Newform invariants
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{56} + 841894347 T_{5}^{54} + \cdots + 36\!\cdots\!00 \)
T5^56 + 841894347*T5^54 + 399198997827489258*T5^52 + 129262285385418160757762379*T5^50 + 31584574487867270080807441836046728*T5^48 + 6082727116767024306097726998011074340595909*T5^46 + 951902561022854218351742587917646633958517031406181*T5^44 + 123198253831725542011564024059808643196276653940218064986850*T5^42 + 13367736993311103693046103354885183864969032804966145461279152839475*T5^40 + 1226669590609034682965995950060332358665724141398739790636760819183917719375*T5^38 + 95836433672075306832568859643666391654028993352146727170920056042821023935758647500*T5^36 + 6399615577770447366707522165186846784019178202025629555817115502671632956965763418769578125*T5^34 + 366181597783068891194684804131455764337640985357641449857847050111427610356092490718930353304687500*T5^32 + 17961690861765245338007669962501897848188317322063153492163997910391630048481822010850850598653648974609375*T5^30 + 754854884729606687799497540335267493907652550573160531743925790934391848086327554900918812742862603740563232421875*T5^28 + 27117217925221792235137144367484432378586977087014968359224109880356495476592208831875896941232757812966083664758300781250*T5^26 + 830336008871798016816553106155186894318837561982713263547369111078546537874528635814497899208630529494980796575273511505126953125*T5^24 + 21576444365059989746062110596800728544154531527152701766762435001051493369484555291119693331621674383943100027132721814193958282470703125*T5^22 + 473709164655367128026217959265556663192447319372072921396818676794446361462024943291875635138011193676141841053517900431517065473175048828125000*T5^20 + 8730549837491146929545756841971618529114715059733418915103954904829710042265264822671638367820654056984024292560045534979620642191808669567108154296875*T5^18 + 134183866943245304077533780374493669025696711483758123024466689651820024064171384781957919196555864395785451336232882411658917175798917051252961158752441406250*T5^16 + 1701808060392971269805938465021667389952891108872133043524751291902031366108071274026339116170345735423906872209423771353247279056940686360682429008185863494873046875*T5^14 + 17608460757451230901333753255158255219968072351005450172054816127904510021379830509510279964115541792928924977512832630282474805531975032526352118924257196485996246337890625*T5^12 + 145626591238712083639977877019390925039434962897099259835182464422340692193218405575127779801362256821599173316832235939566135022967555078093813199120029318049550056457519531250000*T5^10 + 940277270774202014027102239663558219059505723633472786033787090519597549524131970539577429988134716585919407998767665802678903777214548801858451054473752431398910284042358398437500000000*T5^8 + 4509077339784190201521700693599802097870080479958305402092814992967296630389741638943595210649245600373811350543521120547072662131841206182879766372601227152407797951698303222656250000000000000*T5^6 + 15185001702439870302677610729091989879616603595752826756062386355757271661058282503431527834059143862122206753334805608107535256267484665602790986784062416068776408944904327392578125000000000000000000*T5^4 + 30054272180008773905067494415694970200645555933523505166479444031326881516228923980653233388445230782558272204034023176678223127167732150977355458916403727588585067031763708496093750000000000000000000000000*T5^2 + 36866112302481818492520202693275204511016481549047422862700888532468725878828288696138634306376939890436918814348794280538473315259368090115120213820083261941001407304277442226562500000000000000000000000000000000
acting on \(S_{12}^{\mathrm{new}}(84, [\chi])\).