Properties

Label 84.2.f
Level 8484
Weight 22
Character orbit 84.f
Rep. character χ84(41,)\chi_{84}(41,\cdot)
Character field Q\Q
Dimension 22
Newform subspaces 11
Sturm bound 3232
Trace bound 00

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 84=2237 84 = 2^{2} \cdot 3 \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 84.f (of order 22 and degree 11)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 21 21
Character field: Q\Q
Newform subspaces: 1 1
Sturm bound: 3232
Trace bound: 00

Dimensions

The following table gives the dimensions of various subspaces of M2(84,[χ])M_{2}(84, [\chi]).

Total New Old
Modular forms 22 2 20
Cusp forms 10 2 8
Eisenstein series 12 0 12

Trace form

2q+4q76q96q2110q25+20q37+24q3916q43+2q49+12q5712q6332q678q79+18q81+24q9136q93+O(q100) 2 q + 4 q^{7} - 6 q^{9} - 6 q^{21} - 10 q^{25} + 20 q^{37} + 24 q^{39} - 16 q^{43} + 2 q^{49} + 12 q^{57} - 12 q^{63} - 32 q^{67} - 8 q^{79} + 18 q^{81} + 24 q^{91} - 36 q^{93}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(84,[χ])S_{2}^{\mathrm{new}}(84, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
84.2.f.a 84.f 21.c 22 0.6710.671 Q(3)\Q(\sqrt{-3}) Q(3)\Q(\sqrt{-3}) 84.2.f.a 00 00 00 44 U(1)[D2]\mathrm{U}(1)[D_{2}] qβq3+(β+2)q73q9+4βq13+q-\beta q^{3}+(-\beta+2)q^{7}-3 q^{9}+4\beta q^{13}+\cdots

Decomposition of S2old(84,[χ])S_{2}^{\mathrm{old}}(84, [\chi]) into lower level spaces

S2old(84,[χ]) S_{2}^{\mathrm{old}}(84, [\chi]) \simeq S2new(42,[χ])S_{2}^{\mathrm{new}}(42, [\chi])2^{\oplus 2}