Properties

Label 84.2.e
Level 8484
Weight 22
Character orbit 84.e
Rep. character χ84(71,)\chi_{84}(71,\cdot)
Character field Q\Q
Dimension 1212
Newform subspaces 11
Sturm bound 3232
Trace bound 00

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 84=2237 84 = 2^{2} \cdot 3 \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 84.e (of order 22 and degree 11)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 12 12
Character field: Q\Q
Newform subspaces: 1 1
Sturm bound: 3232
Trace bound: 00

Dimensions

The following table gives the dimensions of various subspaces of M2(84,[χ])M_{2}(84, [\chi]).

Total New Old
Modular forms 20 12 8
Cusp forms 12 12 0
Eisenstein series 8 0 8

Trace form

12q4q46q64q9+4q106q12+4q168q1816q22+2q2412q25+8q28+20q3016q33+32q3420q3616q37+20q40+10q42+24q97+O(q100) 12 q - 4 q^{4} - 6 q^{6} - 4 q^{9} + 4 q^{10} - 6 q^{12} + 4 q^{16} - 8 q^{18} - 16 q^{22} + 2 q^{24} - 12 q^{25} + 8 q^{28} + 20 q^{30} - 16 q^{33} + 32 q^{34} - 20 q^{36} - 16 q^{37} + 20 q^{40} + 10 q^{42}+ \cdots - 24 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(84,[χ])S_{2}^{\mathrm{new}}(84, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
84.2.e.a 84.e 12.b 1212 0.6710.671 12.0.\cdots.2 None 84.2.e.a 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+β4q2β9q3+(β2β3)q4+q+\beta _{4}q^{2}-\beta _{9}q^{3}+(-\beta _{2}-\beta _{3})q^{4}+\cdots