Properties

Label 84.4.i
Level 8484
Weight 44
Character orbit 84.i
Rep. character χ84(25,)\chi_{84}(25,\cdot)
Character field Q(ζ3)\Q(\zeta_{3})
Dimension 88
Newform subspaces 22
Sturm bound 6464
Trace bound 33

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 84=2237 84 = 2^{2} \cdot 3 \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 84.i (of order 33 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 7 7
Character field: Q(ζ3)\Q(\zeta_{3})
Newform subspaces: 2 2
Sturm bound: 6464
Trace bound: 33
Distinguishing TpT_p: 55

Dimensions

The following table gives the dimensions of various subspaces of M4(84,[χ])M_{4}(84, [\chi]).

Total New Old
Modular forms 108 8 100
Cusp forms 84 8 76
Eisenstein series 24 0 24

Trace form

8q8q514q736q9+56q11+132q13+84q15124q17236q1912q21+116q23+82q25+472q29270q31138q33760q35+178q37+168q39+1008q99+O(q100) 8 q - 8 q^{5} - 14 q^{7} - 36 q^{9} + 56 q^{11} + 132 q^{13} + 84 q^{15} - 124 q^{17} - 236 q^{19} - 12 q^{21} + 116 q^{23} + 82 q^{25} + 472 q^{29} - 270 q^{31} - 138 q^{33} - 760 q^{35} + 178 q^{37} + 168 q^{39}+ \cdots - 1008 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(84,[χ])S_{4}^{\mathrm{new}}(84, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
84.4.i.a 84.i 7.c 44 4.9564.956 Q(3,193)\Q(\sqrt{-3}, \sqrt{193}) None 84.4.i.a 00 6-6 11-11 66 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(3+3β2)q3+(β16β2)q5+(1+)q7+q+(-3+3\beta _{2})q^{3}+(\beta _{1}-6\beta _{2})q^{5}+(-1+\cdots)q^{7}+\cdots
84.4.i.b 84.i 7.c 44 4.9564.956 Q(3,19)\Q(\sqrt{-3}, \sqrt{-19}) None 84.4.i.b 00 66 33 20-20 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q3β2q3+(1+2β1+2β2β3)q5+q-3\beta _{2}q^{3}+(1+2\beta _{1}+2\beta _{2}-\beta _{3})q^{5}+\cdots

Decomposition of S4old(84,[χ])S_{4}^{\mathrm{old}}(84, [\chi]) into lower level spaces

S4old(84,[χ]) S_{4}^{\mathrm{old}}(84, [\chi]) \simeq S4new(7,[χ])S_{4}^{\mathrm{new}}(7, [\chi])6^{\oplus 6}\oplusS4new(14,[χ])S_{4}^{\mathrm{new}}(14, [\chi])4^{\oplus 4}\oplusS4new(21,[χ])S_{4}^{\mathrm{new}}(21, [\chi])3^{\oplus 3}\oplusS4new(28,[χ])S_{4}^{\mathrm{new}}(28, [\chi])2^{\oplus 2}\oplusS4new(42,[χ])S_{4}^{\mathrm{new}}(42, [\chi])2^{\oplus 2}