Properties

Label 84.2.n
Level $84$
Weight $2$
Character orbit 84.n
Rep. character $\chi_{84}(11,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $24$
Newform subspaces $1$
Sturm bound $32$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 84 = 2^{2} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 84.n (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 84 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(32\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(84, [\chi])\).

Total New Old
Modular forms 40 40 0
Cusp forms 24 24 0
Eisenstein series 16 16 0

Trace form

\( 24 q - 2 q^{4} - 2 q^{9} + O(q^{10}) \) \( 24 q - 2 q^{4} - 2 q^{9} - 10 q^{10} - 12 q^{12} - 24 q^{13} - 10 q^{16} - 10 q^{18} - 6 q^{21} + 28 q^{22} - 14 q^{24} - 12 q^{25} + 10 q^{28} - 14 q^{30} + 10 q^{33} - 8 q^{34} + 44 q^{36} - 8 q^{37} + 34 q^{40} + 38 q^{42} - 18 q^{45} + 24 q^{46} + 8 q^{48} + 16 q^{52} + 38 q^{54} - 4 q^{57} + 14 q^{58} + 14 q^{60} + 4 q^{61} - 68 q^{64} + 30 q^{66} + 36 q^{69} - 90 q^{70} + 20 q^{72} - 24 q^{76} - 104 q^{78} + 26 q^{81} - 68 q^{82} - 76 q^{84} - 40 q^{85} - 34 q^{88} - 40 q^{90} - 6 q^{93} - 24 q^{94} - 62 q^{96} + 72 q^{97} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(84, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
84.2.n.a \(24\) \(0.671\) None \(0\) \(0\) \(0\) \(0\)