Defining parameters
Level: | \( N \) | \(=\) | \( 84 = 2^{2} \cdot 3 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 84.m (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 7 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(48\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(84, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 76 | 6 | 70 |
Cusp forms | 52 | 6 | 46 |
Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(84, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
84.3.m.a | $2$ | $2.289$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(3\) | \(3\) | \(13\) | \(q+(1+\zeta_{6})q^{3}+(2-\zeta_{6})q^{5}+(5+3\zeta_{6})q^{7}+\cdots\) |
84.3.m.b | $4$ | $2.289$ | \(\Q(\sqrt{-3}, \sqrt{65})\) | None | \(0\) | \(-6\) | \(-9\) | \(2\) | \(q+(-2+\beta _{1})q^{3}+(-2-\beta _{1}+\beta _{3})q^{5}+\cdots\) |
Decomposition of \(S_{3}^{\mathrm{old}}(84, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(84, [\chi]) \cong \) \(S_{3}^{\mathrm{new}}(14, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(28, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 2}\)