Newspace parameters
Level: | \( N \) | \(=\) | \( 84 = 2^{2} \cdot 3 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 12 \) |
Character orbit: | \([\chi]\) | \(=\) | 84.i (of order \(3\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(64.5408271670\) |
Analytic rank: | \(0\) |
Dimension: | \(14\) |
Relative dimension: | \(7\) over \(\Q(\zeta_{3})\) |
Coefficient field: | \(\mathbb{Q}[x]/(x^{14} - \cdots)\) |
Defining polynomial: |
\( x^{14} - 6 x^{13} + 198245134 x^{12} + 414863096508 x^{11} + \cdots + 37\!\cdots\!56 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{19}]\) |
Coefficient ring index: | \( 2^{30}\cdot 3^{12}\cdot 7^{7} \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{13}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{14} - 6 x^{13} + 198245134 x^{12} + 414863096508 x^{11} + \cdots + 37\!\cdots\!56 \)
:
\(\beta_{1}\) | \(=\) |
\( ( - 50\!\cdots\!47 \nu^{13} + \cdots - 56\!\cdots\!12 ) / 64\!\cdots\!36 \)
|
\(\beta_{2}\) | \(=\) |
\( ( 50\!\cdots\!47 \nu^{13} + \cdots - 82\!\cdots\!24 ) / 64\!\cdots\!36 \)
|
\(\beta_{3}\) | \(=\) |
\( ( 50\!\cdots\!66 \nu^{13} + \cdots - 19\!\cdots\!44 ) / 64\!\cdots\!36 \)
|
\(\beta_{4}\) | \(=\) |
\( ( - 84\!\cdots\!04 \nu^{13} + \cdots + 70\!\cdots\!36 ) / 45\!\cdots\!00 \)
|
\(\beta_{5}\) | \(=\) |
\( ( - 45\!\cdots\!94 \nu^{13} + \cdots - 55\!\cdots\!00 ) / 14\!\cdots\!00 \)
|
\(\beta_{6}\) | \(=\) |
\( ( 73\!\cdots\!44 \nu^{13} + \cdots - 98\!\cdots\!64 ) / 22\!\cdots\!00 \)
|
\(\beta_{7}\) | \(=\) |
\( ( - 49\!\cdots\!62 \nu^{13} + \cdots - 65\!\cdots\!52 ) / 65\!\cdots\!00 \)
|
\(\beta_{8}\) | \(=\) |
\( ( - 42\!\cdots\!63 \nu^{13} + \cdots + 42\!\cdots\!28 ) / 22\!\cdots\!00 \)
|
\(\beta_{9}\) | \(=\) |
\( ( 16\!\cdots\!31 \nu^{13} + \cdots - 20\!\cdots\!28 ) / 45\!\cdots\!00 \)
|
\(\beta_{10}\) | \(=\) |
\( ( 19\!\cdots\!99 \nu^{13} + \cdots + 23\!\cdots\!00 ) / 50\!\cdots\!00 \)
|
\(\beta_{11}\) | \(=\) |
\( ( - 23\!\cdots\!09 \nu^{13} + \cdots - 38\!\cdots\!72 ) / 31\!\cdots\!00 \)
|
\(\beta_{12}\) | \(=\) |
\( ( - 19\!\cdots\!41 \nu^{13} + \cdots - 43\!\cdots\!36 ) / 15\!\cdots\!00 \)
|
\(\beta_{13}\) | \(=\) |
\( ( - 94\!\cdots\!21 \nu^{13} + \cdots + 95\!\cdots\!36 ) / 73\!\cdots\!00 \)
|
\(\nu\) | \(=\) |
\( \beta_{2} + \beta _1 + 1 \)
|
\(\nu^{2}\) | \(=\) |
\( 11 \beta_{13} + 11 \beta_{12} - 38 \beta_{11} + 58 \beta_{9} - 20 \beta_{8} - 288 \beta_{7} - 38 \beta_{6} + 28 \beta_{5} - 1611 \beta_{3} + 86 \beta_{2} + 56641807 \beta _1 + 96 \)
|
\(\nu^{3}\) | \(=\) |
\( - 9727 \beta_{12} - 131125 \beta_{10} + 541963 \beta_{9} + 720314 \beta_{7} - 1727168 \beta_{6} - 309559 \beta_{5} - 124381 \beta_{4} - 74427061 \beta_{3} - 74140604 \beta_{2} + \cdots - 89165142443 \)
|
\(\nu^{4}\) | \(=\) |
\( - 1192000460 \beta_{13} + 3652634255 \beta_{11} - 2346232175 \beta_{10} + 9942804330 \beta_{9} + 2346232175 \beta_{8} + 47065322810 \beta_{7} + \cdots - 41\!\cdots\!84 \)
|
\(\nu^{5}\) | \(=\) |
\( 1426989509488 \beta_{13} + 1426989509488 \beta_{12} - 7368234223504 \beta_{11} - 16799038997286 \beta_{9} + 20861313992065 \beta_{8} + \cdots - 9430804773782 \)
|
\(\nu^{6}\) | \(=\) |
\( - 97\!\cdots\!23 \beta_{12} + \cdots + 34\!\cdots\!03 \)
|
\(\nu^{7}\) | \(=\) |
\( - 18\!\cdots\!89 \beta_{13} + \cdots + 14\!\cdots\!60 \)
|
\(\nu^{8}\) | \(=\) |
\( 70\!\cdots\!94 \beta_{13} + \cdots + 38\!\cdots\!09 \)
|
\(\nu^{9}\) | \(=\) |
\( - 22\!\cdots\!90 \beta_{12} + \cdots - 15\!\cdots\!04 \)
|
\(\nu^{10}\) | \(=\) |
\( - 46\!\cdots\!93 \beta_{13} + \cdots - 27\!\cdots\!57 \)
|
\(\nu^{11}\) | \(=\) |
\( 27\!\cdots\!75 \beta_{13} + \cdots + 91\!\cdots\!75 \)
|
\(\nu^{12}\) | \(=\) |
\( - 26\!\cdots\!88 \beta_{12} + \cdots + 25\!\cdots\!05 \)
|
\(\nu^{13}\) | \(=\) |
\( - 31\!\cdots\!64 \beta_{13} + \cdots + 17\!\cdots\!12 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/84\mathbb{Z}\right)^\times\).
\(n\) | \(29\) | \(43\) | \(73\) |
\(\chi(n)\) | \(1\) | \(1\) | \(\beta_{1}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
25.1 |
|
0 | 121.500 | − | 210.444i | 0 | −4575.70 | − | 7925.35i | 0 | −7241.01 | + | 43873.6i | 0 | −29524.5 | − | 51137.9i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||
25.2 | 0 | 121.500 | − | 210.444i | 0 | −3945.47 | − | 6833.75i | 0 | 39151.4 | − | 21082.9i | 0 | −29524.5 | − | 51137.9i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
25.3 | 0 | 121.500 | − | 210.444i | 0 | −2471.06 | − | 4280.00i | 0 | −15790.8 | − | 41569.0i | 0 | −29524.5 | − | 51137.9i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
25.4 | 0 | 121.500 | − | 210.444i | 0 | 2050.38 | + | 3551.36i | 0 | −44391.9 | + | 2586.27i | 0 | −29524.5 | − | 51137.9i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
25.5 | 0 | 121.500 | − | 210.444i | 0 | 3193.56 | + | 5531.40i | 0 | 42025.8 | + | 14531.2i | 0 | −29524.5 | − | 51137.9i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
25.6 | 0 | 121.500 | − | 210.444i | 0 | 4369.65 | + | 7568.45i | 0 | −2593.70 | − | 44391.4i | 0 | −29524.5 | − | 51137.9i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
25.7 | 0 | 121.500 | − | 210.444i | 0 | 4987.65 | + | 8638.86i | 0 | 6340.58 | + | 44012.8i | 0 | −29524.5 | − | 51137.9i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
37.1 | 0 | 121.500 | + | 210.444i | 0 | −4575.70 | + | 7925.35i | 0 | −7241.01 | − | 43873.6i | 0 | −29524.5 | + | 51137.9i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
37.2 | 0 | 121.500 | + | 210.444i | 0 | −3945.47 | + | 6833.75i | 0 | 39151.4 | + | 21082.9i | 0 | −29524.5 | + | 51137.9i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
37.3 | 0 | 121.500 | + | 210.444i | 0 | −2471.06 | + | 4280.00i | 0 | −15790.8 | + | 41569.0i | 0 | −29524.5 | + | 51137.9i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
37.4 | 0 | 121.500 | + | 210.444i | 0 | 2050.38 | − | 3551.36i | 0 | −44391.9 | − | 2586.27i | 0 | −29524.5 | + | 51137.9i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
37.5 | 0 | 121.500 | + | 210.444i | 0 | 3193.56 | − | 5531.40i | 0 | 42025.8 | − | 14531.2i | 0 | −29524.5 | + | 51137.9i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
37.6 | 0 | 121.500 | + | 210.444i | 0 | 4369.65 | − | 7568.45i | 0 | −2593.70 | + | 44391.4i | 0 | −29524.5 | + | 51137.9i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
37.7 | 0 | 121.500 | + | 210.444i | 0 | 4987.65 | − | 8638.86i | 0 | 6340.58 | − | 44012.8i | 0 | −29524.5 | + | 51137.9i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 84.12.i.a | ✓ | 14 |
3.b | odd | 2 | 1 | 252.12.k.b | 14 | ||
7.c | even | 3 | 1 | inner | 84.12.i.a | ✓ | 14 |
21.h | odd | 6 | 1 | 252.12.k.b | 14 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
84.12.i.a | ✓ | 14 | 1.a | even | 1 | 1 | trivial |
84.12.i.a | ✓ | 14 | 7.c | even | 3 | 1 | inner |
252.12.k.b | 14 | 3.b | odd | 2 | 1 | ||
252.12.k.b | 14 | 21.h | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{14} - 7218 T_{5}^{13} + 228016270 T_{5}^{12} - 1113050335212 T_{5}^{11} + \cdots + 66\!\cdots\!00 \)
acting on \(S_{12}^{\mathrm{new}}(84, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{14} \)
$3$
\( (T^{2} - 243 T + 59049)^{7} \)
$5$
\( T^{14} - 7218 T^{13} + \cdots + 66\!\cdots\!00 \)
$7$
\( T^{14} - 35001 T^{13} + \cdots + 11\!\cdots\!07 \)
$11$
\( T^{14} - 54450 T^{13} + \cdots + 16\!\cdots\!36 \)
$13$
\( (T^{7} - 767491 T^{6} + \cdots + 14\!\cdots\!00)^{2} \)
$17$
\( T^{14} - 1478880 T^{13} + \cdots + 12\!\cdots\!84 \)
$19$
\( T^{14} + 22875935 T^{13} + \cdots + 10\!\cdots\!44 \)
$23$
\( T^{14} - 62540568 T^{13} + \cdots + 91\!\cdots\!44 \)
$29$
\( (T^{7} - 51048864 T^{6} + \cdots + 49\!\cdots\!20)^{2} \)
$31$
\( T^{14} - 188600405 T^{13} + \cdots + 62\!\cdots\!25 \)
$37$
\( T^{14} - 199685599 T^{13} + \cdots + 74\!\cdots\!00 \)
$41$
\( (T^{7} + 346934358 T^{6} + \cdots - 13\!\cdots\!64)^{2} \)
$43$
\( (T^{7} + 310350877 T^{6} + \cdots - 65\!\cdots\!40)^{2} \)
$47$
\( T^{14} - 2771987346 T^{13} + \cdots + 10\!\cdots\!00 \)
$53$
\( T^{14} - 6487034184 T^{13} + \cdots + 12\!\cdots\!76 \)
$59$
\( T^{14} + 8183838888 T^{13} + \cdots + 37\!\cdots\!00 \)
$61$
\( T^{14} - 4069556330 T^{13} + \cdots + 26\!\cdots\!16 \)
$67$
\( T^{14} - 15766443531 T^{13} + \cdots + 94\!\cdots\!76 \)
$71$
\( (T^{7} + 16591642722 T^{6} + \cdots - 61\!\cdots\!00)^{2} \)
$73$
\( T^{14} + 31685143839 T^{13} + \cdots + 14\!\cdots\!00 \)
$79$
\( T^{14} - 21999509987 T^{13} + \cdots + 20\!\cdots\!09 \)
$83$
\( (T^{7} + 31526942994 T^{6} + \cdots - 46\!\cdots\!88)^{2} \)
$89$
\( T^{14} - 67041904680 T^{13} + \cdots + 31\!\cdots\!00 \)
$97$
\( (T^{7} - 142041709050 T^{6} + \cdots + 12\!\cdots\!00)^{2} \)
show more
show less