Defining parameters
Level: | \( N \) | \(=\) | \( 84 = 2^{2} \cdot 3 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 84.i (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 7 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(32\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(84, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 44 | 2 | 42 |
Cusp forms | 20 | 2 | 18 |
Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(84, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
84.2.i.a | $2$ | $0.671$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(1\) | \(2\) | \(1\) | \(q+\zeta_{6}q^{3}+(2-2\zeta_{6})q^{5}+(-1+3\zeta_{6})q^{7}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(84, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(84, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(28, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 2}\)