Properties

Label 84.4.i.b
Level $84$
Weight $4$
Character orbit 84.i
Analytic conductor $4.956$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 84 = 2^{2} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 84.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.95616044048\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-19})\)
Defining polynomial: \(x^{4} - x^{3} - 4 x^{2} - 5 x + 25\)
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -3 \beta_{2} q^{3} + ( 1 + 2 \beta_{1} + 2 \beta_{2} - \beta_{3} ) q^{5} + ( -3 + 3 \beta_{1} + 6 \beta_{2} - \beta_{3} ) q^{7} + ( -9 - 9 \beta_{2} ) q^{9} +O(q^{10})\) \( q -3 \beta_{2} q^{3} + ( 1 + 2 \beta_{1} + 2 \beta_{2} - \beta_{3} ) q^{5} + ( -3 + 3 \beta_{1} + 6 \beta_{2} - \beta_{3} ) q^{7} + ( -9 - 9 \beta_{2} ) q^{9} + ( 1 - \beta_{1} - 25 \beta_{2} + 2 \beta_{3} ) q^{11} + ( 33 + 5 \beta_{1} + 5 \beta_{2} + 5 \beta_{3} ) q^{13} + ( 6 + 3 \beta_{1} + 3 \beta_{2} + 3 \beta_{3} ) q^{15} + ( -8 + 8 \beta_{1} + 8 \beta_{2} - 16 \beta_{3} ) q^{17} + ( -84 - 2 \beta_{1} - 85 \beta_{2} + \beta_{3} ) q^{19} + ( 18 + 3 \beta_{1} + 27 \beta_{2} + 6 \beta_{3} ) q^{21} + ( 96 + 96 \beta_{2} ) q^{23} + ( -3 + 3 \beta_{1} + 4 \beta_{2} - 6 \beta_{3} ) q^{25} -27 q^{27} + ( -28 - 17 \beta_{1} - 17 \beta_{2} - 17 \beta_{3} ) q^{29} + ( 10 - 10 \beta_{1} - 41 \beta_{2} + 20 \beta_{3} ) q^{31} + ( -75 - 6 \beta_{1} - 78 \beta_{2} + 3 \beta_{3} ) q^{33} + ( 28 - 7 \beta_{1} + 203 \beta_{2} - 7 \beta_{3} ) q^{35} + ( 96 - 38 \beta_{1} + 77 \beta_{2} + 19 \beta_{3} ) q^{37} + ( 15 - 15 \beta_{1} - 84 \beta_{2} + 30 \beta_{3} ) q^{39} + ( 70 - 34 \beta_{1} - 34 \beta_{2} - 34 \beta_{3} ) q^{41} + ( -239 + 19 \beta_{1} + 19 \beta_{2} + 19 \beta_{3} ) q^{43} + ( 9 - 9 \beta_{1} - 9 \beta_{2} + 18 \beta_{3} ) q^{45} + ( -82 - 32 \beta_{1} - 98 \beta_{2} + 16 \beta_{3} ) q^{47} + ( 102 - 25 \beta_{1} + 272 \beta_{2} - 15 \beta_{3} ) q^{49} + ( 24 + 48 \beta_{1} + 48 \beta_{2} - 24 \beta_{3} ) q^{51} + ( -27 + 27 \beta_{1} + 129 \beta_{2} - 54 \beta_{3} ) q^{53} + ( 180 + 27 \beta_{1} + 27 \beta_{2} + 27 \beta_{3} ) q^{55} + ( -255 - 3 \beta_{1} - 3 \beta_{2} - 3 \beta_{3} ) q^{57} + ( 3 - 3 \beta_{1} - 633 \beta_{2} + 6 \beta_{3} ) q^{59} + ( -182 + 72 \beta_{1} - 146 \beta_{2} - 36 \beta_{3} ) q^{61} + ( 81 - 18 \beta_{1} + 27 \beta_{2} + 27 \beta_{3} ) q^{63} + ( 668 + 76 \beta_{1} + 706 \beta_{2} - 38 \beta_{3} ) q^{65} + ( -9 + 9 \beta_{1} - 442 \beta_{2} - 18 \beta_{3} ) q^{67} + 288 q^{69} + ( -686 + 32 \beta_{1} + 32 \beta_{2} + 32 \beta_{3} ) q^{71} + ( 21 - 21 \beta_{1} - 670 \beta_{2} + 42 \beta_{3} ) q^{73} + ( 12 + 18 \beta_{1} + 21 \beta_{2} - 9 \beta_{3} ) q^{75} + ( 319 + 38 \beta_{1} + 188 \beta_{2} + 41 \beta_{3} ) q^{77} + ( 89 + 8 \beta_{1} + 93 \beta_{2} - 4 \beta_{3} ) q^{79} + 81 \beta_{2} q^{81} + ( -178 + 43 \beta_{1} + 43 \beta_{2} + 43 \beta_{3} ) q^{83} + ( -1056 - 24 \beta_{1} - 24 \beta_{2} - 24 \beta_{3} ) q^{85} + ( -51 + 51 \beta_{1} + 33 \beta_{2} - 102 \beta_{3} ) q^{87} + ( -422 + 44 \beta_{1} - 400 \beta_{2} - 22 \beta_{3} ) q^{89} + ( 946 + 104 \beta_{1} + 1013 \beta_{2} - 93 \beta_{3} ) q^{91} + ( -123 - 60 \beta_{1} - 153 \beta_{2} + 30 \beta_{3} ) q^{93} + ( 86 - 86 \beta_{1} - 212 \beta_{2} + 172 \beta_{3} ) q^{95} + ( 410 - 21 \beta_{1} - 21 \beta_{2} - 21 \beta_{3} ) q^{97} + ( -234 - 9 \beta_{1} - 9 \beta_{2} - 9 \beta_{3} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q + 6q^{3} + 3q^{5} - 20q^{7} - 18q^{9} + O(q^{10}) \) \( 4q + 6q^{3} + 3q^{5} - 20q^{7} - 18q^{9} + 51q^{11} + 122q^{13} + 18q^{15} - 24q^{17} - 169q^{19} + 15q^{21} + 192q^{23} - 11q^{25} - 108q^{27} - 78q^{29} + 92q^{31} - 153q^{33} - 294q^{35} + 173q^{37} + 183q^{39} + 348q^{41} - 994q^{43} + 27q^{45} - 180q^{47} - 146q^{49} + 72q^{51} - 285q^{53} + 666q^{55} - 1014q^{57} + 1269q^{59} - 328q^{61} + 225q^{63} + 1374q^{65} + 875q^{67} + 1152q^{69} - 2808q^{71} + 1361q^{73} + 33q^{75} + 897q^{77} + 182q^{79} - 162q^{81} - 798q^{83} - 4176q^{85} - 117q^{87} - 822q^{89} + 1955q^{91} - 276q^{93} + 510q^{95} + 1682q^{97} - 918q^{99} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{4} - x^{3} - 4 x^{2} - 5 x + 25\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\((\)\( \nu^{3} + 4 \nu^{2} + 56 \nu - 25 \)\()/20\)
\(\beta_{2}\)\(=\)\((\)\( \nu^{3} + 4 \nu^{2} - 4 \nu - 25 \)\()/20\)
\(\beta_{3}\)\(=\)\((\)\( -7 \nu^{3} + 2 \nu^{2} + 28 \nu + 35 \)\()/10\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(-\beta_{2} + \beta_{1}\)\()/3\)
\(\nu^{2}\)\(=\)\((\)\(\beta_{3} + 14 \beta_{2} + 14\)\()/3\)
\(\nu^{3}\)\(=\)\((\)\(-4 \beta_{3} + 4 \beta_{1} + 19\)\()/3\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/84\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(43\) \(73\)
\(\chi(n)\) \(1\) \(1\) \(-1 - \beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
25.1
−1.63746 1.52274i
2.13746 + 0.656712i
−1.63746 + 1.52274i
2.13746 0.656712i
0 1.50000 2.59808i 0 −4.91238 8.50848i 0 −16.3248 8.74657i 0 −4.50000 7.79423i 0
25.2 0 1.50000 2.59808i 0 6.41238 + 11.1066i 0 6.32475 + 17.4068i 0 −4.50000 7.79423i 0
37.1 0 1.50000 + 2.59808i 0 −4.91238 + 8.50848i 0 −16.3248 + 8.74657i 0 −4.50000 + 7.79423i 0
37.2 0 1.50000 + 2.59808i 0 6.41238 11.1066i 0 6.32475 17.4068i 0 −4.50000 + 7.79423i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 84.4.i.b 4
3.b odd 2 1 252.4.k.d 4
4.b odd 2 1 336.4.q.h 4
7.b odd 2 1 588.4.i.i 4
7.c even 3 1 inner 84.4.i.b 4
7.c even 3 1 588.4.a.g 2
7.d odd 6 1 588.4.a.h 2
7.d odd 6 1 588.4.i.i 4
21.c even 2 1 1764.4.k.z 4
21.g even 6 1 1764.4.a.p 2
21.g even 6 1 1764.4.k.z 4
21.h odd 6 1 252.4.k.d 4
21.h odd 6 1 1764.4.a.x 2
28.f even 6 1 2352.4.a.bp 2
28.g odd 6 1 336.4.q.h 4
28.g odd 6 1 2352.4.a.cb 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
84.4.i.b 4 1.a even 1 1 trivial
84.4.i.b 4 7.c even 3 1 inner
252.4.k.d 4 3.b odd 2 1
252.4.k.d 4 21.h odd 6 1
336.4.q.h 4 4.b odd 2 1
336.4.q.h 4 28.g odd 6 1
588.4.a.g 2 7.c even 3 1
588.4.a.h 2 7.d odd 6 1
588.4.i.i 4 7.b odd 2 1
588.4.i.i 4 7.d odd 6 1
1764.4.a.p 2 21.g even 6 1
1764.4.a.x 2 21.h odd 6 1
1764.4.k.z 4 21.c even 2 1
1764.4.k.z 4 21.g even 6 1
2352.4.a.bp 2 28.f even 6 1
2352.4.a.cb 2 28.g odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{4} - 3 T_{5}^{3} + 135 T_{5}^{2} + 378 T_{5} + 15876 \) acting on \(S_{4}^{\mathrm{new}}(84, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \)
$3$ \( ( 9 - 3 T + T^{2} )^{2} \)
$5$ \( 15876 + 378 T + 135 T^{2} - 3 T^{3} + T^{4} \)
$7$ \( 117649 + 6860 T + 273 T^{2} + 20 T^{3} + T^{4} \)
$11$ \( 272484 - 26622 T + 2079 T^{2} - 51 T^{3} + T^{4} \)
$13$ \( ( -2276 - 61 T + T^{2} )^{2} \)
$17$ \( 65028096 - 193536 T + 8640 T^{2} + 24 T^{3} + T^{4} \)
$19$ \( 49168144 + 1185028 T + 21549 T^{2} + 169 T^{3} + T^{4} \)
$23$ \( ( 9216 - 96 T + T^{2} )^{2} \)
$29$ \( ( -36684 + 39 T + T^{2} )^{2} \)
$31$ \( 114682681 + 985228 T + 19173 T^{2} - 92 T^{3} + T^{4} \)
$37$ \( 1506681856 + 6715168 T + 68745 T^{2} - 173 T^{3} + T^{4} \)
$41$ \( ( -140688 - 174 T + T^{2} )^{2} \)
$43$ \( ( 15454 + 497 T + T^{2} )^{2} \)
$47$ \( 611671824 - 4451760 T + 57132 T^{2} + 180 T^{3} + T^{4} \)
$53$ \( 5356483344 - 20858580 T + 154413 T^{2} + 285 T^{3} + T^{4} \)
$59$ \( 161150862096 - 509422284 T + 1208925 T^{2} - 1269 T^{3} + T^{4} \)
$61$ \( 19408947856 - 45695648 T + 246900 T^{2} + 328 T^{3} + T^{4} \)
$67$ \( 32767516324 - 158390750 T + 584607 T^{2} - 875 T^{3} + T^{4} \)
$71$ \( ( 361476 + 1404 T + T^{2} )^{2} \)
$73$ \( 165260136484 - 553276442 T + 1445799 T^{2} - 1361 T^{3} + T^{4} \)
$79$ \( 38800441 - 1133678 T + 26895 T^{2} - 182 T^{3} + T^{4} \)
$83$ \( ( -197334 + 399 T + T^{2} )^{2} \)
$89$ \( 11416495104 + 87829056 T + 568836 T^{2} + 822 T^{3} + T^{4} \)
$97$ \( ( 120262 - 841 T + T^{2} )^{2} \)
show more
show less