\(56\) 0 0
\(57\) −260603. −0.186388
\(58\) 0 0
\(59\) −2.58646e6 −1.63955 −0.819775 0.572686i \(-0.805901\pi\)
−0.819775 + 0.572686i \(0.805901\pi\)
\(60\) 0 0
\(61\) 1.53593e6 0.866397 0.433198 0.901299i \(-0.357385\pi\)
0.433198 + 0.901299i \(0.357385\pi\)
\(62\) 0 0
\(63\) 250047. 0.125988
\(64\) 0 0
\(65\) 3.17378e6 1.43344
\(66\) 0 0
\(67\) −4.20823e6 −1.70937 −0.854687 0.519143i \(-0.826251\pi\)
−0.854687 + 0.519143i \(0.826251\pi\)
\(68\) 0 0
\(69\) −864931. −0.316964
\(70\) 0 0
\(71\) 1.51772e6 0.503254 0.251627 0.967824i \(-0.419034\pi\)
0.251627 + 0.967824i \(0.419034\pi\)
\(72\) 0 0
\(73\) 5.47779e6 1.64807 0.824034 0.566540i \(-0.191718\pi\)
0.824034 + 0.566540i \(0.191718\pi\)
\(74\) 0 0
\(75\) 675584. 0.184912
\(76\) 0 0
\(77\) −1.72429e6 −0.430421
\(78\) 0 0
\(79\) −6.75855e6 −1.54226 −0.771132 0.636675i \(-0.780309\pi\)
−0.771132 + 0.636675i \(0.780309\pi\)
\(80\) 0 0
\(81\) 531441. 0.111111
\(82\) 0 0
\(83\) 8.36612e6 1.60602 0.803009 0.595966i \(-0.203231\pi\)
0.803009 + 0.595966i \(0.203231\pi\)
\(84\) 0 0
\(85\) −7.48353e6 −1.32172
\(86\) 0 0
\(87\) −2.79914e6 −0.455730
\(88\) 0 0
\(89\) −5.17007e6 −0.777377 −0.388688 0.921369i \(-0.627072\pi\)
−0.388688 + 0.921369i \(0.627072\pi\)
\(90\) 0 0
\(91\) −4.72400e6 −0.657151
\(92\) 0 0
\(93\) −6.53227e6 −0.842120
\(94\) 0 0
\(95\) −2.22421e6 −0.266160
\(96\) 0 0
\(97\) −1.06286e7 −1.18242 −0.591212 0.806516i \(-0.701350\pi\)
−0.591212 + 0.806516i \(0.701350\pi\)
\(98\) 0 0
\(99\) −3.66475e6 −0.379596
\(100\) 0 0
\(101\) 4.04115e6 0.390283 0.195142 0.980775i \(-0.437483\pi\)
0.195142 + 0.980775i \(0.437483\pi\)
\(102\) 0 0
\(103\) −1.44735e7 −1.30509 −0.652547 0.757748i \(-0.726300\pi\)
−0.652547 + 0.757748i \(0.726300\pi\)
\(104\) 0 0
\(105\) 2.13412e6 0.179910
\(106\) 0 0
\(107\) −6.89622e6 −0.544212 −0.272106 0.962267i \(-0.587720\pi\)
−0.272106 + 0.962267i \(0.587720\pi\)
\(108\) 0 0
\(109\) 1.41017e7 1.04299 0.521493 0.853255i \(-0.325375\pi\)
0.521493 + 0.853255i \(0.325375\pi\)
\(110\) 0 0
\(111\) 3.43296e6 0.238253
\(112\) 0 0
\(113\) 9.62581e6 0.627571 0.313785 0.949494i \(-0.398403\pi\)
0.313785 + 0.949494i \(0.398403\pi\)
\(114\) 0 0
\(115\) −7.38208e6 −0.452623
\(116\) 0 0
\(117\) −1.00402e7 −0.579553
\(118\) 0 0
\(119\) 1.11388e7 0.605934
\(120\) 0 0
\(121\) 5.78448e6 0.296835
\(122\) 0 0
\(123\) −1.63927e7 −0.794297
\(124\) 0 0
\(125\) 2.37693e7 1.08851
\(126\) 0 0
\(127\) 1.76901e6 0.0766333 0.0383166 0.999266i \(-0.487800\pi\)
0.0383166 + 0.999266i \(0.487800\pi\)
\(128\) 0 0
\(129\) −1.19843e7 −0.491527
\(130\) 0 0
\(131\) 1.67408e7 0.650618 0.325309 0.945608i \(-0.394532\pi\)
0.325309 + 0.945608i \(0.394532\pi\)
\(132\) 0 0
\(133\) 3.31062e6 0.122019
\(134\) 0 0
\(135\) 4.53578e6 0.158666
\(136\) 0 0
\(137\) 3.38365e7 1.12425 0.562125 0.827052i \(-0.309984\pi\)
0.562125 + 0.827052i \(0.309984\pi\)
\(138\) 0 0
\(139\) 1.61726e7 0.510773 0.255386 0.966839i \(-0.417797\pi\)
0.255386 + 0.966839i \(0.417797\pi\)
\(140\) 0 0
\(141\) −1.86780e7 −0.561130
\(142\) 0 0
\(143\) 6.92361e7 1.97996
\(144\) 0 0
\(145\) −2.38903e7 −0.650780
\(146\) 0 0
\(147\) −3.17652e6 −0.0824786
\(148\) 0 0
\(149\) 2.85945e7 0.708158 0.354079 0.935216i \(-0.384794\pi\)
0.354079 + 0.935216i \(0.384794\pi\)
\(150\) 0 0
\(151\) −3.16118e7 −0.747189 −0.373594 0.927592i \(-0.621875\pi\)
−0.373594 + 0.927592i \(0.621875\pi\)
\(152\) 0 0
\(153\) 2.36741e7 0.534383
\(154\) 0 0
\(155\) −5.57521e7 −1.20254
\(156\) 0 0
\(157\) 3.43563e7 0.708528 0.354264 0.935145i \(-0.384731\pi\)
0.354264 + 0.935145i \(0.384731\pi\)
\(158\) 0 0
\(159\) −1.81663e7 −0.358406
\(160\) 0 0
\(161\) 1.09878e7 0.207501
\(162\) 0 0
\(163\) −2.46318e7 −0.445492 −0.222746 0.974877i \(-0.571502\pi\)
−0.222746 + 0.974877i \(0.571502\pi\)
\(164\) 0 0
\(165\) −3.12782e7 −0.542061
\(166\) 0 0
\(167\) 3.01569e7 0.501048 0.250524 0.968110i \(-0.419397\pi\)
0.250524 + 0.968110i \(0.419397\pi\)
\(168\) 0 0
\(169\) 1.26936e8 2.02293
\(170\) 0 0
\(171\) 7.03627e6 0.107611
\(172\) 0 0
\(173\) 7.66151e7 1.12500 0.562501 0.826797i \(-0.309839\pi\)
0.562501 + 0.826797i \(0.309839\pi\)
\(174\) 0 0
\(175\) −8.58241e6 −0.121053
\(176\) 0 0
\(177\) 6.98345e7 0.946594
\(178\) 0 0
\(179\) −3.55691e7 −0.463541 −0.231770 0.972771i \(-0.574452\pi\)
−0.231770 + 0.972771i \(0.574452\pi\)
\(180\) 0 0
\(181\) 6.85132e6 0.0858814 0.0429407 0.999078i \(-0.486327\pi\)
0.0429407 + 0.999078i \(0.486327\pi\)
\(182\) 0 0
\(183\) −4.14701e7 −0.500214
\(184\) 0 0
\(185\) 2.92999e7 0.340224
\(186\) 0 0
\(187\) −1.63253e8 −1.82565
\(188\) 0 0
\(189\) −6.75127e6 −0.0727393
\(190\) 0 0
\(191\) −3.63357e7 −0.377326 −0.188663 0.982042i \(-0.560415\pi\)
−0.188663 + 0.982042i \(0.560415\pi\)
\(192\) 0 0
\(193\) −1.25918e8 −1.26077 −0.630386 0.776281i \(-0.717104\pi\)
−0.630386 + 0.776281i \(0.717104\pi\)
\(194\) 0 0
\(195\) −8.56921e7 −0.827599
\(196\) 0 0
\(197\) 1.66346e8 1.55018 0.775088 0.631853i \(-0.217705\pi\)
0.775088 + 0.631853i \(0.217705\pi\)
\(198\) 0 0
\(199\) −7.63051e7 −0.686385 −0.343193 0.939265i \(-0.611508\pi\)
−0.343193 + 0.939265i \(0.611508\pi\)
\(200\) 0 0
\(201\) 1.13622e8 0.986908
\(202\) 0 0
\(203\) 3.55595e7 0.298345
\(204\) 0 0
\(205\) −1.39910e8 −1.13425
\(206\) 0 0
\(207\) 2.33531e7 0.182999
\(208\) 0 0
\(209\) −4.85212e7 −0.367638
\(210\) 0 0
\(211\) 1.99778e8 1.46406 0.732031 0.681271i \(-0.238572\pi\)
0.732031 + 0.681271i \(0.238572\pi\)
\(212\) 0 0
\(213\) −4.09784e7 −0.290554
\(214\) 0 0
\(215\) −1.02284e8 −0.701898
\(216\) 0 0
\(217\) 8.29840e7 0.551297
\(218\) 0 0
\(219\) −1.47900e8 −0.951513
\(220\) 0 0
\(221\) −4.47261e8 −2.78733
\(222\) 0 0
\(223\) 3.84285e7 0.232053 0.116026 0.993246i \(-0.462984\pi\)
0.116026 + 0.993246i \(0.462984\pi\)
\(224\) 0 0
\(225\) −1.82408e7 −0.106759
\(226\) 0 0
\(227\) −2.11611e8 −1.20074 −0.600370 0.799723i \(-0.704980\pi\)
−0.600370 + 0.799723i \(0.704980\pi\)
\(228\) 0 0
\(229\) 1.25230e8 0.689103 0.344552 0.938767i \(-0.388031\pi\)
0.344552 + 0.938767i \(0.388031\pi\)
\(230\) 0 0
\(231\) 4.65559e7 0.248504
\(232\) 0 0
\(233\) 6.15511e7 0.318779 0.159390 0.987216i \(-0.449047\pi\)
0.159390 + 0.987216i \(0.449047\pi\)
\(234\) 0 0
\(235\) −1.59414e8 −0.801291
\(236\) 0 0
\(237\) 1.82481e8 0.890427
\(238\) 0 0
\(239\) −2.58334e8 −1.22402 −0.612010 0.790850i \(-0.709639\pi\)
−0.612010 + 0.790850i \(0.709639\pi\)
\(240\) 0 0
\(241\) 3.85619e8 1.77459 0.887297 0.461199i \(-0.152581\pi\)
0.887297 + 0.461199i \(0.152581\pi\)
\(242\) 0 0
\(243\) −1.43489e7 −0.0641500
\(244\) 0 0
\(245\) −2.71112e7 −0.117779
\(246\) 0 0
\(247\) −1.32932e8 −0.561296
\(248\) 0 0
\(249\) −2.25885e8 −0.927235
\(250\) 0 0
\(251\) 2.98427e8 1.19119 0.595593 0.803286i \(-0.296917\pi\)
0.595593 + 0.803286i \(0.296917\pi\)
\(252\) 0 0
\(253\) −1.61040e8 −0.625191
\(254\) 0 0
\(255\) 2.02055e8 0.763097
\(256\) 0 0
\(257\) −4.05861e8 −1.49146 −0.745730 0.666249i \(-0.767899\pi\)
−0.745730 + 0.666249i \(0.767899\pi\)
\(258\) 0 0
\(259\) −4.36113e7 −0.155973
\(260\) 0 0
\(261\) 7.55768e7 0.263116
\(262\) 0 0
\(263\) −2.64406e8 −0.896243 −0.448121 0.893973i \(-0.647907\pi\)
−0.448121 + 0.893973i \(0.647907\pi\)
\(264\) 0 0
\(265\) −1.55047e8 −0.511802
\(266\) 0 0
\(267\) 1.39592e8 0.448819
\(268\) 0 0
\(269\) 1.98913e8 0.623060 0.311530 0.950236i \(-0.399159\pi\)
0.311530 + 0.950236i \(0.399159\pi\)
\(270\) 0 0
\(271\) 1.40372e8 0.428436 0.214218 0.976786i \(-0.431280\pi\)
0.214218 + 0.976786i \(0.431280\pi\)
\(272\) 0 0
\(273\) 1.27548e8 0.379406
\(274\) 0 0
\(275\) 1.25786e8 0.364727
\(276\) 0 0
\(277\) −1.40282e8 −0.396571 −0.198286 0.980144i \(-0.563537\pi\)
−0.198286 + 0.980144i \(0.563537\pi\)
\(278\) 0 0
\(279\) 1.76371e8 0.486198
\(280\) 0 0
\(281\) 3.41638e8 0.918532 0.459266 0.888299i \(-0.348113\pi\)
0.459266 + 0.888299i \(0.348113\pi\)
\(282\) 0 0
\(283\) 3.73842e8 0.980473 0.490237 0.871589i \(-0.336910\pi\)
0.490237 + 0.871589i \(0.336910\pi\)
\(284\) 0 0
\(285\) 6.00537e7 0.153668
\(286\) 0 0
\(287\) 2.08248e8 0.519990
\(288\) 0 0
\(289\) 6.44268e8 1.57009
\(290\) 0 0
\(291\) 2.86971e8 0.682672
\(292\) 0 0
\(293\) −7.10879e7 −0.165105 −0.0825523 0.996587i \(-0.526307\pi\)
−0.0825523 + 0.996587i \(0.526307\pi\)
\(294\) 0 0
\(295\) 5.96029e8 1.35173
\(296\) 0 0
\(297\) 9.89483e7 0.219160
\(298\) 0 0
\(299\) −4.41198e8 −0.954519
\(300\) 0 0
\(301\) 1.52245e8 0.321780
\(302\) 0 0
\(303\) −1.09111e8 −0.225330
\(304\) 0 0
\(305\) −3.53942e8 −0.714304
\(306\) 0 0
\(307\) 6.85606e8 1.35235 0.676177 0.736739i \(-0.263636\pi\)
0.676177 + 0.736739i \(0.263636\pi\)
\(308\) 0 0
\(309\) 3.90783e8 0.753497
\(310\) 0 0
\(311\) 2.64884e8 0.499337 0.249669 0.968331i \(-0.419678\pi\)
0.249669 + 0.968331i \(0.419678\pi\)
\(312\) 0 0
\(313\) −5.69557e8 −1.04986 −0.524931 0.851145i \(-0.675909\pi\)
−0.524931 + 0.851145i \(0.675909\pi\)
\(314\) 0 0
\(315\) −5.76213e7 −0.103871
\(316\) 0 0
\(317\) −9.13159e8 −1.61005 −0.805025 0.593241i \(-0.797848\pi\)
−0.805025 + 0.593241i \(0.797848\pi\)
\(318\) 0 0
\(319\) −5.21168e8 −0.898898
\(320\) 0 0
\(321\) 1.86198e8 0.314201
\(322\) 0 0
\(323\) 3.13444e8 0.517549
\(324\) 0 0
\(325\) 3.44613e8 0.556852
\(326\) 0 0
\(327\) −3.80746e8 −0.602169
\(328\) 0 0
\(329\) 2.37280e8 0.367346
\(330\) 0 0
\(331\) −4.39121e8 −0.665559 −0.332779 0.943005i \(-0.607986\pi\)
−0.332779 + 0.943005i \(0.607986\pi\)
\(332\) 0 0
\(333\) −9.26898e7 −0.137555
\(334\) 0 0
\(335\) 9.69751e8 1.40930
\(336\) 0 0
\(337\) −6.75259e8 −0.961094 −0.480547 0.876969i \(-0.659562\pi\)
−0.480547 + 0.876969i \(0.659562\pi\)
\(338\) 0 0
\(339\) −2.59897e8 −0.362328
\(340\) 0 0
\(341\) −1.21623e9 −1.66103
\(342\) 0 0
\(343\) 4.03536e7 0.0539949
\(344\) 0 0
\(345\) 1.99316e8 0.261322
\(346\) 0 0
\(347\) 5.40071e7 0.0693901 0.0346950 0.999398i \(-0.488954\pi\)
0.0346950 + 0.999398i \(0.488954\pi\)
\(348\) 0 0
\(349\) 1.54651e9 1.94744 0.973722 0.227740i \(-0.0731336\pi\)
0.973722 + 0.227740i \(0.0731336\pi\)
\(350\) 0 0
\(351\) 2.71086e8 0.334605
\(352\) 0 0
\(353\) 6.29969e8 0.762269 0.381134 0.924520i \(-0.375534\pi\)
0.381134 + 0.924520i \(0.375534\pi\)
\(354\) 0 0
\(355\) −3.49746e8 −0.414910
\(356\) 0 0
\(357\) −3.00748e8 −0.349836
\(358\) 0 0
\(359\) −7.64717e8 −0.872309 −0.436155 0.899872i \(-0.643660\pi\)
−0.436155 + 0.899872i \(0.643660\pi\)
\(360\) 0 0
\(361\) −8.00712e8 −0.895779
\(362\) 0 0
\(363\) −1.56181e8 −0.171378
\(364\) 0 0
\(365\) −1.26231e9 −1.35876
\(366\) 0 0
\(367\) 5.11425e8 0.540071 0.270035 0.962850i \(-0.412965\pi\)
0.270035 + 0.962850i \(0.412965\pi\)
\(368\) 0 0
\(369\) 4.42603e8 0.458588
\(370\) 0 0
\(371\) 2.30779e8 0.234632
\(372\) 0 0
\(373\) −1.44200e8 −0.143875 −0.0719373 0.997409i \(-0.522918\pi\)
−0.0719373 + 0.997409i \(0.522918\pi\)
\(374\) 0 0
\(375\) −6.41771e8 −0.628450
\(376\) 0 0
\(377\) −1.42783e9 −1.37241
\(378\) 0 0
\(379\) −2.26277e8 −0.213502 −0.106751 0.994286i \(-0.534045\pi\)
−0.106751 + 0.994286i \(0.534045\pi\)
\(380\) 0 0
\(381\) −4.77633e7 −0.0442442
\(382\) 0 0
\(383\) 1.46072e9 1.32853 0.664263 0.747499i \(-0.268745\pi\)
0.664263 + 0.747499i \(0.268745\pi\)
\(384\) 0 0
\(385\) 3.97349e8 0.354862
\(386\) 0 0
\(387\) 3.23575e8 0.283783
\(388\) 0 0
\(389\) −1.04642e9 −0.901324 −0.450662 0.892695i \(-0.648812\pi\)
−0.450662 + 0.892695i \(0.648812\pi\)
\(390\) 0 0
\(391\) 1.04031e9 0.880125
\(392\) 0 0
\(393\) −4.52001e8 −0.375635
\(394\) 0 0
\(395\) 1.55745e9 1.27152
\(396\) 0 0
\(397\) 5.50414e7 0.0441492 0.0220746 0.999756i \(-0.492973\pi\)
0.0220746 + 0.999756i \(0.492973\pi\)
\(398\) 0 0
\(399\) −8.93867e7 −0.0704479
\(400\) 0 0
\(401\) 6.34403e7 0.0491315 0.0245658 0.999698i \(-0.492180\pi\)
0.0245658 + 0.999698i \(0.492180\pi\)
\(402\) 0 0
\(403\) −3.33209e9 −2.53600
\(404\) 0 0
\(405\) −1.22466e8 −0.0916059
\(406\) 0 0
\(407\) 6.39177e8 0.469938
\(408\) 0 0
\(409\) −2.13211e9 −1.54091 −0.770455 0.637494i \(-0.779971\pi\)
−0.770455 + 0.637494i \(0.779971\pi\)
\(410\) 0 0
\(411\) −9.13584e8 −0.649086
\(412\) 0 0
\(413\) −8.87157e8 −0.619691
\(414\) 0 0
\(415\) −1.92790e9 −1.32409
\(416\) 0 0
\(417\) −4.36660e8 −0.294895
\(418\) 0 0
\(419\) 7.69058e8 0.510752 0.255376 0.966842i \(-0.417801\pi\)
0.255376 + 0.966842i \(0.417801\pi\)
\(420\) 0 0
\(421\) 4.56924e8 0.298440 0.149220 0.988804i \(-0.452324\pi\)
0.149220 + 0.988804i \(0.452324\pi\)
\(422\) 0 0
\(423\) 5.04306e8 0.323968
\(424\) 0 0
\(425\) −8.12570e8 −0.513451
\(426\) 0 0
\(427\) 5.26824e8 0.327467
\(428\) 0 0
\(429\) −1.86938e9 −1.14313
\(430\) 0 0
\(431\) 2.10451e9 1.26614 0.633069 0.774095i \(-0.281795\pi\)
0.633069 + 0.774095i \(0.281795\pi\)
\(432\) 0 0
\(433\) −7.87114e8 −0.465940 −0.232970 0.972484i \(-0.574844\pi\)
−0.232970 + 0.972484i \(0.574844\pi\)
\(434\) 0 0
\(435\) 6.45039e8 0.375728
\(436\) 0 0
\(437\) 3.09195e8 0.177234
\(438\) 0 0
\(439\) 1.35373e9 0.763672 0.381836 0.924230i \(-0.375292\pi\)
0.381836 + 0.924230i \(0.375292\pi\)
\(440\) 0 0
\(441\) 8.57661e7 0.0476190
\(442\) 0 0
\(443\) 2.31247e9 1.26375 0.631876 0.775069i \(-0.282285\pi\)
0.631876 + 0.775069i \(0.282285\pi\)
\(444\) 0 0
\(445\) 1.19140e9 0.640911
\(446\) 0 0
\(447\) −7.72051e8 −0.408855
\(448\) 0 0
\(449\) 3.25028e9 1.69457 0.847283 0.531142i \(-0.178237\pi\)
0.847283 + 0.531142i \(0.178237\pi\)
\(450\) 0 0
\(451\) −3.05214e9 −1.56670
\(452\) 0 0
\(453\) 8.53519e8 0.431390
\(454\) 0 0
\(455\) 1.08861e9 0.541790
\(456\) 0 0
\(457\) 6.91903e8 0.339108 0.169554 0.985521i \(-0.445767\pi\)
0.169554 + 0.985521i \(0.445767\pi\)
\(458\) 0 0
\(459\) −6.39200e8 −0.308526
\(460\) 0 0
\(461\) 3.55884e9 1.69183 0.845913 0.533322i \(-0.179056\pi\)
0.845913 + 0.533322i \(0.179056\pi\)
\(462\) 0 0
\(463\) 3.71651e8 0.174021 0.0870105 0.996207i \(-0.472269\pi\)
0.0870105 + 0.996207i \(0.472269\pi\)
\(464\) 0 0
\(465\) 1.50531e9 0.694288
\(466\) 0 0
\(467\) −3.67510e9 −1.66978 −0.834891 0.550416i \(-0.814469\pi\)
−0.834891 + 0.550416i \(0.814469\pi\)
\(468\) 0 0
\(469\) −1.44342e9 −0.646083
\(470\) 0 0
\(471\) −9.27619e8 −0.409069
\(472\) 0 0
\(473\) −2.23133e9 −0.969506
\(474\) 0 0
\(475\) −2.41507e8 −0.103396
\(476\) 0 0
\(477\) 4.90489e8 0.206926
\(478\) 0 0
\(479\) 1.31391e9 0.546248 0.273124 0.961979i \(-0.411943\pi\)
0.273124 + 0.961979i \(0.411943\pi\)
\(480\) 0 0
\(481\) 1.75114e9 0.717485
\(482\) 0 0
\(483\) −2.96671e8 −0.119801
\(484\) 0 0
\(485\) 2.44926e9 0.974853
\(486\) 0 0
\(487\) 4.98027e9 1.95390 0.976948 0.213478i \(-0.0684791\pi\)
0.976948 + 0.213478i \(0.0684791\pi\)
\(488\) 0 0
\(489\) 6.65059e8 0.257205
\(490\) 0 0
\(491\) 2.27145e9 0.866000 0.433000 0.901394i \(-0.357455\pi\)
0.433000 + 0.901394i \(0.357455\pi\)
\(492\) 0 0
\(493\) 3.36672e9 1.26544
\(494\) 0 0
\(495\) 8.44511e8 0.312959
\(496\) 0 0
\(497\) 5.20578e8 0.190212
\(498\) 0 0
\(499\) −1.08175e9 −0.389741 −0.194870 0.980829i \(-0.562429\pi\)
−0.194870 + 0.980829i \(0.562429\pi\)
\(500\) 0 0
\(501\) −8.14236e8 −0.289280
\(502\) 0 0
\(503\) −2.19858e9 −0.770290 −0.385145 0.922856i \(-0.625849\pi\)
−0.385145 + 0.922856i \(0.625849\pi\)
\(504\) 0 0
\(505\) −9.31249e8 −0.321770
\(506\) 0 0
\(507\) −3.42727e9 −1.16794
\(508\) 0 0
\(509\) 1.07364e9 0.360866 0.180433 0.983587i \(-0.442250\pi\)
0.180433 + 0.983587i \(0.442250\pi\)
\(510\) 0 0
\(511\) 1.87888e9 0.622911
\(512\) 0 0
\(513\) −1.89979e8 −0.0621292
\(514\) 0 0
\(515\) 3.33529e9 1.07599
\(516\) 0 0
\(517\) −3.47763e9 −1.10679
\(518\) 0 0
\(519\) −2.06861e9 −0.649520
\(520\) 0 0
\(521\) 1.85536e7 0.00574773 0.00287386 0.999996i \(-0.499085\pi\)
0.00287386 + 0.999996i \(0.499085\pi\)
\(522\) 0 0
\(523\) 2.63388e9 0.805081 0.402541 0.915402i \(-0.368127\pi\)
0.402541 + 0.915402i \(0.368127\pi\)
\(524\) 0 0
\(525\) 2.31725e8 0.0698901
\(526\) 0 0
\(527\) 7.85680e9 2.33834
\(528\) 0 0
\(529\) −2.37862e9 −0.698602
\(530\) 0 0
\(531\) −1.88553e9 −0.546516
\(532\) 0 0
\(533\) −8.36187e9 −2.39198
\(534\) 0 0
\(535\) 1.58918e9 0.448677
\(536\) 0 0
\(537\) 9.60367e8 0.267625
\(538\) 0 0
\(539\) −5.91432e8 −0.162684
\(540\) 0 0
\(541\) 5.11805e9 1.38968 0.694839 0.719165i \(-0.255475\pi\)
0.694839 + 0.719165i \(0.255475\pi\)
\(542\) 0 0
\(543\) −1.84986e8 −0.0495836
\(544\) 0 0
\(545\) −3.24962e9 −0.859894
\(546\) 0 0
\(547\) −2.60774e9 −0.681253 −0.340627 0.940199i \(-0.610639\pi\)
−0.340627 + 0.940199i \(0.610639\pi\)
\(548\) 0 0
\(549\) 1.11969e9 0.288799
\(550\) 0 0
\(551\) 1.00064e9 0.254827
\(552\) 0 0
\(553\) −2.31818e9 −0.582921
\(554\) 0 0
\(555\) −7.91096e8 −0.196428
\(556\) 0 0
\(557\) 5.37079e9 1.31688 0.658438 0.752635i \(-0.271218\pi\)
0.658438 + 0.752635i \(0.271218\pi\)
\(558\) 0 0
\(559\) −6.11313e9 −1.48021
\(560\) 0 0
\(561\) 4.40784e9 1.05404
\(562\) 0 0
\(563\) −5.79755e9 −1.36919 −0.684597 0.728921i \(-0.740022\pi\)
−0.684597 + 0.728921i \(0.740022\pi\)
\(564\) 0 0
\(565\) −2.21819e9 −0.517403
\(566\) 0 0
\(567\) 1.82284e8 0.0419961
\(568\) 0 0
\(569\) −3.81291e9 −0.867687 −0.433844 0.900988i \(-0.642843\pi\)
−0.433844 + 0.900988i \(0.642843\pi\)
\(570\) 0 0
\(571\) −5.08818e9 −1.14376 −0.571881 0.820336i \(-0.693786\pi\)
−0.571881 + 0.820336i \(0.693786\pi\)
\(572\) 0 0
\(573\) 9.81064e8 0.217849
\(574\) 0 0
\(575\) −8.01554e8 −0.175831
\(576\) 0 0
\(577\) −2.24096e9 −0.485645 −0.242823 0.970071i \(-0.578073\pi\)
−0.242823 + 0.970071i \(0.578073\pi\)
\(578\) 0 0
\(579\) 3.39978e9 0.727908
\(580\) 0 0
\(581\) 2.86958e9 0.607018
\(582\) 0 0
\(583\) −3.38235e9 −0.706934
\(584\) 0 0
\(585\) 2.31369e9 0.477814
\(586\) 0 0
\(587\) −7.24473e9 −1.47839 −0.739194 0.673492i \(-0.764793\pi\)
−0.739194 + 0.673492i \(0.764793\pi\)
\(588\) 0 0
\(589\) 2.33515e9 0.470882
\(590\) 0 0
\(591\) −4.49135e9 −0.894995
\(592\) 0 0
\(593\) −7.11833e9 −1.40180 −0.700901 0.713259i \(-0.747218\pi\)
−0.700901 + 0.713259i \(0.747218\pi\)
\(594\) 0 0
\(595\) −2.56685e9 −0.499564
\(596\) 0 0
\(597\) 2.06024e9 0.396285
\(598\) 0 0
\(599\) 9.02747e9 1.71622 0.858109 0.513468i \(-0.171639\pi\)
0.858109 + 0.513468i \(0.171639\pi\)
\(600\) 0 0
\(601\) 9.56566e9 1.79744 0.898719 0.438524i \(-0.144499\pi\)
0.898719 + 0.438524i \(0.144499\pi\)
\(602\) 0 0
\(603\) −3.06780e9 −0.569791
\(604\) 0 0
\(605\) −1.33299e9 −0.244727
\(606\) 0 0
\(607\) −3.53359e9 −0.641292 −0.320646 0.947199i \(-0.603900\pi\)
−0.320646 + 0.947199i \(0.603900\pi\)
\(608\) 0 0
\(609\) −9.60106e8 −0.172250
\(610\) 0 0
\(611\) −9.52758e9 −1.68981
\(612\) 0 0
\(613\) 8.12987e9 1.42552 0.712758 0.701410i \(-0.247446\pi\)
0.712758 + 0.701410i \(0.247446\pi\)
\(614\) 0 0
\(615\) 3.77757e9 0.654861
\(616\) 0 0
\(617\) −9.27957e9 −1.59049 −0.795243 0.606291i \(-0.792657\pi\)
−0.795243 + 0.606291i \(0.792657\pi\)
\(618\) 0 0
\(619\) −1.19776e9 −0.202979 −0.101490 0.994837i \(-0.532361\pi\)
−0.101490 + 0.994837i \(0.532361\pi\)
\(620\) 0 0
\(621\) −6.30535e8 −0.105655
\(622\) 0 0
\(623\) −1.77334e9 −0.293821
\(624\) 0 0
\(625\) −3.52262e9 −0.577146
\(626\) 0 0
\(627\) 1.31007e9 0.212256
\(628\) 0 0
\(629\) −4.12905e9 −0.661565
\(630\) 0 0
\(631\) 7.29303e9 1.15559 0.577797 0.816181i \(-0.303913\pi\)
0.577797 + 0.816181i \(0.303913\pi\)
\(632\) 0 0
\(633\) −5.39401e9 −0.845277
\(634\) 0 0
\(635\) −4.07654e8 −0.0631805
\(636\) 0 0
\(637\) −1.62033e9 −0.248380
\(638\) 0 0
\(639\) 1.10642e9 0.167751
\(640\) 0 0
\(641\) 7.58895e9 1.13809 0.569047 0.822305i \(-0.307312\pi\)
0.569047 + 0.822305i \(0.307312\pi\)
\(642\) 0 0
\(643\) −6.78950e9 −1.00716 −0.503581 0.863948i \(-0.667985\pi\)
−0.503581 + 0.863948i \(0.667985\pi\)
\(644\) 0 0
\(645\) 2.76167e9 0.405241
\(646\) 0 0
\(647\) 4.07625e9 0.591693 0.295846 0.955236i \(-0.404398\pi\)
0.295846 + 0.955236i \(0.404398\pi\)
\(648\) 0 0
\(649\) 1.30024e10 1.86710
\(650\) 0 0
\(651\) −2.24057e9 −0.318291
\(652\) 0 0
\(653\) 8.55289e9 1.20203 0.601017 0.799236i \(-0.294762\pi\)
0.601017 + 0.799236i \(0.294762\pi\)
\(654\) 0 0
\(655\) −3.85778e9 −0.536405
\(656\) 0 0
\(657\) 3.99331e9 0.549356
\(658\) 0 0
\(659\) −7.08894e9 −0.964901 −0.482450 0.875923i \(-0.660253\pi\)
−0.482450 + 0.875923i \(0.660253\pi\)
\(660\) 0 0
\(661\) −4.59534e9 −0.618889 −0.309444 0.950918i \(-0.600143\pi\)
−0.309444 + 0.950918i \(0.600143\pi\)
\(662\) 0 0
\(663\) 1.20761e10 1.60927
\(664\) 0 0
\(665\) −7.62905e8 −0.100599
\(666\) 0 0
\(667\) 3.32108e9 0.433350
\(668\) 0 0
\(669\) −1.03757e9 −0.133976
\(670\) 0 0
\(671\) −7.72126e9 −0.986641
\(672\) 0 0
\(673\) 1.26787e10 1.60333 0.801663 0.597776i \(-0.203949\pi\)
0.801663 + 0.597776i \(0.203949\pi\)
\(674\) 0 0
\(675\) 4.92500e8 0.0616373
\(676\) 0 0
\(677\) −6.00290e9 −0.743534 −0.371767 0.928326i \(-0.621248\pi\)
−0.371767 + 0.928326i \(0.621248\pi\)
\(678\) 0 0
\(679\) −3.64559e9 −0.446914
\(680\) 0 0
\(681\) 5.71351e9 0.693247
\(682\) 0 0
\(683\) −1.44747e9 −0.173835 −0.0869175 0.996216i \(-0.527702\pi\)
−0.0869175 + 0.996216i \(0.527702\pi\)
\(684\) 0 0
\(685\) −7.79733e9 −0.926892
\(686\) 0 0
\(687\) −3.38121e9 −0.397854
\(688\) 0 0
\(689\) −9.26654e9 −1.07932
\(690\) 0 0
\(691\) 8.76319e9 1.01039 0.505195 0.863005i \(-0.331421\pi\)
0.505195 + 0.863005i \(0.331421\pi\)
\(692\) 0 0
\(693\) −1.25701e9 −0.143474
\(694\) 0 0
\(695\) −3.72684e9 −0.421108
\(696\) 0 0
\(697\) 1.97166e10 2.20555
\(698\) 0 0
\(699\) −1.66188e9 −0.184047
\(700\) 0 0
\(701\) −7.63748e9 −0.837408 −0.418704 0.908123i \(-0.637516\pi\)
−0.418704 + 0.908123i \(0.637516\pi\)
\(702\) 0 0
\(703\) −1.22721e9 −0.133222
\(704\) 0 0
\(705\) 4.30419e9 0.462625
\(706\) 0 0
\(707\) 1.38611e9 0.147513
\(708\) 0 0
\(709\) 4.09420e9 0.431427 0.215714 0.976457i \(-0.430792\pi\)
0.215714 + 0.976457i \(0.430792\pi\)
\(710\) 0 0
\(711\) −4.92698e9 −0.514088
\(712\) 0 0
\(713\) 7.75029e9 0.800764
\(714\) 0 0
\(715\) −1.59549e10 −1.63239
\(716\) 0 0
\(717\) 6.97501e9 0.706688
\(718\) 0 0
\(719\) 4.10615e9 0.411987 0.205994 0.978553i \(-0.433957\pi\)
0.205994 + 0.978553i \(0.433957\pi\)
\(720\) 0 0
\(721\) −4.96439e9 −0.493279
\(722\) 0 0
\(723\) −1.04117e10 −1.02456
\(724\) 0 0
\(725\) −2.59404e9 −0.252810
\(726\) 0 0
\(727\) 1.57311e10 1.51840 0.759202 0.650855i \(-0.225589\pi\)
0.759202 + 0.650855i \(0.225589\pi\)
\(728\) 0 0
\(729\) 3.87420e8 0.0370370
\(730\) 0 0
\(731\) 1.44143e10 1.36484
\(732\) 0 0
\(733\) 1.37988e10 1.29413 0.647066 0.762434i \(-0.275996\pi\)
0.647066 + 0.762434i \(0.275996\pi\)
\(734\) 0 0
\(735\) 7.32003e8 0.0679998
\(736\) 0 0
\(737\) 2.11551e10 1.94661
\(738\) 0 0
\(739\) 1.89691e10 1.72899 0.864494 0.502642i \(-0.167639\pi\)
0.864494 + 0.502642i \(0.167639\pi\)
\(740\) 0 0
\(741\) 3.58918e9 0.324064
\(742\) 0 0
\(743\) −5.44466e9 −0.486979 −0.243489 0.969904i \(-0.578292\pi\)
−0.243489 + 0.969904i \(0.578292\pi\)
\(744\) 0 0
\(745\) −6.58936e9 −0.583843
\(746\) 0 0
\(747\) 6.09890e9 0.535340
\(748\) 0 0
\(749\) −2.36541e9 −0.205693
\(750\) 0 0
\(751\) −9.54161e9 −0.822019 −0.411010 0.911631i \(-0.634824\pi\)
−0.411010 + 0.911631i \(0.634824\pi\)
\(752\) 0 0
\(753\) −8.05752e9 −0.687732
\(754\) 0 0
\(755\) 7.28468e9 0.616022
\(756\) 0 0
\(757\) −2.53204e9 −0.212146 −0.106073 0.994358i \(-0.533828\pi\)
−0.106073 + 0.994358i \(0.533828\pi\)
\(758\) 0 0
\(759\) 4.34809e9 0.360954
\(760\) 0 0
\(761\) −1.63663e10 −1.34618 −0.673092 0.739559i \(-0.735034\pi\)
−0.673092 + 0.739559i \(0.735034\pi\)
\(762\) 0 0
\(763\) 4.83688e9 0.394212
\(764\) 0 0
\(765\) −5.45549e9 −0.440574
\(766\) 0 0
\(767\) 3.56223e10 2.85062
\(768\) 0 0
\(769\) −4.39164e9 −0.348245 −0.174123 0.984724i \(-0.555709\pi\)
−0.174123 + 0.984724i \(0.555709\pi\)
\(770\) 0 0
\(771\) 1.09582e10 0.861094
\(772\) 0 0
\(773\) −9.74170e9 −0.758589 −0.379294 0.925276i \(-0.623833\pi\)
−0.379294 + 0.925276i \(0.623833\pi\)
\(774\) 0 0
\(775\) −6.05363e9 −0.467154
\(776\) 0 0
\(777\) 1.17750e9 0.0900511
\(778\) 0 0
\(779\) 5.86006e9 0.444141
\(780\) 0 0
\(781\) −7.62972e9 −0.573099
\(782\) 0 0
\(783\) −2.04057e9 −0.151910
\(784\) 0 0
\(785\) −7.91712e9 −0.584149
\(786\) 0 0
\(787\) −1.30910e10 −0.957331 −0.478665 0.877997i \(-0.658879\pi\)
−0.478665 + 0.877997i \(0.658879\pi\)
\(788\) 0 0
\(789\) 7.13895e9 0.517446
\(790\) 0 0
\(791\) 3.30165e9 0.237199
\(792\) 0 0
\(793\) −2.11537e10 −1.50637
\(794\) 0 0
\(795\) 4.18626e9 0.295489
\(796\) 0 0
\(797\) −2.40324e10 −1.68148 −0.840741 0.541438i \(-0.817880\pi\)
−0.840741 + 0.541438i \(0.817880\pi\)
\(798\) 0 0
\(799\) 2.24653e10 1.55811
\(800\) 0 0
\(801\) −3.76898e9 −0.259126
\(802\) 0 0
\(803\) −2.75374e10 −1.87680
\(804\) 0 0
\(805\) −2.53205e9 −0.171075
\(806\) 0 0
\(807\) −5.37065e9 −0.359724
\(808\) 0 0
\(809\) 5.56860e9 0.369765 0.184883 0.982761i \(-0.440809\pi\)
0.184883 + 0.982761i \(0.440809\pi\)
\(810\) 0 0
\(811\) −4.26897e9 −0.281028 −0.140514 0.990079i \(-0.544876\pi\)
−0.140514 + 0.990079i \(0.544876\pi\)
\(812\) 0 0
\(813\) −3.79003e9 −0.247358
\(814\) 0 0
\(815\) 5.67620e9 0.367287
\(816\) 0 0
\(817\) 4.28413e9 0.274843
\(818\) 0 0
\(819\) −3.44380e9 −0.219050
\(820\) 0 0
\(821\) 2.37393e10 1.49715 0.748577 0.663048i \(-0.230737\pi\)
0.748577 + 0.663048i \(0.230737\pi\)
\(822\) 0 0
\(823\) −2.03110e10 −1.27008 −0.635040 0.772479i \(-0.719016\pi\)
−0.635040 + 0.772479i \(0.719016\pi\)
\(824\) 0 0
\(825\) −3.39622e9 −0.210575
\(826\) 0 0
\(827\) −7.03758e9 −0.432667 −0.216334 0.976319i \(-0.569410\pi\)
−0.216334 + 0.976319i \(0.569410\pi\)
\(828\) 0 0
\(829\) −2.08404e10 −1.27047 −0.635235 0.772319i \(-0.719097\pi\)
−0.635235 + 0.772319i \(0.719097\pi\)
\(830\) 0 0
\(831\) 3.78760e9 0.228961
\(832\) 0 0
\(833\) 3.82062e9 0.229021
\(834\) 0 0
\(835\) −6.94941e9 −0.413091
\(836\) 0 0
\(837\) −4.76203e9 −0.280707
\(838\) 0 0
\(839\) −8.16531e9 −0.477316 −0.238658 0.971104i \(-0.576707\pi\)
−0.238658 + 0.971104i \(0.576707\pi\)
\(840\) 0 0
\(841\) −6.50201e9 −0.376931
\(842\) 0 0
\(843\) −9.22423e9 −0.530315
\(844\) 0 0
\(845\) −2.92514e10 −1.66781
\(846\) 0 0
\(847\) 1.98408e9 0.112193
\(848\) 0 0
\(849\) −1.00937e10 −0.566076
\(850\) 0 0
\(851\) −4.07307e9 −0.226552
\(852\) 0 0
\(853\) −2.02675e10 −1.11809 −0.559047 0.829136i \(-0.688833\pi\)
−0.559047 + 0.829136i \(0.688833\pi\)
\(854\) 0 0
\(855\) −1.62145e9 −0.0887202
\(856\) 0 0
\(857\) 5.57784e9 0.302714 0.151357 0.988479i \(-0.451636\pi\)
0.151357 + 0.988479i \(0.451636\pi\)
\(858\) 0 0
\(859\) 1.21117e9 0.0651974 0.0325987 0.999469i \(-0.489622\pi\)
0.0325987 + 0.999469i \(0.489622\pi\)
\(860\) 0 0
\(861\) −5.62270e9 −0.300216
\(862\) 0 0
\(863\) 2.55888e10 1.35523 0.677615 0.735417i \(-0.263014\pi\)
0.677615 + 0.735417i \(0.263014\pi\)
\(864\) 0 0
\(865\) −1.76553e10 −0.927511
\(866\) 0 0
\(867\) −1.73952e10 −0.906491
\(868\) 0 0
\(869\) 3.39759e10 1.75631
\(870\) 0 0
\(871\) 5.79582e10 2.97202
\(872\) 0 0
\(873\) −7.74821e9 −0.394141
\(874\) 0 0
\(875\) 8.15286e9 0.411417
\(876\) 0 0
\(877\) 1.25211e10 0.626821 0.313411 0.949618i \(-0.398528\pi\)
0.313411 + 0.949618i \(0.398528\pi\)
\(878\) 0 0
\(879\) 1.91937e9 0.0953232
\(880\) 0 0
\(881\) 1.18409e10 0.583403 0.291701 0.956509i \(-0.405779\pi\)
0.291701 + 0.956509i \(0.405779\pi\)
\(882\) 0 0
\(883\) −3.56852e10 −1.74432 −0.872160 0.489221i \(-0.837281\pi\)
−0.872160 + 0.489221i \(0.837281\pi\)
\(884\) 0 0
\(885\) −1.60928e10 −0.780423
\(886\) 0 0
\(887\) 4.14449e9 0.199406 0.0997031 0.995017i \(-0.468211\pi\)
0.0997031 + 0.995017i \(0.468211\pi\)
\(888\) 0 0
\(889\) 6.06770e8 0.0289646
\(890\) 0 0
\(891\) −2.67160e9 −0.126532
\(892\) 0 0
\(893\) 6.67700e9 0.313763
\(894\) 0 0
\(895\) 8.19661e9 0.382168
\(896\) 0 0
\(897\) 1.19123e10 0.551092
\(898\) 0 0
\(899\) 2.50820e10 1.15134
\(900\) 0 0
\(901\) 2.18498e10 0.995200
\(902\) 0 0
\(903\) −4.11060e9 −0.185780
\(904\) 0 0
\(905\) −1.57883e9 −0.0708052
\(906\) 0 0
\(907\) −2.66045e10 −1.18394 −0.591971 0.805959i \(-0.701650\pi\)
−0.591971 + 0.805959i \(0.701650\pi\)
\(908\) 0 0
\(909\) 2.94600e9 0.130094
\(910\) 0 0
\(911\) −3.42503e10 −1.50090 −0.750448 0.660929i \(-0.770162\pi\)
−0.750448 + 0.660929i \(0.770162\pi\)
\(912\) 0 0
\(913\) −4.20572e10 −1.82891
\(914\) 0 0
\(915\) 9.55644e9 0.412404
\(916\) 0 0
\(917\) 5.74209e9 0.245911
\(918\) 0 0
\(919\) 2.28724e10 0.972093 0.486046 0.873933i \(-0.338439\pi\)
0.486046 + 0.873933i \(0.338439\pi\)
\(920\) 0 0
\(921\) −1.85114e10 −0.780782
\(922\) 0 0
\(923\) −2.09029e10 −0.874987
\(924\) 0 0
\(925\) 3.18141e9 0.132167
\(926\) 0 0
\(927\) −1.05511e10 −0.435031
\(928\) 0 0
\(929\) −2.31413e10 −0.946964 −0.473482 0.880803i \(-0.657003\pi\)
−0.473482 + 0.880803i \(0.657003\pi\)
\(930\) 0 0
\(931\) 1.13554e9 0.0461190
\(932\) 0 0
\(933\) −7.15186e9 −0.288293
\(934\) 0 0
\(935\) 3.76204e10 1.50516
\(936\) 0 0
\(937\) 4.19161e10 1.66453 0.832266 0.554377i \(-0.187043\pi\)
0.832266 + 0.554377i \(0.187043\pi\)
\(938\) 0 0
\(939\) 1.53780e10 0.606138
\(940\) 0 0
\(941\) 4.48967e10 1.75651 0.878255 0.478192i \(-0.158708\pi\)
0.878255 + 0.478192i \(0.158708\pi\)
\(942\) 0 0
\(943\) 1.94493e10 0.755290
\(944\) 0 0
\(945\) 1.55577e9 0.0599702
\(946\) 0 0
\(947\) −4.47628e10 −1.71274 −0.856372 0.516360i \(-0.827287\pi\)
−0.856372 + 0.516360i \(0.827287\pi\)
\(948\) 0 0
\(949\) −7.54434e10 −2.86543
\(950\) 0 0
\(951\) 2.46553e10 0.929562
\(952\) 0 0
\(953\) 2.02761e10 0.758857 0.379428 0.925221i \(-0.376121\pi\)
0.379428 + 0.925221i \(0.376121\pi\)
\(954\) 0 0
\(955\) 8.37326e9 0.311088
\(956\) 0 0
\(957\) 1.40715e10 0.518979
\(958\) 0 0
\(959\) 1.16059e10 0.424927
\(960\) 0 0
\(961\) 3.10204e10 1.12750
\(962\) 0 0
\(963\) −5.02735e9 −0.181404
\(964\) 0 0
\(965\) 2.90167e10 1.03945
\(966\) 0 0
\(967\) 2.09473e10 0.744965 0.372483 0.928039i \(-0.378507\pi\)
0.372483 + 0.928039i \(0.378507\pi\)
\(968\) 0 0
\(969\) −8.46300e9 −0.298807
\(970\) 0 0
\(971\) 1.77224e10 0.621234 0.310617 0.950535i \(-0.399464\pi\)
0.310617 + 0.950535i \(0.399464\pi\)
\(972\) 0 0
\(973\) 5.54720e9 0.193054
\(974\) 0 0
\(975\) −9.30454e9 −0.321498
\(976\) 0 0
\(977\) 1.81082e10 0.621220 0.310610 0.950538i \(-0.399467\pi\)
0.310610 + 0.950538i \(0.399467\pi\)
\(978\) 0 0
\(979\) 2.59904e10 0.885267
\(980\) 0 0
\(981\) 1.02801e10 0.347662
\(982\) 0 0
\(983\) 6.25321e9 0.209974 0.104987 0.994474i \(-0.466520\pi\)
0.104987 + 0.994474i \(0.466520\pi\)
\(984\) 0 0
\(985\) −3.83331e10 −1.27805
\(986\) 0 0
\(987\) −6.40655e9 −0.212087
\(988\) 0 0
\(989\) 1.42189e10 0.467389
\(990\) 0 0
\(991\) −1.31966e10 −0.430729 −0.215364 0.976534i \(-0.569094\pi\)
−0.215364 + 0.976534i \(0.569094\pi\)
\(992\) 0 0
\(993\) 1.18563e10 0.384260
\(994\) 0 0
\(995\) 1.75839e10 0.565893
\(996\) 0 0
\(997\) −1.14508e10 −0.365934 −0.182967 0.983119i \(-0.558570\pi\)
−0.182967 + 0.983119i \(0.558570\pi\)
\(998\) 0 0
\(999\) 2.50263e9 0.0794176
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 84.8.a.c.1.1 2
3.2 odd 2 252.8.a.c.1.2 2
4.3 odd 2 336.8.a.q.1.1 2
7.2 even 3 588.8.i.k.361.2 4
7.3 odd 6 588.8.i.j.373.1 4
7.4 even 3 588.8.i.k.373.2 4
7.5 odd 6 588.8.i.j.361.1 4
7.6 odd 2 588.8.a.f.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
84.8.a.c.1.1 2 1.1 even 1 trivial
252.8.a.c.1.2 2 3.2 odd 2
336.8.a.q.1.1 2 4.3 odd 2
588.8.a.f.1.2 2 7.6 odd 2
588.8.i.j.361.1 4 7.5 odd 6
588.8.i.j.373.1 4 7.3 odd 6
588.8.i.k.361.2 4 7.2 even 3
588.8.i.k.373.2 4 7.4 even 3