Properties

Label 84.2.i
Level $84$
Weight $2$
Character orbit 84.i
Rep. character $\chi_{84}(25,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $2$
Newform subspaces $1$
Sturm bound $32$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 84 = 2^{2} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 84.i (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 7 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 1 \)
Sturm bound: \(32\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(84, [\chi])\).

Total New Old
Modular forms 44 2 42
Cusp forms 20 2 18
Eisenstein series 24 0 24

Trace form

\( 2 q + q^{3} + 2 q^{5} + q^{7} - q^{9} - 2 q^{11} - 6 q^{13} + 4 q^{15} - 8 q^{17} + q^{19} - 4 q^{21} - 8 q^{23} + q^{25} - 2 q^{27} + 8 q^{29} - 3 q^{31} + 2 q^{33} + 10 q^{35} + q^{37} - 3 q^{39}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(84, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
84.2.i.a 84.i 7.c $2$ $0.671$ \(\Q(\sqrt{-3}) \) None 84.2.i.a \(0\) \(1\) \(2\) \(1\) $\mathrm{SU}(2)[C_{3}]$ \(q+\zeta_{6}q^{3}+(2-2\zeta_{6})q^{5}+(-1+3\zeta_{6})q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(84, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(84, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(28, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 2}\)