Properties

Label 84.8.a.c
Level $84$
Weight $8$
Character orbit 84.a
Self dual yes
Analytic conductor $26.240$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [84,8,Mod(1,84)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(84, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("84.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 84 = 2^{2} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 84.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.2403421407\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{3649}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 912 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 3 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 6\sqrt{3649}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 27 q^{3} + ( - \beta + 132) q^{5} + 343 q^{7} + 729 q^{9} + ( - 7 \beta - 2490) q^{11} + ( - 24 \beta - 5074) q^{13} + (27 \beta - 3564) q^{15} + (65 \beta + 8916) q^{17} + (18 \beta + 3128) q^{19}+ \cdots + ( - 5103 \beta - 1815210) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 54 q^{3} + 264 q^{5} + 686 q^{7} + 1458 q^{9} - 4980 q^{11} - 10148 q^{13} - 7128 q^{15} + 17832 q^{17} + 6256 q^{19} - 18522 q^{21} + 14052 q^{23} + 141326 q^{25} - 39366 q^{27} + 243588 q^{29} + 470824 q^{31}+ \cdots - 3630420 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
30.7035
−29.7035
0 −27.0000 0 −230.442 0 343.000 0 729.000 0
1.2 0 −27.0000 0 494.442 0 343.000 0 729.000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 84.8.a.c 2
3.b odd 2 1 252.8.a.c 2
4.b odd 2 1 336.8.a.q 2
7.b odd 2 1 588.8.a.f 2
7.c even 3 2 588.8.i.k 4
7.d odd 6 2 588.8.i.j 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
84.8.a.c 2 1.a even 1 1 trivial
252.8.a.c 2 3.b odd 2 1
336.8.a.q 2 4.b odd 2 1
588.8.a.f 2 7.b odd 2 1
588.8.i.j 4 7.d odd 6 2
588.8.i.k 4 7.c even 3 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} - 264T_{5} - 113940 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(84))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T + 27)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 264T - 113940 \) Copy content Toggle raw display
$7$ \( (T - 343)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 4980 T - 236736 \) Copy content Toggle raw display
$13$ \( T^{2} + 10148 T - 49920188 \) Copy content Toggle raw display
$17$ \( T^{2} - 17832 T - 475517844 \) Copy content Toggle raw display
$19$ \( T^{2} - 6256 T - 32777552 \) Copy content Toggle raw display
$23$ \( T^{2} - 14052 T - 576059328 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots + 14505368436 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots + 55376247808 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots - 55723566236 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots + 189493906140 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots - 246999010736 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots - 549432902016 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots + 1377408671172 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots - 6640635738384 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots - 3780042097868 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots - 9067890068432 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 3623141894400 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 10805280342380 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots - 795441820160 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots - 4261335046704 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 21509111254428 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 89368449155180 \) Copy content Toggle raw display
show more
show less