Properties

Label 84.6.a.d.1.2
Level $84$
Weight $6$
Character 84.1
Self dual yes
Analytic conductor $13.472$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [84,6,Mod(1,84)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(84, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("84.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 84 = 2^{2} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 84.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.4722408643\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{505}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 126 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2\cdot 3 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-10.7361\) of defining polynomial
Character \(\chi\) \(=\) 84.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+9.00000 q^{3} +106.417 q^{5} +49.0000 q^{7} +81.0000 q^{9} +O(q^{10})\) \(q+9.00000 q^{3} +106.417 q^{5} +49.0000 q^{7} +81.0000 q^{9} -250.083 q^{11} -300.500 q^{13} +957.750 q^{15} +2021.92 q^{17} -2251.00 q^{19} +441.000 q^{21} +3092.75 q^{23} +8199.50 q^{25} +729.000 q^{27} -6603.66 q^{29} +833.002 q^{31} -2250.75 q^{33} +5214.41 q^{35} +8954.50 q^{37} -2704.50 q^{39} -7206.58 q^{41} +14446.0 q^{43} +8619.75 q^{45} -17968.2 q^{47} +2401.00 q^{49} +18197.2 q^{51} -15810.5 q^{53} -26613.0 q^{55} -20259.0 q^{57} -26710.5 q^{59} -26799.0 q^{61} +3969.00 q^{63} -31978.2 q^{65} -44494.5 q^{67} +27834.7 q^{69} -20414.1 q^{71} +38742.5 q^{73} +73795.5 q^{75} -12254.1 q^{77} -67211.5 q^{79} +6561.00 q^{81} -35850.7 q^{83} +215165. q^{85} -59433.0 q^{87} +106267. q^{89} -14724.5 q^{91} +7497.02 q^{93} -239544. q^{95} +98133.5 q^{97} -20256.7 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 18 q^{3} + 78 q^{5} + 98 q^{7} + 162 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 18 q^{3} + 78 q^{5} + 98 q^{7} + 162 q^{9} + 174 q^{11} + 208 q^{13} + 702 q^{15} + 1482 q^{17} + 352 q^{19} + 882 q^{21} + 3354 q^{23} + 5882 q^{25} + 1458 q^{27} + 276 q^{29} + 6520 q^{31} + 1566 q^{33} + 3822 q^{35} + 13864 q^{37} + 1872 q^{39} - 12930 q^{41} + 12712 q^{43} + 6318 q^{45} - 28116 q^{47} + 4802 q^{49} + 13338 q^{51} - 46992 q^{53} - 38664 q^{55} + 3168 q^{57} - 65556 q^{59} - 13148 q^{61} + 7938 q^{63} - 46428 q^{65} - 75236 q^{67} + 30186 q^{69} - 66042 q^{71} + 60496 q^{73} + 52938 q^{75} + 8526 q^{77} - 34916 q^{79} + 13122 q^{81} - 82488 q^{83} + 230508 q^{85} + 2484 q^{87} + 42510 q^{89} + 10192 q^{91} + 58680 q^{93} - 313512 q^{95} + 213256 q^{97} + 14094 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 9.00000 0.577350
\(4\) 0 0
\(5\) 106.417 1.90364 0.951819 0.306660i \(-0.0992114\pi\)
0.951819 + 0.306660i \(0.0992114\pi\)
\(6\) 0 0
\(7\) 49.0000 0.377964
\(8\) 0 0
\(9\) 81.0000 0.333333
\(10\) 0 0
\(11\) −250.083 −0.623164 −0.311582 0.950219i \(-0.600859\pi\)
−0.311582 + 0.950219i \(0.600859\pi\)
\(12\) 0 0
\(13\) −300.500 −0.493158 −0.246579 0.969123i \(-0.579306\pi\)
−0.246579 + 0.969123i \(0.579306\pi\)
\(14\) 0 0
\(15\) 957.750 1.09907
\(16\) 0 0
\(17\) 2021.92 1.69684 0.848420 0.529324i \(-0.177554\pi\)
0.848420 + 0.529324i \(0.177554\pi\)
\(18\) 0 0
\(19\) −2251.00 −1.43051 −0.715255 0.698863i \(-0.753690\pi\)
−0.715255 + 0.698863i \(0.753690\pi\)
\(20\) 0 0
\(21\) 441.000 0.218218
\(22\) 0 0
\(23\) 3092.75 1.21906 0.609530 0.792763i \(-0.291358\pi\)
0.609530 + 0.792763i \(0.291358\pi\)
\(24\) 0 0
\(25\) 8199.50 2.62384
\(26\) 0 0
\(27\) 729.000 0.192450
\(28\) 0 0
\(29\) −6603.66 −1.45811 −0.729054 0.684456i \(-0.760040\pi\)
−0.729054 + 0.684456i \(0.760040\pi\)
\(30\) 0 0
\(31\) 833.002 0.155683 0.0778416 0.996966i \(-0.475197\pi\)
0.0778416 + 0.996966i \(0.475197\pi\)
\(32\) 0 0
\(33\) −2250.75 −0.359784
\(34\) 0 0
\(35\) 5214.41 0.719508
\(36\) 0 0
\(37\) 8954.50 1.07532 0.537659 0.843162i \(-0.319309\pi\)
0.537659 + 0.843162i \(0.319309\pi\)
\(38\) 0 0
\(39\) −2704.50 −0.284725
\(40\) 0 0
\(41\) −7206.58 −0.669530 −0.334765 0.942302i \(-0.608657\pi\)
−0.334765 + 0.942302i \(0.608657\pi\)
\(42\) 0 0
\(43\) 14446.0 1.19145 0.595726 0.803188i \(-0.296865\pi\)
0.595726 + 0.803188i \(0.296865\pi\)
\(44\) 0 0
\(45\) 8619.75 0.634546
\(46\) 0 0
\(47\) −17968.2 −1.18648 −0.593238 0.805027i \(-0.702151\pi\)
−0.593238 + 0.805027i \(0.702151\pi\)
\(48\) 0 0
\(49\) 2401.00 0.142857
\(50\) 0 0
\(51\) 18197.2 0.979671
\(52\) 0 0
\(53\) −15810.5 −0.773136 −0.386568 0.922261i \(-0.626340\pi\)
−0.386568 + 0.922261i \(0.626340\pi\)
\(54\) 0 0
\(55\) −26613.0 −1.18628
\(56\) 0 0
\(57\) −20259.0 −0.825906
\(58\) 0 0
\(59\) −26710.5 −0.998969 −0.499485 0.866323i \(-0.666477\pi\)
−0.499485 + 0.866323i \(0.666477\pi\)
\(60\) 0 0
\(61\) −26799.0 −0.922133 −0.461067 0.887365i \(-0.652533\pi\)
−0.461067 + 0.887365i \(0.652533\pi\)
\(62\) 0 0
\(63\) 3969.00 0.125988
\(64\) 0 0
\(65\) −31978.2 −0.938794
\(66\) 0 0
\(67\) −44494.5 −1.21093 −0.605465 0.795872i \(-0.707013\pi\)
−0.605465 + 0.795872i \(0.707013\pi\)
\(68\) 0 0
\(69\) 27834.7 0.703825
\(70\) 0 0
\(71\) −20414.1 −0.480600 −0.240300 0.970699i \(-0.577246\pi\)
−0.240300 + 0.970699i \(0.577246\pi\)
\(72\) 0 0
\(73\) 38742.5 0.850904 0.425452 0.904981i \(-0.360115\pi\)
0.425452 + 0.904981i \(0.360115\pi\)
\(74\) 0 0
\(75\) 73795.5 1.51487
\(76\) 0 0
\(77\) −12254.1 −0.235534
\(78\) 0 0
\(79\) −67211.5 −1.21165 −0.605823 0.795600i \(-0.707156\pi\)
−0.605823 + 0.795600i \(0.707156\pi\)
\(80\) 0 0
\(81\) 6561.00 0.111111
\(82\) 0 0
\(83\) −35850.7 −0.571218 −0.285609 0.958346i \(-0.592196\pi\)
−0.285609 + 0.958346i \(0.592196\pi\)
\(84\) 0 0
\(85\) 215165. 3.23017
\(86\) 0 0
\(87\) −59433.0 −0.841839
\(88\) 0 0
\(89\) 106267. 1.42208 0.711041 0.703150i \(-0.248224\pi\)
0.711041 + 0.703150i \(0.248224\pi\)
\(90\) 0 0
\(91\) −14724.5 −0.186396
\(92\) 0 0
\(93\) 7497.02 0.0898837
\(94\) 0 0
\(95\) −239544. −2.72318
\(96\) 0 0
\(97\) 98133.5 1.05898 0.529490 0.848316i \(-0.322383\pi\)
0.529490 + 0.848316i \(0.322383\pi\)
\(98\) 0 0
\(99\) −20256.7 −0.207721
\(100\) 0 0
\(101\) −50480.7 −0.492404 −0.246202 0.969219i \(-0.579183\pi\)
−0.246202 + 0.969219i \(0.579183\pi\)
\(102\) 0 0
\(103\) −14246.0 −0.132312 −0.0661561 0.997809i \(-0.521074\pi\)
−0.0661561 + 0.997809i \(0.521074\pi\)
\(104\) 0 0
\(105\) 46929.7 0.415408
\(106\) 0 0
\(107\) 39457.9 0.333176 0.166588 0.986027i \(-0.446725\pi\)
0.166588 + 0.986027i \(0.446725\pi\)
\(108\) 0 0
\(109\) 14194.0 0.114430 0.0572148 0.998362i \(-0.481778\pi\)
0.0572148 + 0.998362i \(0.481778\pi\)
\(110\) 0 0
\(111\) 80590.5 0.620835
\(112\) 0 0
\(113\) −114936. −0.846761 −0.423380 0.905952i \(-0.639157\pi\)
−0.423380 + 0.905952i \(0.639157\pi\)
\(114\) 0 0
\(115\) 329120. 2.32065
\(116\) 0 0
\(117\) −24340.5 −0.164386
\(118\) 0 0
\(119\) 99073.9 0.641345
\(120\) 0 0
\(121\) −98509.5 −0.611666
\(122\) 0 0
\(123\) −64859.2 −0.386553
\(124\) 0 0
\(125\) 540011. 3.09120
\(126\) 0 0
\(127\) 194998. 1.07281 0.536404 0.843961i \(-0.319782\pi\)
0.536404 + 0.843961i \(0.319782\pi\)
\(128\) 0 0
\(129\) 130014. 0.687885
\(130\) 0 0
\(131\) −200981. −1.02324 −0.511619 0.859212i \(-0.670954\pi\)
−0.511619 + 0.859212i \(0.670954\pi\)
\(132\) 0 0
\(133\) −110299. −0.540682
\(134\) 0 0
\(135\) 77577.7 0.366355
\(136\) 0 0
\(137\) 60872.4 0.277089 0.138544 0.990356i \(-0.455758\pi\)
0.138544 + 0.990356i \(0.455758\pi\)
\(138\) 0 0
\(139\) −386638. −1.69733 −0.848667 0.528928i \(-0.822594\pi\)
−0.848667 + 0.528928i \(0.822594\pi\)
\(140\) 0 0
\(141\) −161713. −0.685012
\(142\) 0 0
\(143\) 75149.9 0.307318
\(144\) 0 0
\(145\) −702739. −2.77571
\(146\) 0 0
\(147\) 21609.0 0.0824786
\(148\) 0 0
\(149\) −152878. −0.564132 −0.282066 0.959395i \(-0.591020\pi\)
−0.282066 + 0.959395i \(0.591020\pi\)
\(150\) 0 0
\(151\) −134322. −0.479408 −0.239704 0.970846i \(-0.577050\pi\)
−0.239704 + 0.970846i \(0.577050\pi\)
\(152\) 0 0
\(153\) 163775. 0.565613
\(154\) 0 0
\(155\) 88645.2 0.296364
\(156\) 0 0
\(157\) 80730.0 0.261388 0.130694 0.991423i \(-0.458279\pi\)
0.130694 + 0.991423i \(0.458279\pi\)
\(158\) 0 0
\(159\) −142295. −0.446370
\(160\) 0 0
\(161\) 151545. 0.460761
\(162\) 0 0
\(163\) 90972.2 0.268188 0.134094 0.990969i \(-0.457188\pi\)
0.134094 + 0.990969i \(0.457188\pi\)
\(164\) 0 0
\(165\) −239517. −0.684899
\(166\) 0 0
\(167\) −70407.3 −0.195356 −0.0976779 0.995218i \(-0.531142\pi\)
−0.0976779 + 0.995218i \(0.531142\pi\)
\(168\) 0 0
\(169\) −280993. −0.756796
\(170\) 0 0
\(171\) −182331. −0.476837
\(172\) 0 0
\(173\) −304829. −0.774356 −0.387178 0.922005i \(-0.626550\pi\)
−0.387178 + 0.922005i \(0.626550\pi\)
\(174\) 0 0
\(175\) 401775. 0.991718
\(176\) 0 0
\(177\) −240395. −0.576755
\(178\) 0 0
\(179\) −586010. −1.36701 −0.683506 0.729945i \(-0.739546\pi\)
−0.683506 + 0.729945i \(0.739546\pi\)
\(180\) 0 0
\(181\) 797296. 1.80894 0.904468 0.426542i \(-0.140268\pi\)
0.904468 + 0.426542i \(0.140268\pi\)
\(182\) 0 0
\(183\) −241191. −0.532394
\(184\) 0 0
\(185\) 952907. 2.04702
\(186\) 0 0
\(187\) −505647. −1.05741
\(188\) 0 0
\(189\) 35721.0 0.0727393
\(190\) 0 0
\(191\) −150935. −0.299369 −0.149684 0.988734i \(-0.547826\pi\)
−0.149684 + 0.988734i \(0.547826\pi\)
\(192\) 0 0
\(193\) −701556. −1.35572 −0.677859 0.735192i \(-0.737092\pi\)
−0.677859 + 0.735192i \(0.737092\pi\)
\(194\) 0 0
\(195\) −287803. −0.542013
\(196\) 0 0
\(197\) 605633. 1.11184 0.555922 0.831234i \(-0.312365\pi\)
0.555922 + 0.831234i \(0.312365\pi\)
\(198\) 0 0
\(199\) 155407. 0.278188 0.139094 0.990279i \(-0.455581\pi\)
0.139094 + 0.990279i \(0.455581\pi\)
\(200\) 0 0
\(201\) −400450. −0.699131
\(202\) 0 0
\(203\) −323579. −0.551113
\(204\) 0 0
\(205\) −766900. −1.27454
\(206\) 0 0
\(207\) 250513. 0.406353
\(208\) 0 0
\(209\) 562937. 0.891443
\(210\) 0 0
\(211\) 305091. 0.471762 0.235881 0.971782i \(-0.424202\pi\)
0.235881 + 0.971782i \(0.424202\pi\)
\(212\) 0 0
\(213\) −183727. −0.277475
\(214\) 0 0
\(215\) 1.53729e6 2.26809
\(216\) 0 0
\(217\) 40817.1 0.0588427
\(218\) 0 0
\(219\) 348682. 0.491269
\(220\) 0 0
\(221\) −607585. −0.836809
\(222\) 0 0
\(223\) 1.35555e6 1.82538 0.912688 0.408658i \(-0.134003\pi\)
0.912688 + 0.408658i \(0.134003\pi\)
\(224\) 0 0
\(225\) 664159. 0.874613
\(226\) 0 0
\(227\) 234584. 0.302157 0.151079 0.988522i \(-0.451725\pi\)
0.151079 + 0.988522i \(0.451725\pi\)
\(228\) 0 0
\(229\) 1.47823e6 1.86274 0.931369 0.364076i \(-0.118615\pi\)
0.931369 + 0.364076i \(0.118615\pi\)
\(230\) 0 0
\(231\) −110287. −0.135986
\(232\) 0 0
\(233\) 262304. 0.316531 0.158265 0.987397i \(-0.449410\pi\)
0.158265 + 0.987397i \(0.449410\pi\)
\(234\) 0 0
\(235\) −1.91211e6 −2.25862
\(236\) 0 0
\(237\) −604903. −0.699544
\(238\) 0 0
\(239\) 1.62761e6 1.84312 0.921562 0.388232i \(-0.126914\pi\)
0.921562 + 0.388232i \(0.126914\pi\)
\(240\) 0 0
\(241\) −1.25026e6 −1.38662 −0.693310 0.720639i \(-0.743849\pi\)
−0.693310 + 0.720639i \(0.743849\pi\)
\(242\) 0 0
\(243\) 59049.0 0.0641500
\(244\) 0 0
\(245\) 255506. 0.271948
\(246\) 0 0
\(247\) 676424. 0.705467
\(248\) 0 0
\(249\) −322656. −0.329793
\(250\) 0 0
\(251\) 193945. 0.194310 0.0971549 0.995269i \(-0.469026\pi\)
0.0971549 + 0.995269i \(0.469026\pi\)
\(252\) 0 0
\(253\) −773444. −0.759675
\(254\) 0 0
\(255\) 1.93649e6 1.86494
\(256\) 0 0
\(257\) −254093. −0.239972 −0.119986 0.992776i \(-0.538285\pi\)
−0.119986 + 0.992776i \(0.538285\pi\)
\(258\) 0 0
\(259\) 438770. 0.406432
\(260\) 0 0
\(261\) −534897. −0.486036
\(262\) 0 0
\(263\) −746211. −0.665230 −0.332615 0.943063i \(-0.607931\pi\)
−0.332615 + 0.943063i \(0.607931\pi\)
\(264\) 0 0
\(265\) −1.68250e6 −1.47177
\(266\) 0 0
\(267\) 956406. 0.821040
\(268\) 0 0
\(269\) −1.87146e6 −1.57689 −0.788444 0.615107i \(-0.789113\pi\)
−0.788444 + 0.615107i \(0.789113\pi\)
\(270\) 0 0
\(271\) 98046.4 0.0810977 0.0405488 0.999178i \(-0.487089\pi\)
0.0405488 + 0.999178i \(0.487089\pi\)
\(272\) 0 0
\(273\) −132520. −0.107616
\(274\) 0 0
\(275\) −2.05056e6 −1.63508
\(276\) 0 0
\(277\) 1.57273e6 1.23156 0.615781 0.787918i \(-0.288841\pi\)
0.615781 + 0.787918i \(0.288841\pi\)
\(278\) 0 0
\(279\) 67473.2 0.0518944
\(280\) 0 0
\(281\) 1.88960e6 1.42759 0.713797 0.700352i \(-0.246974\pi\)
0.713797 + 0.700352i \(0.246974\pi\)
\(282\) 0 0
\(283\) 1.94676e6 1.44493 0.722464 0.691409i \(-0.243010\pi\)
0.722464 + 0.691409i \(0.243010\pi\)
\(284\) 0 0
\(285\) −2.15589e6 −1.57223
\(286\) 0 0
\(287\) −353123. −0.253058
\(288\) 0 0
\(289\) 2.66829e6 1.87926
\(290\) 0 0
\(291\) 883202. 0.611403
\(292\) 0 0
\(293\) 238275. 0.162147 0.0810735 0.996708i \(-0.474165\pi\)
0.0810735 + 0.996708i \(0.474165\pi\)
\(294\) 0 0
\(295\) −2.84244e6 −1.90168
\(296\) 0 0
\(297\) −182311. −0.119928
\(298\) 0 0
\(299\) −929370. −0.601189
\(300\) 0 0
\(301\) 707854. 0.450326
\(302\) 0 0
\(303\) −454326. −0.284290
\(304\) 0 0
\(305\) −2.85186e6 −1.75541
\(306\) 0 0
\(307\) 1.70996e6 1.03547 0.517737 0.855540i \(-0.326775\pi\)
0.517737 + 0.855540i \(0.326775\pi\)
\(308\) 0 0
\(309\) −128214. −0.0763905
\(310\) 0 0
\(311\) 301648. 0.176848 0.0884240 0.996083i \(-0.471817\pi\)
0.0884240 + 0.996083i \(0.471817\pi\)
\(312\) 0 0
\(313\) −399739. −0.230630 −0.115315 0.993329i \(-0.536788\pi\)
−0.115315 + 0.993329i \(0.536788\pi\)
\(314\) 0 0
\(315\) 422368. 0.239836
\(316\) 0 0
\(317\) −479312. −0.267899 −0.133949 0.990988i \(-0.542766\pi\)
−0.133949 + 0.990988i \(0.542766\pi\)
\(318\) 0 0
\(319\) 1.65146e6 0.908641
\(320\) 0 0
\(321\) 355121. 0.192359
\(322\) 0 0
\(323\) −4.55133e6 −2.42735
\(324\) 0 0
\(325\) −2.46395e6 −1.29397
\(326\) 0 0
\(327\) 127746. 0.0660660
\(328\) 0 0
\(329\) −880440. −0.448446
\(330\) 0 0
\(331\) 52366.6 0.0262715 0.0131357 0.999914i \(-0.495819\pi\)
0.0131357 + 0.999914i \(0.495819\pi\)
\(332\) 0 0
\(333\) 725314. 0.358439
\(334\) 0 0
\(335\) −4.73495e6 −2.30517
\(336\) 0 0
\(337\) −2.31382e6 −1.10983 −0.554913 0.831909i \(-0.687248\pi\)
−0.554913 + 0.831909i \(0.687248\pi\)
\(338\) 0 0
\(339\) −1.03443e6 −0.488878
\(340\) 0 0
\(341\) −208320. −0.0970162
\(342\) 0 0
\(343\) 117649. 0.0539949
\(344\) 0 0
\(345\) 2.96208e6 1.33983
\(346\) 0 0
\(347\) 3.82303e6 1.70445 0.852225 0.523175i \(-0.175253\pi\)
0.852225 + 0.523175i \(0.175253\pi\)
\(348\) 0 0
\(349\) −3.19867e6 −1.40574 −0.702872 0.711316i \(-0.748099\pi\)
−0.702872 + 0.711316i \(0.748099\pi\)
\(350\) 0 0
\(351\) −219064. −0.0949082
\(352\) 0 0
\(353\) 1.47712e6 0.630927 0.315464 0.948938i \(-0.397840\pi\)
0.315464 + 0.948938i \(0.397840\pi\)
\(354\) 0 0
\(355\) −2.17240e6 −0.914890
\(356\) 0 0
\(357\) 891665. 0.370281
\(358\) 0 0
\(359\) −1.12162e6 −0.459315 −0.229657 0.973272i \(-0.573761\pi\)
−0.229657 + 0.973272i \(0.573761\pi\)
\(360\) 0 0
\(361\) 2.59089e6 1.04636
\(362\) 0 0
\(363\) −886585. −0.353146
\(364\) 0 0
\(365\) 4.12285e6 1.61981
\(366\) 0 0
\(367\) 2.40681e6 0.932774 0.466387 0.884581i \(-0.345555\pi\)
0.466387 + 0.884581i \(0.345555\pi\)
\(368\) 0 0
\(369\) −583733. −0.223177
\(370\) 0 0
\(371\) −774715. −0.292218
\(372\) 0 0
\(373\) 1.38495e6 0.515421 0.257711 0.966222i \(-0.417032\pi\)
0.257711 + 0.966222i \(0.417032\pi\)
\(374\) 0 0
\(375\) 4.86010e6 1.78471
\(376\) 0 0
\(377\) 1.98440e6 0.719077
\(378\) 0 0
\(379\) 2.35789e6 0.843190 0.421595 0.906784i \(-0.361470\pi\)
0.421595 + 0.906784i \(0.361470\pi\)
\(380\) 0 0
\(381\) 1.75499e6 0.619386
\(382\) 0 0
\(383\) 3.67412e6 1.27984 0.639922 0.768440i \(-0.278967\pi\)
0.639922 + 0.768440i \(0.278967\pi\)
\(384\) 0 0
\(385\) −1.30404e6 −0.448371
\(386\) 0 0
\(387\) 1.17013e6 0.397150
\(388\) 0 0
\(389\) 123837. 0.0414932 0.0207466 0.999785i \(-0.493396\pi\)
0.0207466 + 0.999785i \(0.493396\pi\)
\(390\) 0 0
\(391\) 6.25328e6 2.06855
\(392\) 0 0
\(393\) −1.80883e6 −0.590767
\(394\) 0 0
\(395\) −7.15242e6 −2.30653
\(396\) 0 0
\(397\) −1.66109e6 −0.528954 −0.264477 0.964392i \(-0.585199\pi\)
−0.264477 + 0.964392i \(0.585199\pi\)
\(398\) 0 0
\(399\) −992690. −0.312163
\(400\) 0 0
\(401\) −291011. −0.0903750 −0.0451875 0.998979i \(-0.514389\pi\)
−0.0451875 + 0.998979i \(0.514389\pi\)
\(402\) 0 0
\(403\) −250317. −0.0767763
\(404\) 0 0
\(405\) 698199. 0.211515
\(406\) 0 0
\(407\) −2.23937e6 −0.670100
\(408\) 0 0
\(409\) 1.64280e6 0.485597 0.242798 0.970077i \(-0.421935\pi\)
0.242798 + 0.970077i \(0.421935\pi\)
\(410\) 0 0
\(411\) 547851. 0.159977
\(412\) 0 0
\(413\) −1.30881e6 −0.377575
\(414\) 0 0
\(415\) −3.81511e6 −1.08739
\(416\) 0 0
\(417\) −3.47974e6 −0.979956
\(418\) 0 0
\(419\) 4.89016e6 1.36078 0.680391 0.732850i \(-0.261810\pi\)
0.680391 + 0.732850i \(0.261810\pi\)
\(420\) 0 0
\(421\) 3.91443e6 1.07637 0.538187 0.842825i \(-0.319109\pi\)
0.538187 + 0.842825i \(0.319109\pi\)
\(422\) 0 0
\(423\) −1.45542e6 −0.395492
\(424\) 0 0
\(425\) 1.65787e7 4.45223
\(426\) 0 0
\(427\) −1.31315e6 −0.348534
\(428\) 0 0
\(429\) 676349. 0.177430
\(430\) 0 0
\(431\) −461156. −0.119579 −0.0597895 0.998211i \(-0.519043\pi\)
−0.0597895 + 0.998211i \(0.519043\pi\)
\(432\) 0 0
\(433\) −7.23092e6 −1.85342 −0.926711 0.375776i \(-0.877376\pi\)
−0.926711 + 0.375776i \(0.877376\pi\)
\(434\) 0 0
\(435\) −6.32465e6 −1.60256
\(436\) 0 0
\(437\) −6.96177e6 −1.74388
\(438\) 0 0
\(439\) 243865. 0.0603932 0.0301966 0.999544i \(-0.490387\pi\)
0.0301966 + 0.999544i \(0.490387\pi\)
\(440\) 0 0
\(441\) 194481. 0.0476190
\(442\) 0 0
\(443\) −7.58521e6 −1.83636 −0.918181 0.396162i \(-0.870342\pi\)
−0.918181 + 0.396162i \(0.870342\pi\)
\(444\) 0 0
\(445\) 1.13086e7 2.70713
\(446\) 0 0
\(447\) −1.37591e6 −0.325702
\(448\) 0 0
\(449\) −117953. −0.0276118 −0.0138059 0.999905i \(-0.504395\pi\)
−0.0138059 + 0.999905i \(0.504395\pi\)
\(450\) 0 0
\(451\) 1.80224e6 0.417227
\(452\) 0 0
\(453\) −1.20890e6 −0.276786
\(454\) 0 0
\(455\) −1.56693e6 −0.354831
\(456\) 0 0
\(457\) 4.31220e6 0.965848 0.482924 0.875662i \(-0.339575\pi\)
0.482924 + 0.875662i \(0.339575\pi\)
\(458\) 0 0
\(459\) 1.47398e6 0.326557
\(460\) 0 0
\(461\) 1.82503e6 0.399960 0.199980 0.979800i \(-0.435912\pi\)
0.199980 + 0.979800i \(0.435912\pi\)
\(462\) 0 0
\(463\) 4.94213e6 1.07143 0.535713 0.844400i \(-0.320043\pi\)
0.535713 + 0.844400i \(0.320043\pi\)
\(464\) 0 0
\(465\) 797807. 0.171106
\(466\) 0 0
\(467\) 8.24041e6 1.74846 0.874232 0.485508i \(-0.161365\pi\)
0.874232 + 0.485508i \(0.161365\pi\)
\(468\) 0 0
\(469\) −2.18023e6 −0.457689
\(470\) 0 0
\(471\) 726570. 0.150912
\(472\) 0 0
\(473\) −3.61270e6 −0.742470
\(474\) 0 0
\(475\) −1.84571e7 −3.75343
\(476\) 0 0
\(477\) −1.28065e6 −0.257712
\(478\) 0 0
\(479\) 1.06615e6 0.212315 0.106158 0.994349i \(-0.466145\pi\)
0.106158 + 0.994349i \(0.466145\pi\)
\(480\) 0 0
\(481\) −2.69082e6 −0.530301
\(482\) 0 0
\(483\) 1.36390e6 0.266021
\(484\) 0 0
\(485\) 1.04430e7 2.01592
\(486\) 0 0
\(487\) 2.25993e6 0.431790 0.215895 0.976417i \(-0.430733\pi\)
0.215895 + 0.976417i \(0.430733\pi\)
\(488\) 0 0
\(489\) 818750. 0.154839
\(490\) 0 0
\(491\) −3.15916e6 −0.591382 −0.295691 0.955284i \(-0.595550\pi\)
−0.295691 + 0.955284i \(0.595550\pi\)
\(492\) 0 0
\(493\) −1.33520e7 −2.47418
\(494\) 0 0
\(495\) −2.15565e6 −0.395426
\(496\) 0 0
\(497\) −1.00029e6 −0.181650
\(498\) 0 0
\(499\) −7.40623e6 −1.33151 −0.665757 0.746168i \(-0.731891\pi\)
−0.665757 + 0.746168i \(0.731891\pi\)
\(500\) 0 0
\(501\) −633666. −0.112789
\(502\) 0 0
\(503\) −1.82580e6 −0.321761 −0.160881 0.986974i \(-0.551433\pi\)
−0.160881 + 0.986974i \(0.551433\pi\)
\(504\) 0 0
\(505\) −5.37198e6 −0.937359
\(506\) 0 0
\(507\) −2.52894e6 −0.436936
\(508\) 0 0
\(509\) −2.68759e6 −0.459800 −0.229900 0.973214i \(-0.573840\pi\)
−0.229900 + 0.973214i \(0.573840\pi\)
\(510\) 0 0
\(511\) 1.89838e6 0.321611
\(512\) 0 0
\(513\) −1.64098e6 −0.275302
\(514\) 0 0
\(515\) −1.51601e6 −0.251875
\(516\) 0 0
\(517\) 4.49353e6 0.739370
\(518\) 0 0
\(519\) −2.74346e6 −0.447075
\(520\) 0 0
\(521\) 5.27987e6 0.852174 0.426087 0.904682i \(-0.359892\pi\)
0.426087 + 0.904682i \(0.359892\pi\)
\(522\) 0 0
\(523\) −8.39485e6 −1.34202 −0.671010 0.741449i \(-0.734139\pi\)
−0.671010 + 0.741449i \(0.734139\pi\)
\(524\) 0 0
\(525\) 3.61598e6 0.572569
\(526\) 0 0
\(527\) 1.68426e6 0.264169
\(528\) 0 0
\(529\) 3.12875e6 0.486107
\(530\) 0 0
\(531\) −2.16355e6 −0.332990
\(532\) 0 0
\(533\) 2.16558e6 0.330184
\(534\) 0 0
\(535\) 4.19897e6 0.634247
\(536\) 0 0
\(537\) −5.27409e6 −0.789245
\(538\) 0 0
\(539\) −600449. −0.0890235
\(540\) 0 0
\(541\) 6.11826e6 0.898741 0.449370 0.893346i \(-0.351648\pi\)
0.449370 + 0.893346i \(0.351648\pi\)
\(542\) 0 0
\(543\) 7.17566e6 1.04439
\(544\) 0 0
\(545\) 1.51048e6 0.217833
\(546\) 0 0
\(547\) −5.59301e6 −0.799241 −0.399620 0.916681i \(-0.630858\pi\)
−0.399620 + 0.916681i \(0.630858\pi\)
\(548\) 0 0
\(549\) −2.17072e6 −0.307378
\(550\) 0 0
\(551\) 1.48648e7 2.08584
\(552\) 0 0
\(553\) −3.29336e6 −0.457959
\(554\) 0 0
\(555\) 8.57617e6 1.18185
\(556\) 0 0
\(557\) 2.52668e6 0.345074 0.172537 0.985003i \(-0.444804\pi\)
0.172537 + 0.985003i \(0.444804\pi\)
\(558\) 0 0
\(559\) −4.34102e6 −0.587573
\(560\) 0 0
\(561\) −4.55082e6 −0.610496
\(562\) 0 0
\(563\) −5.32508e6 −0.708036 −0.354018 0.935239i \(-0.615185\pi\)
−0.354018 + 0.935239i \(0.615185\pi\)
\(564\) 0 0
\(565\) −1.22311e7 −1.61193
\(566\) 0 0
\(567\) 321489. 0.0419961
\(568\) 0 0
\(569\) −9.05147e6 −1.17203 −0.586015 0.810300i \(-0.699304\pi\)
−0.586015 + 0.810300i \(0.699304\pi\)
\(570\) 0 0
\(571\) 6.41867e6 0.823863 0.411932 0.911215i \(-0.364854\pi\)
0.411932 + 0.911215i \(0.364854\pi\)
\(572\) 0 0
\(573\) −1.35842e6 −0.172841
\(574\) 0 0
\(575\) 2.53590e7 3.19862
\(576\) 0 0
\(577\) 1.40363e7 1.75515 0.877574 0.479442i \(-0.159161\pi\)
0.877574 + 0.479442i \(0.159161\pi\)
\(578\) 0 0
\(579\) −6.31401e6 −0.782724
\(580\) 0 0
\(581\) −1.75668e6 −0.215900
\(582\) 0 0
\(583\) 3.95394e6 0.481791
\(584\) 0 0
\(585\) −2.59023e6 −0.312931
\(586\) 0 0
\(587\) −1.39012e7 −1.66516 −0.832579 0.553906i \(-0.813137\pi\)
−0.832579 + 0.553906i \(0.813137\pi\)
\(588\) 0 0
\(589\) −1.87509e6 −0.222706
\(590\) 0 0
\(591\) 5.45070e6 0.641924
\(592\) 0 0
\(593\) −1.17354e7 −1.37045 −0.685224 0.728332i \(-0.740296\pi\)
−0.685224 + 0.728332i \(0.740296\pi\)
\(594\) 0 0
\(595\) 1.05431e7 1.22089
\(596\) 0 0
\(597\) 1.39867e6 0.160612
\(598\) 0 0
\(599\) 2.01682e6 0.229668 0.114834 0.993385i \(-0.463366\pi\)
0.114834 + 0.993385i \(0.463366\pi\)
\(600\) 0 0
\(601\) 3.72242e6 0.420378 0.210189 0.977661i \(-0.432592\pi\)
0.210189 + 0.977661i \(0.432592\pi\)
\(602\) 0 0
\(603\) −3.60405e6 −0.403644
\(604\) 0 0
\(605\) −1.04830e7 −1.16439
\(606\) 0 0
\(607\) 6.18076e6 0.680879 0.340440 0.940266i \(-0.389424\pi\)
0.340440 + 0.940266i \(0.389424\pi\)
\(608\) 0 0
\(609\) −2.91221e6 −0.318185
\(610\) 0 0
\(611\) 5.39943e6 0.585120
\(612\) 0 0
\(613\) −2.43775e6 −0.262022 −0.131011 0.991381i \(-0.541822\pi\)
−0.131011 + 0.991381i \(0.541822\pi\)
\(614\) 0 0
\(615\) −6.90210e6 −0.735857
\(616\) 0 0
\(617\) −1.19168e7 −1.26022 −0.630109 0.776506i \(-0.716990\pi\)
−0.630109 + 0.776506i \(0.716990\pi\)
\(618\) 0 0
\(619\) 9.61238e6 1.00833 0.504167 0.863606i \(-0.331800\pi\)
0.504167 + 0.863606i \(0.331800\pi\)
\(620\) 0 0
\(621\) 2.25461e6 0.234608
\(622\) 0 0
\(623\) 5.20710e6 0.537497
\(624\) 0 0
\(625\) 3.18427e7 3.26069
\(626\) 0 0
\(627\) 5.06643e6 0.514675
\(628\) 0 0
\(629\) 1.81052e7 1.82464
\(630\) 0 0
\(631\) −4.44826e6 −0.444750 −0.222375 0.974961i \(-0.571381\pi\)
−0.222375 + 0.974961i \(0.571381\pi\)
\(632\) 0 0
\(633\) 2.74582e6 0.272372
\(634\) 0 0
\(635\) 2.07511e7 2.04224
\(636\) 0 0
\(637\) −721500. −0.0704511
\(638\) 0 0
\(639\) −1.65354e6 −0.160200
\(640\) 0 0
\(641\) −8.20161e6 −0.788414 −0.394207 0.919022i \(-0.628981\pi\)
−0.394207 + 0.919022i \(0.628981\pi\)
\(642\) 0 0
\(643\) 1.38379e7 1.31990 0.659952 0.751308i \(-0.270577\pi\)
0.659952 + 0.751308i \(0.270577\pi\)
\(644\) 0 0
\(645\) 1.38356e7 1.30948
\(646\) 0 0
\(647\) −3.57496e6 −0.335746 −0.167873 0.985809i \(-0.553690\pi\)
−0.167873 + 0.985809i \(0.553690\pi\)
\(648\) 0 0
\(649\) 6.67985e6 0.622522
\(650\) 0 0
\(651\) 367354. 0.0339729
\(652\) 0 0
\(653\) −2.08055e7 −1.90939 −0.954695 0.297587i \(-0.903818\pi\)
−0.954695 + 0.297587i \(0.903818\pi\)
\(654\) 0 0
\(655\) −2.13877e7 −1.94787
\(656\) 0 0
\(657\) 3.13814e6 0.283635
\(658\) 0 0
\(659\) 4.34521e6 0.389760 0.194880 0.980827i \(-0.437568\pi\)
0.194880 + 0.980827i \(0.437568\pi\)
\(660\) 0 0
\(661\) −3.59984e6 −0.320464 −0.160232 0.987079i \(-0.551224\pi\)
−0.160232 + 0.987079i \(0.551224\pi\)
\(662\) 0 0
\(663\) −5.46827e6 −0.483132
\(664\) 0 0
\(665\) −1.17376e7 −1.02926
\(666\) 0 0
\(667\) −2.04235e7 −1.77752
\(668\) 0 0
\(669\) 1.21999e7 1.05388
\(670\) 0 0
\(671\) 6.70197e6 0.574641
\(672\) 0 0
\(673\) −1.35130e7 −1.15005 −0.575023 0.818137i \(-0.695007\pi\)
−0.575023 + 0.818137i \(0.695007\pi\)
\(674\) 0 0
\(675\) 5.97743e6 0.504958
\(676\) 0 0
\(677\) 7.06427e6 0.592373 0.296187 0.955130i \(-0.404285\pi\)
0.296187 + 0.955130i \(0.404285\pi\)
\(678\) 0 0
\(679\) 4.80854e6 0.400257
\(680\) 0 0
\(681\) 2.11125e6 0.174451
\(682\) 0 0
\(683\) −1.75676e7 −1.44099 −0.720494 0.693461i \(-0.756085\pi\)
−0.720494 + 0.693461i \(0.756085\pi\)
\(684\) 0 0
\(685\) 6.47783e6 0.527477
\(686\) 0 0
\(687\) 1.33040e7 1.07545
\(688\) 0 0
\(689\) 4.75105e6 0.381278
\(690\) 0 0
\(691\) −617820. −0.0492229 −0.0246114 0.999697i \(-0.507835\pi\)
−0.0246114 + 0.999697i \(0.507835\pi\)
\(692\) 0 0
\(693\) −992580. −0.0785113
\(694\) 0 0
\(695\) −4.11447e7 −3.23111
\(696\) 0 0
\(697\) −1.45711e7 −1.13608
\(698\) 0 0
\(699\) 2.36074e6 0.182749
\(700\) 0 0
\(701\) 1.54273e7 1.18576 0.592879 0.805292i \(-0.297991\pi\)
0.592879 + 0.805292i \(0.297991\pi\)
\(702\) 0 0
\(703\) −2.01566e7 −1.53825
\(704\) 0 0
\(705\) −1.72090e7 −1.30402
\(706\) 0 0
\(707\) −2.47355e6 −0.186111
\(708\) 0 0
\(709\) −2.42780e7 −1.81383 −0.906917 0.421309i \(-0.861571\pi\)
−0.906917 + 0.421309i \(0.861571\pi\)
\(710\) 0 0
\(711\) −5.44413e6 −0.403882
\(712\) 0 0
\(713\) 2.57627e6 0.189787
\(714\) 0 0
\(715\) 7.99720e6 0.585023
\(716\) 0 0
\(717\) 1.46485e7 1.06413
\(718\) 0 0
\(719\) −8.00425e6 −0.577429 −0.288714 0.957415i \(-0.593228\pi\)
−0.288714 + 0.957415i \(0.593228\pi\)
\(720\) 0 0
\(721\) −698054. −0.0500093
\(722\) 0 0
\(723\) −1.12523e7 −0.800566
\(724\) 0 0
\(725\) −5.41467e7 −3.82584
\(726\) 0 0
\(727\) 2.03222e7 1.42605 0.713025 0.701139i \(-0.247325\pi\)
0.713025 + 0.701139i \(0.247325\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) 0 0
\(731\) 2.92086e7 2.02170
\(732\) 0 0
\(733\) 6.77940e6 0.466049 0.233024 0.972471i \(-0.425138\pi\)
0.233024 + 0.972471i \(0.425138\pi\)
\(734\) 0 0
\(735\) 2.29956e6 0.157009
\(736\) 0 0
\(737\) 1.11273e7 0.754609
\(738\) 0 0
\(739\) 1.62382e7 1.09377 0.546887 0.837207i \(-0.315813\pi\)
0.546887 + 0.837207i \(0.315813\pi\)
\(740\) 0 0
\(741\) 6.08782e6 0.407302
\(742\) 0 0
\(743\) −2.34767e6 −0.156014 −0.0780072 0.996953i \(-0.524856\pi\)
−0.0780072 + 0.996953i \(0.524856\pi\)
\(744\) 0 0
\(745\) −1.62688e7 −1.07390
\(746\) 0 0
\(747\) −2.90390e6 −0.190406
\(748\) 0 0
\(749\) 1.93343e6 0.125929
\(750\) 0 0
\(751\) 2.15068e7 1.39147 0.695737 0.718296i \(-0.255078\pi\)
0.695737 + 0.718296i \(0.255078\pi\)
\(752\) 0 0
\(753\) 1.74551e6 0.112185
\(754\) 0 0
\(755\) −1.42941e7 −0.912619
\(756\) 0 0
\(757\) −4.88736e6 −0.309981 −0.154990 0.987916i \(-0.549535\pi\)
−0.154990 + 0.987916i \(0.549535\pi\)
\(758\) 0 0
\(759\) −6.96100e6 −0.438598
\(760\) 0 0
\(761\) −1.09272e7 −0.683988 −0.341994 0.939702i \(-0.611102\pi\)
−0.341994 + 0.939702i \(0.611102\pi\)
\(762\) 0 0
\(763\) 695506. 0.0432503
\(764\) 0 0
\(765\) 1.74284e7 1.07672
\(766\) 0 0
\(767\) 8.02650e6 0.492649
\(768\) 0 0
\(769\) 8.31780e6 0.507216 0.253608 0.967307i \(-0.418383\pi\)
0.253608 + 0.967307i \(0.418383\pi\)
\(770\) 0 0
\(771\) −2.28684e6 −0.138548
\(772\) 0 0
\(773\) −2.78229e7 −1.67476 −0.837381 0.546620i \(-0.815914\pi\)
−0.837381 + 0.546620i \(0.815914\pi\)
\(774\) 0 0
\(775\) 6.83020e6 0.408488
\(776\) 0 0
\(777\) 3.94893e6 0.234654
\(778\) 0 0
\(779\) 1.62220e7 0.957769
\(780\) 0 0
\(781\) 5.10522e6 0.299493
\(782\) 0 0
\(783\) −4.81407e6 −0.280613
\(784\) 0 0
\(785\) 8.59101e6 0.497588
\(786\) 0 0
\(787\) 3.14847e7 1.81202 0.906009 0.423258i \(-0.139114\pi\)
0.906009 + 0.423258i \(0.139114\pi\)
\(788\) 0 0
\(789\) −6.71590e6 −0.384071
\(790\) 0 0
\(791\) −5.63187e6 −0.320046
\(792\) 0 0
\(793\) 8.05309e6 0.454757
\(794\) 0 0
\(795\) −1.51425e7 −0.849728
\(796\) 0 0
\(797\) 9.29354e6 0.518245 0.259123 0.965844i \(-0.416567\pi\)
0.259123 + 0.965844i \(0.416567\pi\)
\(798\) 0 0
\(799\) −3.63301e7 −2.01326
\(800\) 0 0
\(801\) 8.60766e6 0.474028
\(802\) 0 0
\(803\) −9.68884e6 −0.530253
\(804\) 0 0
\(805\) 1.61269e7 0.877123
\(806\) 0 0
\(807\) −1.68432e7 −0.910417
\(808\) 0 0
\(809\) −1.36908e7 −0.735459 −0.367730 0.929933i \(-0.619865\pi\)
−0.367730 + 0.929933i \(0.619865\pi\)
\(810\) 0 0
\(811\) 7.83843e6 0.418482 0.209241 0.977864i \(-0.432901\pi\)
0.209241 + 0.977864i \(0.432901\pi\)
\(812\) 0 0
\(813\) 882418. 0.0468218
\(814\) 0 0
\(815\) 9.68096e6 0.510534
\(816\) 0 0
\(817\) −3.25179e7 −1.70438
\(818\) 0 0
\(819\) −1.19268e6 −0.0621320
\(820\) 0 0
\(821\) −2.77295e7 −1.43577 −0.717883 0.696164i \(-0.754889\pi\)
−0.717883 + 0.696164i \(0.754889\pi\)
\(822\) 0 0
\(823\) −2.04827e6 −0.105411 −0.0527057 0.998610i \(-0.516785\pi\)
−0.0527057 + 0.998610i \(0.516785\pi\)
\(824\) 0 0
\(825\) −1.84550e7 −0.944015
\(826\) 0 0
\(827\) 2.35186e7 1.19577 0.597884 0.801582i \(-0.296008\pi\)
0.597884 + 0.801582i \(0.296008\pi\)
\(828\) 0 0
\(829\) 1.93665e7 0.978734 0.489367 0.872078i \(-0.337228\pi\)
0.489367 + 0.872078i \(0.337228\pi\)
\(830\) 0 0
\(831\) 1.41546e7 0.711042
\(832\) 0 0
\(833\) 4.85462e6 0.242406
\(834\) 0 0
\(835\) −7.49250e6 −0.371887
\(836\) 0 0
\(837\) 607258. 0.0299612
\(838\) 0 0
\(839\) 1.84417e7 0.904473 0.452236 0.891898i \(-0.350626\pi\)
0.452236 + 0.891898i \(0.350626\pi\)
\(840\) 0 0
\(841\) 2.30972e7 1.12608
\(842\) 0 0
\(843\) 1.70064e7 0.824222
\(844\) 0 0
\(845\) −2.99023e7 −1.44067
\(846\) 0 0
\(847\) −4.82696e6 −0.231188
\(848\) 0 0
\(849\) 1.75208e7 0.834229
\(850\) 0 0
\(851\) 2.76940e7 1.31088
\(852\) 0 0
\(853\) 1.91827e7 0.902689 0.451345 0.892350i \(-0.350945\pi\)
0.451345 + 0.892350i \(0.350945\pi\)
\(854\) 0 0
\(855\) −1.94030e7 −0.907725
\(856\) 0 0
\(857\) 2.65637e7 1.23548 0.617741 0.786381i \(-0.288048\pi\)
0.617741 + 0.786381i \(0.288048\pi\)
\(858\) 0 0
\(859\) −1.68342e7 −0.778410 −0.389205 0.921151i \(-0.627250\pi\)
−0.389205 + 0.921151i \(0.627250\pi\)
\(860\) 0 0
\(861\) −3.17810e6 −0.146103
\(862\) 0 0
\(863\) −4.26732e6 −0.195042 −0.0975210 0.995233i \(-0.531091\pi\)
−0.0975210 + 0.995233i \(0.531091\pi\)
\(864\) 0 0
\(865\) −3.24389e7 −1.47409
\(866\) 0 0
\(867\) 2.40146e7 1.08499
\(868\) 0 0
\(869\) 1.68084e7 0.755054
\(870\) 0 0
\(871\) 1.33706e7 0.597180
\(872\) 0 0
\(873\) 7.94881e6 0.352994
\(874\) 0 0
\(875\) 2.64605e7 1.16836
\(876\) 0 0
\(877\) 2.58174e7 1.13348 0.566739 0.823897i \(-0.308205\pi\)
0.566739 + 0.823897i \(0.308205\pi\)
\(878\) 0 0
\(879\) 2.14447e6 0.0936156
\(880\) 0 0
\(881\) 2.99398e7 1.29960 0.649799 0.760106i \(-0.274853\pi\)
0.649799 + 0.760106i \(0.274853\pi\)
\(882\) 0 0
\(883\) −4.46525e6 −0.192727 −0.0963637 0.995346i \(-0.530721\pi\)
−0.0963637 + 0.995346i \(0.530721\pi\)
\(884\) 0 0
\(885\) −2.55820e7 −1.09793
\(886\) 0 0
\(887\) 2.89113e7 1.23384 0.616919 0.787027i \(-0.288381\pi\)
0.616919 + 0.787027i \(0.288381\pi\)
\(888\) 0 0
\(889\) 9.55492e6 0.405483
\(890\) 0 0
\(891\) −1.64080e6 −0.0692405
\(892\) 0 0
\(893\) 4.04463e7 1.69727
\(894\) 0 0
\(895\) −6.23612e7 −2.60230
\(896\) 0 0
\(897\) −8.36433e6 −0.347096
\(898\) 0 0
\(899\) −5.50086e6 −0.227003
\(900\) 0 0
\(901\) −3.19675e7 −1.31189
\(902\) 0 0
\(903\) 6.37068e6 0.259996
\(904\) 0 0
\(905\) 8.48456e7 3.44356
\(906\) 0 0
\(907\) −7.38019e6 −0.297885 −0.148943 0.988846i \(-0.547587\pi\)
−0.148943 + 0.988846i \(0.547587\pi\)
\(908\) 0 0
\(909\) −4.08893e6 −0.164135
\(910\) 0 0
\(911\) −4.25542e7 −1.69882 −0.849409 0.527736i \(-0.823041\pi\)
−0.849409 + 0.527736i \(0.823041\pi\)
\(912\) 0 0
\(913\) 8.96565e6 0.355963
\(914\) 0 0
\(915\) −2.56667e7 −1.01349
\(916\) 0 0
\(917\) −9.84807e6 −0.386748
\(918\) 0 0
\(919\) −2.88119e7 −1.12534 −0.562669 0.826682i \(-0.690225\pi\)
−0.562669 + 0.826682i \(0.690225\pi\)
\(920\) 0 0
\(921\) 1.53896e7 0.597831
\(922\) 0 0
\(923\) 6.13443e6 0.237012
\(924\) 0 0
\(925\) 7.34224e7 2.82146
\(926\) 0 0
\(927\) −1.15393e6 −0.0441041
\(928\) 0 0
\(929\) 4.82043e7 1.83251 0.916255 0.400595i \(-0.131196\pi\)
0.916255 + 0.400595i \(0.131196\pi\)
\(930\) 0 0
\(931\) −5.40465e6 −0.204359
\(932\) 0 0
\(933\) 2.71484e6 0.102103
\(934\) 0 0
\(935\) −5.38092e7 −2.01293
\(936\) 0 0
\(937\) −2.04317e7 −0.760247 −0.380123 0.924936i \(-0.624118\pi\)
−0.380123 + 0.924936i \(0.624118\pi\)
\(938\) 0 0
\(939\) −3.59765e6 −0.133154
\(940\) 0 0
\(941\) −2.62728e7 −0.967237 −0.483618 0.875279i \(-0.660678\pi\)
−0.483618 + 0.875279i \(0.660678\pi\)
\(942\) 0 0
\(943\) −2.22882e7 −0.816197
\(944\) 0 0
\(945\) 3.80131e6 0.138469
\(946\) 0 0
\(947\) −2.94399e7 −1.06675 −0.533373 0.845880i \(-0.679076\pi\)
−0.533373 + 0.845880i \(0.679076\pi\)
\(948\) 0 0
\(949\) −1.16421e7 −0.419630
\(950\) 0 0
\(951\) −4.31381e6 −0.154671
\(952\) 0 0
\(953\) −3.07999e7 −1.09854 −0.549272 0.835644i \(-0.685095\pi\)
−0.549272 + 0.835644i \(0.685095\pi\)
\(954\) 0 0
\(955\) −1.60620e7 −0.569890
\(956\) 0 0
\(957\) 1.48632e7 0.524604
\(958\) 0 0
\(959\) 2.98275e6 0.104730
\(960\) 0 0
\(961\) −2.79353e7 −0.975763
\(962\) 0 0
\(963\) 3.19609e6 0.111059
\(964\) 0 0
\(965\) −7.46573e7 −2.58080
\(966\) 0 0
\(967\) 3.02028e7 1.03868 0.519338 0.854569i \(-0.326178\pi\)
0.519338 + 0.854569i \(0.326178\pi\)
\(968\) 0 0
\(969\) −4.09620e7 −1.40143
\(970\) 0 0
\(971\) 2.75051e6 0.0936192 0.0468096 0.998904i \(-0.485095\pi\)
0.0468096 + 0.998904i \(0.485095\pi\)
\(972\) 0 0
\(973\) −1.89452e7 −0.641532
\(974\) 0 0
\(975\) −2.21755e7 −0.747071
\(976\) 0 0
\(977\) 1.71690e7 0.575452 0.287726 0.957713i \(-0.407101\pi\)
0.287726 + 0.957713i \(0.407101\pi\)
\(978\) 0 0
\(979\) −2.65757e7 −0.886191
\(980\) 0 0
\(981\) 1.14971e6 0.0381432
\(982\) 0 0
\(983\) 5.13066e7 1.69352 0.846758 0.531979i \(-0.178551\pi\)
0.846758 + 0.531979i \(0.178551\pi\)
\(984\) 0 0
\(985\) 6.44494e7 2.11655
\(986\) 0 0
\(987\) −7.92396e6 −0.258910
\(988\) 0 0
\(989\) 4.46778e7 1.45245
\(990\) 0 0
\(991\) 2.39045e7 0.773207 0.386603 0.922246i \(-0.373648\pi\)
0.386603 + 0.922246i \(0.373648\pi\)
\(992\) 0 0
\(993\) 471300. 0.0151678
\(994\) 0 0
\(995\) 1.65379e7 0.529570
\(996\) 0 0
\(997\) 8.08351e6 0.257550 0.128775 0.991674i \(-0.458895\pi\)
0.128775 + 0.991674i \(0.458895\pi\)
\(998\) 0 0
\(999\) 6.52783e6 0.206945
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 84.6.a.d.1.2 2
3.2 odd 2 252.6.a.e.1.1 2
4.3 odd 2 336.6.a.u.1.2 2
7.2 even 3 588.6.i.h.361.1 4
7.3 odd 6 588.6.i.n.373.2 4
7.4 even 3 588.6.i.h.373.1 4
7.5 odd 6 588.6.i.n.361.2 4
7.6 odd 2 588.6.a.g.1.1 2
12.11 even 2 1008.6.a.bf.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
84.6.a.d.1.2 2 1.1 even 1 trivial
252.6.a.e.1.1 2 3.2 odd 2
336.6.a.u.1.2 2 4.3 odd 2
588.6.a.g.1.1 2 7.6 odd 2
588.6.i.h.361.1 4 7.2 even 3
588.6.i.h.373.1 4 7.4 even 3
588.6.i.n.361.2 4 7.5 odd 6
588.6.i.n.373.2 4 7.3 odd 6
1008.6.a.bf.1.1 2 12.11 even 2