Properties

Label 84.4.o
Level 8484
Weight 44
Character orbit 84.o
Rep. character χ84(19,)\chi_{84}(19,\cdot)
Character field Q(ζ6)\Q(\zeta_{6})
Dimension 4848
Newform subspaces 22
Sturm bound 6464
Trace bound 33

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 84=2237 84 = 2^{2} \cdot 3 \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 84.o (of order 66 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 28 28
Character field: Q(ζ6)\Q(\zeta_{6})
Newform subspaces: 2 2
Sturm bound: 6464
Trace bound: 33
Distinguishing TpT_p: 1111

Dimensions

The following table gives the dimensions of various subspaces of M4(84,[χ])M_{4}(84, [\chi]).

Total New Old
Modular forms 104 48 56
Cusp forms 88 48 40
Eisenstein series 16 0 16

Trace form

48q2q210q4152q8216q9+18q10+142q14+86q1618q18120q21+28q22270q24+684q25750q26578q28+800q29168q30++7896q98+O(q100) 48 q - 2 q^{2} - 10 q^{4} - 152 q^{8} - 216 q^{9} + 18 q^{10} + 142 q^{14} + 86 q^{16} - 18 q^{18} - 120 q^{21} + 28 q^{22} - 270 q^{24} + 684 q^{25} - 750 q^{26} - 578 q^{28} + 800 q^{29} - 168 q^{30}+ \cdots + 7896 q^{98}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(84,[χ])S_{4}^{\mathrm{new}}(84, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
84.4.o.a 84.o 28.f 2424 4.9564.956 None 84.4.o.a 1-1 36-36 00 1010 SU(2)[C6]\mathrm{SU}(2)[C_{6}]
84.4.o.b 84.o 28.f 2424 4.9564.956 None 84.4.o.a 1-1 3636 00 10-10 SU(2)[C6]\mathrm{SU}(2)[C_{6}]

Decomposition of S4old(84,[χ])S_{4}^{\mathrm{old}}(84, [\chi]) into lower level spaces

S4old(84,[χ]) S_{4}^{\mathrm{old}}(84, [\chi]) \simeq S4new(28,[χ])S_{4}^{\mathrm{new}}(28, [\chi])2^{\oplus 2}