Properties

Label 8379.2.a.x.1.1
Level $8379$
Weight $2$
Character 8379.1
Self dual yes
Analytic conductor $66.907$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8379,2,Mod(1,8379)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8379.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8379, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8379 = 3^{2} \cdot 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8379.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,-4,0,0,0,0,0,0,0,0,-4,0,0,8,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.9066518536\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 1197)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.73205\) of defining polynomial
Character \(\chi\) \(=\) 8379.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{4} -5.19615 q^{11} -2.00000 q^{13} +4.00000 q^{16} -5.19615 q^{17} -1.00000 q^{19} -5.19615 q^{23} -5.00000 q^{25} -10.3923 q^{29} -2.00000 q^{31} +8.00000 q^{37} -10.3923 q^{41} -4.00000 q^{43} +10.3923 q^{44} +5.19615 q^{47} +4.00000 q^{52} +10.3923 q^{59} -5.00000 q^{61} -8.00000 q^{64} +2.00000 q^{67} +10.3923 q^{68} +10.3923 q^{71} +7.00000 q^{73} +2.00000 q^{76} -4.00000 q^{79} +15.5885 q^{83} -10.3923 q^{89} +10.3923 q^{92} -14.0000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{4} - 4 q^{13} + 8 q^{16} - 2 q^{19} - 10 q^{25} - 4 q^{31} + 16 q^{37} - 8 q^{43} + 8 q^{52} - 10 q^{61} - 16 q^{64} + 4 q^{67} + 14 q^{73} + 4 q^{76} - 8 q^{79} - 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(3\) 0 0
\(4\) −2.00000 −1.00000
\(5\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −5.19615 −1.56670 −0.783349 0.621582i \(-0.786490\pi\)
−0.783349 + 0.621582i \(0.786490\pi\)
\(12\) 0 0
\(13\) −2.00000 −0.554700 −0.277350 0.960769i \(-0.589456\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 4.00000 1.00000
\(17\) −5.19615 −1.26025 −0.630126 0.776493i \(-0.716997\pi\)
−0.630126 + 0.776493i \(0.716997\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −5.19615 −1.08347 −0.541736 0.840548i \(-0.682233\pi\)
−0.541736 + 0.840548i \(0.682233\pi\)
\(24\) 0 0
\(25\) −5.00000 −1.00000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −10.3923 −1.92980 −0.964901 0.262613i \(-0.915416\pi\)
−0.964901 + 0.262613i \(0.915416\pi\)
\(30\) 0 0
\(31\) −2.00000 −0.359211 −0.179605 0.983739i \(-0.557482\pi\)
−0.179605 + 0.983739i \(0.557482\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 8.00000 1.31519 0.657596 0.753371i \(-0.271573\pi\)
0.657596 + 0.753371i \(0.271573\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −10.3923 −1.62301 −0.811503 0.584349i \(-0.801350\pi\)
−0.811503 + 0.584349i \(0.801350\pi\)
\(42\) 0 0
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) 10.3923 1.56670
\(45\) 0 0
\(46\) 0 0
\(47\) 5.19615 0.757937 0.378968 0.925410i \(-0.376279\pi\)
0.378968 + 0.925410i \(0.376279\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 4.00000 0.554700
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 10.3923 1.35296 0.676481 0.736460i \(-0.263504\pi\)
0.676481 + 0.736460i \(0.263504\pi\)
\(60\) 0 0
\(61\) −5.00000 −0.640184 −0.320092 0.947386i \(-0.603714\pi\)
−0.320092 + 0.947386i \(0.603714\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −8.00000 −1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) 2.00000 0.244339 0.122169 0.992509i \(-0.461015\pi\)
0.122169 + 0.992509i \(0.461015\pi\)
\(68\) 10.3923 1.26025
\(69\) 0 0
\(70\) 0 0
\(71\) 10.3923 1.23334 0.616670 0.787222i \(-0.288481\pi\)
0.616670 + 0.787222i \(0.288481\pi\)
\(72\) 0 0
\(73\) 7.00000 0.819288 0.409644 0.912245i \(-0.365653\pi\)
0.409644 + 0.912245i \(0.365653\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 2.00000 0.229416
\(77\) 0 0
\(78\) 0 0
\(79\) −4.00000 −0.450035 −0.225018 0.974355i \(-0.572244\pi\)
−0.225018 + 0.974355i \(0.572244\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 15.5885 1.71106 0.855528 0.517757i \(-0.173233\pi\)
0.855528 + 0.517757i \(0.173233\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −10.3923 −1.10158 −0.550791 0.834643i \(-0.685674\pi\)
−0.550791 + 0.834643i \(0.685674\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 10.3923 1.08347
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −14.0000 −1.42148 −0.710742 0.703452i \(-0.751641\pi\)
−0.710742 + 0.703452i \(0.751641\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 10.0000 1.00000
\(101\) −15.5885 −1.55111 −0.775555 0.631280i \(-0.782530\pi\)
−0.775555 + 0.631280i \(0.782530\pi\)
\(102\) 0 0
\(103\) 16.0000 1.57653 0.788263 0.615338i \(-0.210980\pi\)
0.788263 + 0.615338i \(0.210980\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −10.3923 −1.00466 −0.502331 0.864675i \(-0.667524\pi\)
−0.502331 + 0.864675i \(0.667524\pi\)
\(108\) 0 0
\(109\) −10.0000 −0.957826 −0.478913 0.877862i \(-0.658969\pi\)
−0.478913 + 0.877862i \(0.658969\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 20.7846 1.92980
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 16.0000 1.45455
\(122\) 0 0
\(123\) 0 0
\(124\) 4.00000 0.359211
\(125\) 0 0
\(126\) 0 0
\(127\) 8.00000 0.709885 0.354943 0.934888i \(-0.384500\pi\)
0.354943 + 0.934888i \(0.384500\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −15.5885 −1.36197 −0.680985 0.732297i \(-0.738448\pi\)
−0.680985 + 0.732297i \(0.738448\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −15.5885 −1.33181 −0.665906 0.746036i \(-0.731955\pi\)
−0.665906 + 0.746036i \(0.731955\pi\)
\(138\) 0 0
\(139\) −11.0000 −0.933008 −0.466504 0.884519i \(-0.654487\pi\)
−0.466504 + 0.884519i \(0.654487\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 10.3923 0.869048
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) −16.0000 −1.31519
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) −4.00000 −0.325515 −0.162758 0.986666i \(-0.552039\pi\)
−0.162758 + 0.986666i \(0.552039\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 13.0000 1.03751 0.518756 0.854922i \(-0.326395\pi\)
0.518756 + 0.854922i \(0.326395\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −1.00000 −0.0783260 −0.0391630 0.999233i \(-0.512469\pi\)
−0.0391630 + 0.999233i \(0.512469\pi\)
\(164\) 20.7846 1.62301
\(165\) 0 0
\(166\) 0 0
\(167\) 10.3923 0.804181 0.402090 0.915600i \(-0.368284\pi\)
0.402090 + 0.915600i \(0.368284\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) 0 0
\(172\) 8.00000 0.609994
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −20.7846 −1.56670
\(177\) 0 0
\(178\) 0 0
\(179\) 10.3923 0.776757 0.388379 0.921500i \(-0.373035\pi\)
0.388379 + 0.921500i \(0.373035\pi\)
\(180\) 0 0
\(181\) −20.0000 −1.48659 −0.743294 0.668965i \(-0.766738\pi\)
−0.743294 + 0.668965i \(0.766738\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 27.0000 1.97444
\(188\) −10.3923 −0.757937
\(189\) 0 0
\(190\) 0 0
\(191\) −10.3923 −0.751961 −0.375980 0.926628i \(-0.622694\pi\)
−0.375980 + 0.926628i \(0.622694\pi\)
\(192\) 0 0
\(193\) 20.0000 1.43963 0.719816 0.694165i \(-0.244226\pi\)
0.719816 + 0.694165i \(0.244226\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 15.5885 1.11063 0.555316 0.831640i \(-0.312597\pi\)
0.555316 + 0.831640i \(0.312597\pi\)
\(198\) 0 0
\(199\) −8.00000 −0.567105 −0.283552 0.958957i \(-0.591513\pi\)
−0.283552 + 0.958957i \(0.591513\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) −8.00000 −0.554700
\(209\) 5.19615 0.359425
\(210\) 0 0
\(211\) 20.0000 1.37686 0.688428 0.725304i \(-0.258301\pi\)
0.688428 + 0.725304i \(0.258301\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 10.3923 0.699062
\(222\) 0 0
\(223\) −26.0000 −1.74109 −0.870544 0.492090i \(-0.836233\pi\)
−0.870544 + 0.492090i \(0.836233\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −10.3923 −0.689761 −0.344881 0.938647i \(-0.612081\pi\)
−0.344881 + 0.938647i \(0.612081\pi\)
\(228\) 0 0
\(229\) 25.0000 1.65205 0.826023 0.563636i \(-0.190598\pi\)
0.826023 + 0.563636i \(0.190598\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 15.5885 1.02123 0.510617 0.859808i \(-0.329417\pi\)
0.510617 + 0.859808i \(0.329417\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −20.7846 −1.35296
\(237\) 0 0
\(238\) 0 0
\(239\) −15.5885 −1.00833 −0.504167 0.863606i \(-0.668200\pi\)
−0.504167 + 0.863606i \(0.668200\pi\)
\(240\) 0 0
\(241\) 4.00000 0.257663 0.128831 0.991667i \(-0.458877\pi\)
0.128831 + 0.991667i \(0.458877\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 10.0000 0.640184
\(245\) 0 0
\(246\) 0 0
\(247\) 2.00000 0.127257
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 10.3923 0.655956 0.327978 0.944685i \(-0.393633\pi\)
0.327978 + 0.944685i \(0.393633\pi\)
\(252\) 0 0
\(253\) 27.0000 1.69748
\(254\) 0 0
\(255\) 0 0
\(256\) 16.0000 1.00000
\(257\) 20.7846 1.29651 0.648254 0.761424i \(-0.275499\pi\)
0.648254 + 0.761424i \(0.275499\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 5.19615 0.320408 0.160204 0.987084i \(-0.448785\pi\)
0.160204 + 0.987084i \(0.448785\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) −4.00000 −0.244339
\(269\) −20.7846 −1.26726 −0.633630 0.773636i \(-0.718436\pi\)
−0.633630 + 0.773636i \(0.718436\pi\)
\(270\) 0 0
\(271\) 1.00000 0.0607457 0.0303728 0.999539i \(-0.490331\pi\)
0.0303728 + 0.999539i \(0.490331\pi\)
\(272\) −20.7846 −1.26025
\(273\) 0 0
\(274\) 0 0
\(275\) 25.9808 1.56670
\(276\) 0 0
\(277\) 23.0000 1.38194 0.690968 0.722885i \(-0.257185\pi\)
0.690968 + 0.722885i \(0.257185\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 20.7846 1.23991 0.619953 0.784639i \(-0.287152\pi\)
0.619953 + 0.784639i \(0.287152\pi\)
\(282\) 0 0
\(283\) −20.0000 −1.18888 −0.594438 0.804141i \(-0.702626\pi\)
−0.594438 + 0.804141i \(0.702626\pi\)
\(284\) −20.7846 −1.23334
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 10.0000 0.588235
\(290\) 0 0
\(291\) 0 0
\(292\) −14.0000 −0.819288
\(293\) −31.1769 −1.82137 −0.910687 0.413096i \(-0.864447\pi\)
−0.910687 + 0.413096i \(0.864447\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 10.3923 0.601003
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) −4.00000 −0.229416
\(305\) 0 0
\(306\) 0 0
\(307\) −8.00000 −0.456584 −0.228292 0.973593i \(-0.573314\pi\)
−0.228292 + 0.973593i \(0.573314\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 5.19615 0.294647 0.147323 0.989088i \(-0.452934\pi\)
0.147323 + 0.989088i \(0.452934\pi\)
\(312\) 0 0
\(313\) 19.0000 1.07394 0.536972 0.843600i \(-0.319568\pi\)
0.536972 + 0.843600i \(0.319568\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 8.00000 0.450035
\(317\) 10.3923 0.583690 0.291845 0.956466i \(-0.405731\pi\)
0.291845 + 0.956466i \(0.405731\pi\)
\(318\) 0 0
\(319\) 54.0000 3.02342
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 5.19615 0.289122
\(324\) 0 0
\(325\) 10.0000 0.554700
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 26.0000 1.42909 0.714545 0.699590i \(-0.246634\pi\)
0.714545 + 0.699590i \(0.246634\pi\)
\(332\) −31.1769 −1.71106
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 32.0000 1.74315 0.871576 0.490261i \(-0.163099\pi\)
0.871576 + 0.490261i \(0.163099\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 10.3923 0.562775
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −10.3923 −0.557888 −0.278944 0.960307i \(-0.589984\pi\)
−0.278944 + 0.960307i \(0.589984\pi\)
\(348\) 0 0
\(349\) −5.00000 −0.267644 −0.133822 0.991005i \(-0.542725\pi\)
−0.133822 + 0.991005i \(0.542725\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 20.7846 1.10625 0.553127 0.833097i \(-0.313435\pi\)
0.553127 + 0.833097i \(0.313435\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 20.7846 1.10158
\(357\) 0 0
\(358\) 0 0
\(359\) −15.5885 −0.822727 −0.411364 0.911471i \(-0.634947\pi\)
−0.411364 + 0.911471i \(0.634947\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −8.00000 −0.417597 −0.208798 0.977959i \(-0.566955\pi\)
−0.208798 + 0.977959i \(0.566955\pi\)
\(368\) −20.7846 −1.08347
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 14.0000 0.724893 0.362446 0.932005i \(-0.381942\pi\)
0.362446 + 0.932005i \(0.381942\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 20.7846 1.07046
\(378\) 0 0
\(379\) 8.00000 0.410932 0.205466 0.978664i \(-0.434129\pi\)
0.205466 + 0.978664i \(0.434129\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −31.1769 −1.59307 −0.796533 0.604595i \(-0.793335\pi\)
−0.796533 + 0.604595i \(0.793335\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 28.0000 1.42148
\(389\) 15.5885 0.790366 0.395183 0.918602i \(-0.370681\pi\)
0.395183 + 0.918602i \(0.370681\pi\)
\(390\) 0 0
\(391\) 27.0000 1.36545
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −17.0000 −0.853206 −0.426603 0.904439i \(-0.640290\pi\)
−0.426603 + 0.904439i \(0.640290\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −20.0000 −1.00000
\(401\) −31.1769 −1.55690 −0.778450 0.627706i \(-0.783994\pi\)
−0.778450 + 0.627706i \(0.783994\pi\)
\(402\) 0 0
\(403\) 4.00000 0.199254
\(404\) 31.1769 1.55111
\(405\) 0 0
\(406\) 0 0
\(407\) −41.5692 −2.06051
\(408\) 0 0
\(409\) −20.0000 −0.988936 −0.494468 0.869196i \(-0.664637\pi\)
−0.494468 + 0.869196i \(0.664637\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −32.0000 −1.57653
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −15.5885 −0.761546 −0.380773 0.924669i \(-0.624342\pi\)
−0.380773 + 0.924669i \(0.624342\pi\)
\(420\) 0 0
\(421\) 8.00000 0.389896 0.194948 0.980814i \(-0.437546\pi\)
0.194948 + 0.980814i \(0.437546\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 25.9808 1.26025
\(426\) 0 0
\(427\) 0 0
\(428\) 20.7846 1.00466
\(429\) 0 0
\(430\) 0 0
\(431\) −31.1769 −1.50174 −0.750870 0.660451i \(-0.770365\pi\)
−0.750870 + 0.660451i \(0.770365\pi\)
\(432\) 0 0
\(433\) −26.0000 −1.24948 −0.624740 0.780833i \(-0.714795\pi\)
−0.624740 + 0.780833i \(0.714795\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 20.0000 0.957826
\(437\) 5.19615 0.248566
\(438\) 0 0
\(439\) −26.0000 −1.24091 −0.620456 0.784241i \(-0.713053\pi\)
−0.620456 + 0.784241i \(0.713053\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −5.19615 −0.246877 −0.123438 0.992352i \(-0.539392\pi\)
−0.123438 + 0.992352i \(0.539392\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −31.1769 −1.47133 −0.735665 0.677346i \(-0.763130\pi\)
−0.735665 + 0.677346i \(0.763130\pi\)
\(450\) 0 0
\(451\) 54.0000 2.54276
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 23.0000 1.07589 0.537947 0.842978i \(-0.319200\pi\)
0.537947 + 0.842978i \(0.319200\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 5.19615 0.242009 0.121004 0.992652i \(-0.461388\pi\)
0.121004 + 0.992652i \(0.461388\pi\)
\(462\) 0 0
\(463\) 23.0000 1.06890 0.534450 0.845200i \(-0.320519\pi\)
0.534450 + 0.845200i \(0.320519\pi\)
\(464\) −41.5692 −1.92980
\(465\) 0 0
\(466\) 0 0
\(467\) −5.19615 −0.240449 −0.120225 0.992747i \(-0.538361\pi\)
−0.120225 + 0.992747i \(0.538361\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 20.7846 0.955677
\(474\) 0 0
\(475\) 5.00000 0.229416
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 15.5885 0.712255 0.356127 0.934437i \(-0.384097\pi\)
0.356127 + 0.934437i \(0.384097\pi\)
\(480\) 0 0
\(481\) −16.0000 −0.729537
\(482\) 0 0
\(483\) 0 0
\(484\) −32.0000 −1.45455
\(485\) 0 0
\(486\) 0 0
\(487\) 2.00000 0.0906287 0.0453143 0.998973i \(-0.485571\pi\)
0.0453143 + 0.998973i \(0.485571\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −5.19615 −0.234499 −0.117250 0.993102i \(-0.537408\pi\)
−0.117250 + 0.993102i \(0.537408\pi\)
\(492\) 0 0
\(493\) 54.0000 2.43204
\(494\) 0 0
\(495\) 0 0
\(496\) −8.00000 −0.359211
\(497\) 0 0
\(498\) 0 0
\(499\) 20.0000 0.895323 0.447661 0.894203i \(-0.352257\pi\)
0.447661 + 0.894203i \(0.352257\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −5.19615 −0.231685 −0.115842 0.993268i \(-0.536957\pi\)
−0.115842 + 0.993268i \(0.536957\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) −16.0000 −0.709885
\(509\) −10.3923 −0.460631 −0.230315 0.973116i \(-0.573976\pi\)
−0.230315 + 0.973116i \(0.573976\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −27.0000 −1.18746
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 20.7846 0.910590 0.455295 0.890341i \(-0.349534\pi\)
0.455295 + 0.890341i \(0.349534\pi\)
\(522\) 0 0
\(523\) 10.0000 0.437269 0.218635 0.975807i \(-0.429840\pi\)
0.218635 + 0.975807i \(0.429840\pi\)
\(524\) 31.1769 1.36197
\(525\) 0 0
\(526\) 0 0
\(527\) 10.3923 0.452696
\(528\) 0 0
\(529\) 4.00000 0.173913
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 20.7846 0.900281
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 2.00000 0.0859867 0.0429934 0.999075i \(-0.486311\pi\)
0.0429934 + 0.999075i \(0.486311\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −22.0000 −0.940652 −0.470326 0.882493i \(-0.655864\pi\)
−0.470326 + 0.882493i \(0.655864\pi\)
\(548\) 31.1769 1.33181
\(549\) 0 0
\(550\) 0 0
\(551\) 10.3923 0.442727
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 22.0000 0.933008
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) 8.00000 0.338364
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −10.3923 −0.437983 −0.218992 0.975727i \(-0.570277\pi\)
−0.218992 + 0.975727i \(0.570277\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 20.7846 0.871336 0.435668 0.900107i \(-0.356512\pi\)
0.435668 + 0.900107i \(0.356512\pi\)
\(570\) 0 0
\(571\) 23.0000 0.962520 0.481260 0.876578i \(-0.340179\pi\)
0.481260 + 0.876578i \(0.340179\pi\)
\(572\) −20.7846 −0.869048
\(573\) 0 0
\(574\) 0 0
\(575\) 25.9808 1.08347
\(576\) 0 0
\(577\) 19.0000 0.790980 0.395490 0.918470i \(-0.370575\pi\)
0.395490 + 0.918470i \(0.370575\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −25.9808 −1.07234 −0.536170 0.844110i \(-0.680130\pi\)
−0.536170 + 0.844110i \(0.680130\pi\)
\(588\) 0 0
\(589\) 2.00000 0.0824086
\(590\) 0 0
\(591\) 0 0
\(592\) 32.0000 1.31519
\(593\) 5.19615 0.213380 0.106690 0.994292i \(-0.465975\pi\)
0.106690 + 0.994292i \(0.465975\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 40.0000 1.63163 0.815817 0.578310i \(-0.196288\pi\)
0.815817 + 0.578310i \(0.196288\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 8.00000 0.325515
\(605\) 0 0
\(606\) 0 0
\(607\) 22.0000 0.892952 0.446476 0.894795i \(-0.352679\pi\)
0.446476 + 0.894795i \(0.352679\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −10.3923 −0.420428
\(612\) 0 0
\(613\) −37.0000 −1.49442 −0.747208 0.664590i \(-0.768606\pi\)
−0.747208 + 0.664590i \(0.768606\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 20.7846 0.836757 0.418378 0.908273i \(-0.362599\pi\)
0.418378 + 0.908273i \(0.362599\pi\)
\(618\) 0 0
\(619\) −41.0000 −1.64793 −0.823965 0.566641i \(-0.808243\pi\)
−0.823965 + 0.566641i \(0.808243\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) −26.0000 −1.03751
\(629\) −41.5692 −1.65747
\(630\) 0 0
\(631\) 8.00000 0.318475 0.159237 0.987240i \(-0.449096\pi\)
0.159237 + 0.987240i \(0.449096\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −10.3923 −0.410471 −0.205236 0.978713i \(-0.565796\pi\)
−0.205236 + 0.978713i \(0.565796\pi\)
\(642\) 0 0
\(643\) 25.0000 0.985904 0.492952 0.870057i \(-0.335918\pi\)
0.492952 + 0.870057i \(0.335918\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −10.3923 −0.408564 −0.204282 0.978912i \(-0.565486\pi\)
−0.204282 + 0.978912i \(0.565486\pi\)
\(648\) 0 0
\(649\) −54.0000 −2.11969
\(650\) 0 0
\(651\) 0 0
\(652\) 2.00000 0.0783260
\(653\) 36.3731 1.42339 0.711694 0.702490i \(-0.247928\pi\)
0.711694 + 0.702490i \(0.247928\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −41.5692 −1.62301
\(657\) 0 0
\(658\) 0 0
\(659\) −10.3923 −0.404827 −0.202413 0.979300i \(-0.564878\pi\)
−0.202413 + 0.979300i \(0.564878\pi\)
\(660\) 0 0
\(661\) −32.0000 −1.24466 −0.622328 0.782757i \(-0.713813\pi\)
−0.622328 + 0.782757i \(0.713813\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 54.0000 2.09089
\(668\) −20.7846 −0.804181
\(669\) 0 0
\(670\) 0 0
\(671\) 25.9808 1.00298
\(672\) 0 0
\(673\) −10.0000 −0.385472 −0.192736 0.981251i \(-0.561736\pi\)
−0.192736 + 0.981251i \(0.561736\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 18.0000 0.692308
\(677\) −20.7846 −0.798817 −0.399409 0.916773i \(-0.630785\pi\)
−0.399409 + 0.916773i \(0.630785\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 41.5692 1.59060 0.795301 0.606215i \(-0.207313\pi\)
0.795301 + 0.606215i \(0.207313\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) −16.0000 −0.609994
\(689\) 0 0
\(690\) 0 0
\(691\) −5.00000 −0.190209 −0.0951045 0.995467i \(-0.530319\pi\)
−0.0951045 + 0.995467i \(0.530319\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 54.0000 2.04540
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −5.19615 −0.196256 −0.0981280 0.995174i \(-0.531285\pi\)
−0.0981280 + 0.995174i \(0.531285\pi\)
\(702\) 0 0
\(703\) −8.00000 −0.301726
\(704\) 41.5692 1.56670
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 41.0000 1.53979 0.769894 0.638172i \(-0.220309\pi\)
0.769894 + 0.638172i \(0.220309\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 10.3923 0.389195
\(714\) 0 0
\(715\) 0 0
\(716\) −20.7846 −0.776757
\(717\) 0 0
\(718\) 0 0
\(719\) 46.7654 1.74405 0.872027 0.489458i \(-0.162805\pi\)
0.872027 + 0.489458i \(0.162805\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 40.0000 1.48659
\(725\) 51.9615 1.92980
\(726\) 0 0
\(727\) 4.00000 0.148352 0.0741759 0.997245i \(-0.476367\pi\)
0.0741759 + 0.997245i \(0.476367\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 20.7846 0.768747
\(732\) 0 0
\(733\) 34.0000 1.25582 0.627909 0.778287i \(-0.283911\pi\)
0.627909 + 0.778287i \(0.283911\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −10.3923 −0.382805
\(738\) 0 0
\(739\) 17.0000 0.625355 0.312678 0.949859i \(-0.398774\pi\)
0.312678 + 0.949859i \(0.398774\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −20.7846 −0.762513 −0.381257 0.924469i \(-0.624509\pi\)
−0.381257 + 0.924469i \(0.624509\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) −54.0000 −1.97444
\(749\) 0 0
\(750\) 0 0
\(751\) 14.0000 0.510867 0.255434 0.966827i \(-0.417782\pi\)
0.255434 + 0.966827i \(0.417782\pi\)
\(752\) 20.7846 0.757937
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 17.0000 0.617876 0.308938 0.951082i \(-0.400027\pi\)
0.308938 + 0.951082i \(0.400027\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −20.7846 −0.753442 −0.376721 0.926327i \(-0.622948\pi\)
−0.376721 + 0.926327i \(0.622948\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 20.7846 0.751961
\(765\) 0 0
\(766\) 0 0
\(767\) −20.7846 −0.750489
\(768\) 0 0
\(769\) 22.0000 0.793340 0.396670 0.917961i \(-0.370166\pi\)
0.396670 + 0.917961i \(0.370166\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −40.0000 −1.43963
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 0 0
\(775\) 10.0000 0.359211
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 10.3923 0.372343
\(780\) 0 0
\(781\) −54.0000 −1.93227
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −20.0000 −0.712923 −0.356462 0.934310i \(-0.616017\pi\)
−0.356462 + 0.934310i \(0.616017\pi\)
\(788\) −31.1769 −1.11063
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 10.0000 0.355110
\(794\) 0 0
\(795\) 0 0
\(796\) 16.0000 0.567105
\(797\) 31.1769 1.10434 0.552171 0.833731i \(-0.313799\pi\)
0.552171 + 0.833731i \(0.313799\pi\)
\(798\) 0 0
\(799\) −27.0000 −0.955191
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −36.3731 −1.28358
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −20.7846 −0.730748 −0.365374 0.930861i \(-0.619059\pi\)
−0.365374 + 0.930861i \(0.619059\pi\)
\(810\) 0 0
\(811\) −2.00000 −0.0702295 −0.0351147 0.999383i \(-0.511180\pi\)
−0.0351147 + 0.999383i \(0.511180\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 4.00000 0.139942
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 25.9808 0.906735 0.453367 0.891324i \(-0.350223\pi\)
0.453367 + 0.891324i \(0.350223\pi\)
\(822\) 0 0
\(823\) −25.0000 −0.871445 −0.435723 0.900081i \(-0.643507\pi\)
−0.435723 + 0.900081i \(0.643507\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −10.3923 −0.361376 −0.180688 0.983540i \(-0.557832\pi\)
−0.180688 + 0.983540i \(0.557832\pi\)
\(828\) 0 0
\(829\) 34.0000 1.18087 0.590434 0.807086i \(-0.298956\pi\)
0.590434 + 0.807086i \(0.298956\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 16.0000 0.554700
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) −10.3923 −0.359425
\(837\) 0 0
\(838\) 0 0
\(839\) −41.5692 −1.43513 −0.717564 0.696492i \(-0.754743\pi\)
−0.717564 + 0.696492i \(0.754743\pi\)
\(840\) 0 0
\(841\) 79.0000 2.72414
\(842\) 0 0
\(843\) 0 0
\(844\) −40.0000 −1.37686
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −41.5692 −1.42497
\(852\) 0 0
\(853\) −35.0000 −1.19838 −0.599189 0.800608i \(-0.704510\pi\)
−0.599189 + 0.800608i \(0.704510\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −51.9615 −1.77497 −0.887486 0.460835i \(-0.847550\pi\)
−0.887486 + 0.460835i \(0.847550\pi\)
\(858\) 0 0
\(859\) −20.0000 −0.682391 −0.341196 0.939992i \(-0.610832\pi\)
−0.341196 + 0.939992i \(0.610832\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 20.7846 0.707516 0.353758 0.935337i \(-0.384904\pi\)
0.353758 + 0.935337i \(0.384904\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 20.7846 0.705070
\(870\) 0 0
\(871\) −4.00000 −0.135535
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −16.0000 −0.540282 −0.270141 0.962821i \(-0.587070\pi\)
−0.270141 + 0.962821i \(0.587070\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 46.7654 1.57557 0.787783 0.615953i \(-0.211229\pi\)
0.787783 + 0.615953i \(0.211229\pi\)
\(882\) 0 0
\(883\) −7.00000 −0.235569 −0.117784 0.993039i \(-0.537579\pi\)
−0.117784 + 0.993039i \(0.537579\pi\)
\(884\) −20.7846 −0.699062
\(885\) 0 0
\(886\) 0 0
\(887\) 51.9615 1.74470 0.872349 0.488884i \(-0.162596\pi\)
0.872349 + 0.488884i \(0.162596\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 52.0000 1.74109
\(893\) −5.19615 −0.173883
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 20.7846 0.693206
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −22.0000 −0.730498 −0.365249 0.930910i \(-0.619016\pi\)
−0.365249 + 0.930910i \(0.619016\pi\)
\(908\) 20.7846 0.689761
\(909\) 0 0
\(910\) 0 0
\(911\) 31.1769 1.03294 0.516469 0.856306i \(-0.327246\pi\)
0.516469 + 0.856306i \(0.327246\pi\)
\(912\) 0 0
\(913\) −81.0000 −2.68071
\(914\) 0 0
\(915\) 0 0
\(916\) −50.0000 −1.65205
\(917\) 0 0
\(918\) 0 0
\(919\) −19.0000 −0.626752 −0.313376 0.949629i \(-0.601460\pi\)
−0.313376 + 0.949629i \(0.601460\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −20.7846 −0.684134
\(924\) 0 0
\(925\) −40.0000 −1.31519
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −15.5885 −0.511441 −0.255720 0.966751i \(-0.582313\pi\)
−0.255720 + 0.966751i \(0.582313\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −31.1769 −1.02123
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 10.0000 0.326686 0.163343 0.986569i \(-0.447772\pi\)
0.163343 + 0.986569i \(0.447772\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −31.1769 −1.01634 −0.508169 0.861257i \(-0.669678\pi\)
−0.508169 + 0.861257i \(0.669678\pi\)
\(942\) 0 0
\(943\) 54.0000 1.75848
\(944\) 41.5692 1.35296
\(945\) 0 0
\(946\) 0 0
\(947\) −31.1769 −1.01311 −0.506557 0.862207i \(-0.669082\pi\)
−0.506557 + 0.862207i \(0.669082\pi\)
\(948\) 0 0
\(949\) −14.0000 −0.454459
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 10.3923 0.336640 0.168320 0.985732i \(-0.446166\pi\)
0.168320 + 0.985732i \(0.446166\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 31.1769 1.00833
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −27.0000 −0.870968
\(962\) 0 0
\(963\) 0 0
\(964\) −8.00000 −0.257663
\(965\) 0 0
\(966\) 0 0
\(967\) −16.0000 −0.514525 −0.257263 0.966342i \(-0.582821\pi\)
−0.257263 + 0.966342i \(0.582821\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −31.1769 −1.00051 −0.500257 0.865877i \(-0.666761\pi\)
−0.500257 + 0.865877i \(0.666761\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) −20.0000 −0.640184
\(977\) 41.5692 1.32992 0.664959 0.746880i \(-0.268449\pi\)
0.664959 + 0.746880i \(0.268449\pi\)
\(978\) 0 0
\(979\) 54.0000 1.72585
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −20.7846 −0.662926 −0.331463 0.943468i \(-0.607542\pi\)
−0.331463 + 0.943468i \(0.607542\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) −4.00000 −0.127257
\(989\) 20.7846 0.660912
\(990\) 0 0
\(991\) 26.0000 0.825917 0.412959 0.910750i \(-0.364495\pi\)
0.412959 + 0.910750i \(0.364495\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −23.0000 −0.728417 −0.364209 0.931317i \(-0.618661\pi\)
−0.364209 + 0.931317i \(0.618661\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8379.2.a.x.1.1 2
3.2 odd 2 inner 8379.2.a.x.1.2 2
7.3 odd 6 1197.2.j.h.856.2 yes 4
7.5 odd 6 1197.2.j.h.172.2 yes 4
7.6 odd 2 8379.2.a.y.1.1 2
21.5 even 6 1197.2.j.h.172.1 4
21.17 even 6 1197.2.j.h.856.1 yes 4
21.20 even 2 8379.2.a.y.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1197.2.j.h.172.1 4 21.5 even 6
1197.2.j.h.172.2 yes 4 7.5 odd 6
1197.2.j.h.856.1 yes 4 21.17 even 6
1197.2.j.h.856.2 yes 4 7.3 odd 6
8379.2.a.x.1.1 2 1.1 even 1 trivial
8379.2.a.x.1.2 2 3.2 odd 2 inner
8379.2.a.y.1.1 2 7.6 odd 2
8379.2.a.y.1.2 2 21.20 even 2