Defining parameters
Level: | \( N \) | \(=\) | \( 84 = 2^{2} \cdot 3 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 84.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(64\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(84))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 54 | 2 | 52 |
Cusp forms | 42 | 2 | 40 |
Eisenstein series | 12 | 0 | 12 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(7\) | Fricke | Dim |
---|---|---|---|---|
\(-\) | \(+\) | \(-\) | \(+\) | \(1\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(1\) |
Plus space | \(+\) | \(2\) | ||
Minus space | \(-\) | \(0\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(84))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 3 | 7 | |||||||
84.4.a.a | $1$ | $4.956$ | \(\Q\) | None | \(0\) | \(-3\) | \(6\) | \(7\) | $-$ | $+$ | $-$ | \(q-3q^{3}+6q^{5}+7q^{7}+9q^{9}+6^{2}q^{11}+\cdots\) | |
84.4.a.b | $1$ | $4.956$ | \(\Q\) | None | \(0\) | \(3\) | \(14\) | \(-7\) | $-$ | $-$ | $+$ | \(q+3q^{3}+14q^{5}-7q^{7}+9q^{9}+4q^{11}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(84))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(84)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(12))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(28))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 2}\)