# Properties

 Label 8379.2.a.j Level $8379$ Weight $2$ Character orbit 8379.a Self dual yes Analytic conductor $66.907$ Analytic rank $1$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [8379,2,Mod(1,8379)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(8379, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("8379.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$8379 = 3^{2} \cdot 7^{2} \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 8379.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$66.9066518536$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 19) Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q - 2 q^{4} + 3 q^{5}+O(q^{10})$$ q - 2 * q^4 + 3 * q^5 $$q - 2 q^{4} + 3 q^{5} - 3 q^{11} + 4 q^{13} + 4 q^{16} - 3 q^{17} - q^{19} - 6 q^{20} + 4 q^{25} - 6 q^{29} + 4 q^{31} + 2 q^{37} - 6 q^{41} - q^{43} + 6 q^{44} - 3 q^{47} - 8 q^{52} - 12 q^{53} - 9 q^{55} - 6 q^{59} + q^{61} - 8 q^{64} + 12 q^{65} - 4 q^{67} + 6 q^{68} - 6 q^{71} + 7 q^{73} + 2 q^{76} + 8 q^{79} + 12 q^{80} + 12 q^{83} - 9 q^{85} + 12 q^{89} - 3 q^{95} - 8 q^{97}+O(q^{100})$$ q - 2 * q^4 + 3 * q^5 - 3 * q^11 + 4 * q^13 + 4 * q^16 - 3 * q^17 - q^19 - 6 * q^20 + 4 * q^25 - 6 * q^29 + 4 * q^31 + 2 * q^37 - 6 * q^41 - q^43 + 6 * q^44 - 3 * q^47 - 8 * q^52 - 12 * q^53 - 9 * q^55 - 6 * q^59 + q^61 - 8 * q^64 + 12 * q^65 - 4 * q^67 + 6 * q^68 - 6 * q^71 + 7 * q^73 + 2 * q^76 + 8 * q^79 + 12 * q^80 + 12 * q^83 - 9 * q^85 + 12 * q^89 - 3 * q^95 - 8 * q^97

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 0 −2.00000 3.00000 0 0 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$3$$ $$-1$$
$$7$$ $$-1$$
$$19$$ $$1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8379.2.a.j 1
3.b odd 2 1 931.2.a.a 1
7.b odd 2 1 171.2.a.b 1
21.c even 2 1 19.2.a.a 1
21.g even 6 2 931.2.f.c 2
21.h odd 6 2 931.2.f.b 2
28.d even 2 1 2736.2.a.c 1
35.c odd 2 1 4275.2.a.i 1
84.h odd 2 1 304.2.a.f 1
105.g even 2 1 475.2.a.b 1
105.k odd 4 2 475.2.b.a 2
133.c even 2 1 3249.2.a.d 1
168.e odd 2 1 1216.2.a.b 1
168.i even 2 1 1216.2.a.o 1
231.h odd 2 1 2299.2.a.b 1
273.g even 2 1 3211.2.a.a 1
357.c even 2 1 5491.2.a.b 1
399.h odd 2 1 361.2.a.b 1
399.q odd 6 2 361.2.c.a 2
399.z even 6 2 361.2.c.c 2
399.bx odd 18 6 361.2.e.e 6
399.cj even 18 6 361.2.e.d 6
420.o odd 2 1 7600.2.a.c 1
1596.p even 2 1 5776.2.a.c 1
1995.b odd 2 1 9025.2.a.d 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
19.2.a.a 1 21.c even 2 1
171.2.a.b 1 7.b odd 2 1
304.2.a.f 1 84.h odd 2 1
361.2.a.b 1 399.h odd 2 1
361.2.c.a 2 399.q odd 6 2
361.2.c.c 2 399.z even 6 2
361.2.e.d 6 399.cj even 18 6
361.2.e.e 6 399.bx odd 18 6
475.2.a.b 1 105.g even 2 1
475.2.b.a 2 105.k odd 4 2
931.2.a.a 1 3.b odd 2 1
931.2.f.b 2 21.h odd 6 2
931.2.f.c 2 21.g even 6 2
1216.2.a.b 1 168.e odd 2 1
1216.2.a.o 1 168.i even 2 1
2299.2.a.b 1 231.h odd 2 1
2736.2.a.c 1 28.d even 2 1
3211.2.a.a 1 273.g even 2 1
3249.2.a.d 1 133.c even 2 1
4275.2.a.i 1 35.c odd 2 1
5491.2.a.b 1 357.c even 2 1
5776.2.a.c 1 1596.p even 2 1
7600.2.a.c 1 420.o odd 2 1
8379.2.a.j 1 1.a even 1 1 trivial
9025.2.a.d 1 1995.b odd 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(8379))$$:

 $$T_{2}$$ T2 $$T_{5} - 3$$ T5 - 3 $$T_{11} + 3$$ T11 + 3 $$T_{13} - 4$$ T13 - 4 $$T_{17} + 3$$ T17 + 3

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$T$$
$5$ $$T - 3$$
$7$ $$T$$
$11$ $$T + 3$$
$13$ $$T - 4$$
$17$ $$T + 3$$
$19$ $$T + 1$$
$23$ $$T$$
$29$ $$T + 6$$
$31$ $$T - 4$$
$37$ $$T - 2$$
$41$ $$T + 6$$
$43$ $$T + 1$$
$47$ $$T + 3$$
$53$ $$T + 12$$
$59$ $$T + 6$$
$61$ $$T - 1$$
$67$ $$T + 4$$
$71$ $$T + 6$$
$73$ $$T - 7$$
$79$ $$T - 8$$
$83$ $$T - 12$$
$89$ $$T - 12$$
$97$ $$T + 8$$