Properties

Label 84.8.a.b
Level $84$
Weight $8$
Character orbit 84.a
Self dual yes
Analytic conductor $26.240$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [84,8,Mod(1,84)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(84, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("84.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 84 = 2^{2} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 84.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.2403421407\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 27 q^{3} - 240 q^{5} + 343 q^{7} + 729 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + 27 q^{3} - 240 q^{5} + 343 q^{7} + 729 q^{9} + 702 q^{11} - 3958 q^{13} - 6480 q^{15} - 3408 q^{17} - 49036 q^{19} + 9261 q^{21} - 11514 q^{23} - 20525 q^{25} + 19683 q^{27} + 49662 q^{29} - 113320 q^{31} + 18954 q^{33} - 82320 q^{35} - 66886 q^{37} - 106866 q^{39} - 360900 q^{41} - 765292 q^{43} - 174960 q^{45} - 1344876 q^{47} + 117649 q^{49} - 92016 q^{51} + 358962 q^{53} - 168480 q^{55} - 1323972 q^{57} + 930528 q^{59} - 1318834 q^{61} + 250047 q^{63} + 949920 q^{65} + 1893464 q^{67} - 310878 q^{69} + 227994 q^{71} + 784934 q^{73} - 554175 q^{75} + 240786 q^{77} - 2100892 q^{79} + 531441 q^{81} + 8629308 q^{83} + 817920 q^{85} + 1340874 q^{87} + 5903100 q^{89} - 1357594 q^{91} - 3059640 q^{93} + 11768640 q^{95} + 773846 q^{97} + 511758 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 27.0000 0 −240.000 0 343.000 0 729.000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 84.8.a.b 1
3.b odd 2 1 252.8.a.b 1
4.b odd 2 1 336.8.a.c 1
7.b odd 2 1 588.8.a.b 1
7.c even 3 2 588.8.i.d 2
7.d odd 6 2 588.8.i.e 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
84.8.a.b 1 1.a even 1 1 trivial
252.8.a.b 1 3.b odd 2 1
336.8.a.c 1 4.b odd 2 1
588.8.a.b 1 7.b odd 2 1
588.8.i.d 2 7.c even 3 2
588.8.i.e 2 7.d odd 6 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5} + 240 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(84))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 27 \) Copy content Toggle raw display
$5$ \( T + 240 \) Copy content Toggle raw display
$7$ \( T - 343 \) Copy content Toggle raw display
$11$ \( T - 702 \) Copy content Toggle raw display
$13$ \( T + 3958 \) Copy content Toggle raw display
$17$ \( T + 3408 \) Copy content Toggle raw display
$19$ \( T + 49036 \) Copy content Toggle raw display
$23$ \( T + 11514 \) Copy content Toggle raw display
$29$ \( T - 49662 \) Copy content Toggle raw display
$31$ \( T + 113320 \) Copy content Toggle raw display
$37$ \( T + 66886 \) Copy content Toggle raw display
$41$ \( T + 360900 \) Copy content Toggle raw display
$43$ \( T + 765292 \) Copy content Toggle raw display
$47$ \( T + 1344876 \) Copy content Toggle raw display
$53$ \( T - 358962 \) Copy content Toggle raw display
$59$ \( T - 930528 \) Copy content Toggle raw display
$61$ \( T + 1318834 \) Copy content Toggle raw display
$67$ \( T - 1893464 \) Copy content Toggle raw display
$71$ \( T - 227994 \) Copy content Toggle raw display
$73$ \( T - 784934 \) Copy content Toggle raw display
$79$ \( T + 2100892 \) Copy content Toggle raw display
$83$ \( T - 8629308 \) Copy content Toggle raw display
$89$ \( T - 5903100 \) Copy content Toggle raw display
$97$ \( T - 773846 \) Copy content Toggle raw display
show more
show less