Properties

Label 84.4
Level 84
Weight 4
Dimension 230
Nonzero newspaces 8
Newform subspaces 14
Sturm bound 1536
Trace bound 5

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 84 = 2^{2} \cdot 3 \cdot 7 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 8 \)
Newform subspaces: \( 14 \)
Sturm bound: \(1536\)
Trace bound: \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(84))\).

Total New Old
Modular forms 636 246 390
Cusp forms 516 230 286
Eisenstein series 120 16 104

Trace form

\( 230 q + 10 q^{4} + 12 q^{5} + 42 q^{6} - 56 q^{7} - 102 q^{8} - 42 q^{9} - 148 q^{10} + 96 q^{11} - 78 q^{12} + 304 q^{13} + 312 q^{14} + 180 q^{15} + 610 q^{16} - 24 q^{17} + 372 q^{18} - 184 q^{19} - 438 q^{21}+ \cdots + 9144 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(84))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
84.4.a \(\chi_{84}(1, \cdot)\) 84.4.a.a 1 1
84.4.a.b 1
84.4.b \(\chi_{84}(55, \cdot)\) 84.4.b.a 12 1
84.4.b.b 12
84.4.e \(\chi_{84}(71, \cdot)\) 84.4.e.a 36 1
84.4.f \(\chi_{84}(41, \cdot)\) 84.4.f.a 8 1
84.4.i \(\chi_{84}(25, \cdot)\) 84.4.i.a 4 2
84.4.i.b 4
84.4.k \(\chi_{84}(5, \cdot)\) 84.4.k.a 2 2
84.4.k.b 2
84.4.k.c 12
84.4.n \(\chi_{84}(11, \cdot)\) 84.4.n.a 88 2
84.4.o \(\chi_{84}(19, \cdot)\) 84.4.o.a 24 2
84.4.o.b 24

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(84))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(84)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(28))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(42))\)\(^{\oplus 2}\)