Properties

Label 8379.2.a.h.1.1
Level $8379$
Weight $2$
Character 8379.1
Self dual yes
Analytic conductor $66.907$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8379,2,Mod(1,8379)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8379.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8379, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8379 = 3^{2} \cdot 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8379.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,0,0,-2,-2,0,0,0,0,0,3,0,2,0,0,4,7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.9066518536\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 399)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 8379.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{4} -2.00000 q^{5} +3.00000 q^{11} +2.00000 q^{13} +4.00000 q^{16} +7.00000 q^{17} -1.00000 q^{19} +4.00000 q^{20} -5.00000 q^{23} -1.00000 q^{25} -2.00000 q^{29} +10.0000 q^{31} +8.00000 q^{37} -6.00000 q^{41} +12.0000 q^{43} -6.00000 q^{44} +5.00000 q^{47} -4.00000 q^{52} -4.00000 q^{53} -6.00000 q^{55} -14.0000 q^{59} -13.0000 q^{61} -8.00000 q^{64} -4.00000 q^{65} -2.00000 q^{67} -14.0000 q^{68} +10.0000 q^{71} +1.00000 q^{73} +2.00000 q^{76} -4.00000 q^{79} -8.00000 q^{80} +9.00000 q^{83} -14.0000 q^{85} -18.0000 q^{89} +10.0000 q^{92} +2.00000 q^{95} +6.00000 q^{97} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(3\) 0 0
\(4\) −2.00000 −1.00000
\(5\) −2.00000 −0.894427 −0.447214 0.894427i \(-0.647584\pi\)
−0.447214 + 0.894427i \(0.647584\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 3.00000 0.904534 0.452267 0.891883i \(-0.350615\pi\)
0.452267 + 0.891883i \(0.350615\pi\)
\(12\) 0 0
\(13\) 2.00000 0.554700 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 4.00000 1.00000
\(17\) 7.00000 1.69775 0.848875 0.528594i \(-0.177281\pi\)
0.848875 + 0.528594i \(0.177281\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 4.00000 0.894427
\(21\) 0 0
\(22\) 0 0
\(23\) −5.00000 −1.04257 −0.521286 0.853382i \(-0.674548\pi\)
−0.521286 + 0.853382i \(0.674548\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) 0 0
\(31\) 10.0000 1.79605 0.898027 0.439941i \(-0.145001\pi\)
0.898027 + 0.439941i \(0.145001\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 8.00000 1.31519 0.657596 0.753371i \(-0.271573\pi\)
0.657596 + 0.753371i \(0.271573\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −6.00000 −0.937043 −0.468521 0.883452i \(-0.655213\pi\)
−0.468521 + 0.883452i \(0.655213\pi\)
\(42\) 0 0
\(43\) 12.0000 1.82998 0.914991 0.403473i \(-0.132197\pi\)
0.914991 + 0.403473i \(0.132197\pi\)
\(44\) −6.00000 −0.904534
\(45\) 0 0
\(46\) 0 0
\(47\) 5.00000 0.729325 0.364662 0.931140i \(-0.381184\pi\)
0.364662 + 0.931140i \(0.381184\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) −4.00000 −0.554700
\(53\) −4.00000 −0.549442 −0.274721 0.961524i \(-0.588586\pi\)
−0.274721 + 0.961524i \(0.588586\pi\)
\(54\) 0 0
\(55\) −6.00000 −0.809040
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −14.0000 −1.82264 −0.911322 0.411693i \(-0.864937\pi\)
−0.911322 + 0.411693i \(0.864937\pi\)
\(60\) 0 0
\(61\) −13.0000 −1.66448 −0.832240 0.554416i \(-0.812942\pi\)
−0.832240 + 0.554416i \(0.812942\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −8.00000 −1.00000
\(65\) −4.00000 −0.496139
\(66\) 0 0
\(67\) −2.00000 −0.244339 −0.122169 0.992509i \(-0.538985\pi\)
−0.122169 + 0.992509i \(0.538985\pi\)
\(68\) −14.0000 −1.69775
\(69\) 0 0
\(70\) 0 0
\(71\) 10.0000 1.18678 0.593391 0.804914i \(-0.297789\pi\)
0.593391 + 0.804914i \(0.297789\pi\)
\(72\) 0 0
\(73\) 1.00000 0.117041 0.0585206 0.998286i \(-0.481362\pi\)
0.0585206 + 0.998286i \(0.481362\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 2.00000 0.229416
\(77\) 0 0
\(78\) 0 0
\(79\) −4.00000 −0.450035 −0.225018 0.974355i \(-0.572244\pi\)
−0.225018 + 0.974355i \(0.572244\pi\)
\(80\) −8.00000 −0.894427
\(81\) 0 0
\(82\) 0 0
\(83\) 9.00000 0.987878 0.493939 0.869496i \(-0.335557\pi\)
0.493939 + 0.869496i \(0.335557\pi\)
\(84\) 0 0
\(85\) −14.0000 −1.51851
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −18.0000 −1.90800 −0.953998 0.299813i \(-0.903076\pi\)
−0.953998 + 0.299813i \(0.903076\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 10.0000 1.04257
\(93\) 0 0
\(94\) 0 0
\(95\) 2.00000 0.205196
\(96\) 0 0
\(97\) 6.00000 0.609208 0.304604 0.952479i \(-0.401476\pi\)
0.304604 + 0.952479i \(0.401476\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 2.00000 0.200000
\(101\) −13.0000 −1.29355 −0.646774 0.762682i \(-0.723882\pi\)
−0.646774 + 0.762682i \(0.723882\pi\)
\(102\) 0 0
\(103\) 8.00000 0.788263 0.394132 0.919054i \(-0.371045\pi\)
0.394132 + 0.919054i \(0.371045\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 18.0000 1.74013 0.870063 0.492941i \(-0.164078\pi\)
0.870063 + 0.492941i \(0.164078\pi\)
\(108\) 0 0
\(109\) 6.00000 0.574696 0.287348 0.957826i \(-0.407226\pi\)
0.287348 + 0.957826i \(0.407226\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −12.0000 −1.12887 −0.564433 0.825479i \(-0.690905\pi\)
−0.564433 + 0.825479i \(0.690905\pi\)
\(114\) 0 0
\(115\) 10.0000 0.932505
\(116\) 4.00000 0.371391
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −2.00000 −0.181818
\(122\) 0 0
\(123\) 0 0
\(124\) −20.0000 −1.79605
\(125\) 12.0000 1.07331
\(126\) 0 0
\(127\) 16.0000 1.41977 0.709885 0.704317i \(-0.248747\pi\)
0.709885 + 0.704317i \(0.248747\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −1.00000 −0.0873704 −0.0436852 0.999045i \(-0.513910\pi\)
−0.0436852 + 0.999045i \(0.513910\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 3.00000 0.256307 0.128154 0.991754i \(-0.459095\pi\)
0.128154 + 0.991754i \(0.459095\pi\)
\(138\) 0 0
\(139\) 5.00000 0.424094 0.212047 0.977259i \(-0.431987\pi\)
0.212047 + 0.977259i \(0.431987\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 6.00000 0.501745
\(144\) 0 0
\(145\) 4.00000 0.332182
\(146\) 0 0
\(147\) 0 0
\(148\) −16.0000 −1.31519
\(149\) −6.00000 −0.491539 −0.245770 0.969328i \(-0.579041\pi\)
−0.245770 + 0.969328i \(0.579041\pi\)
\(150\) 0 0
\(151\) −8.00000 −0.651031 −0.325515 0.945537i \(-0.605538\pi\)
−0.325515 + 0.945537i \(0.605538\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −20.0000 −1.60644
\(156\) 0 0
\(157\) 5.00000 0.399043 0.199522 0.979893i \(-0.436061\pi\)
0.199522 + 0.979893i \(0.436061\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 9.00000 0.704934 0.352467 0.935824i \(-0.385343\pi\)
0.352467 + 0.935824i \(0.385343\pi\)
\(164\) 12.0000 0.937043
\(165\) 0 0
\(166\) 0 0
\(167\) −14.0000 −1.08335 −0.541676 0.840587i \(-0.682210\pi\)
−0.541676 + 0.840587i \(0.682210\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) 0 0
\(172\) −24.0000 −1.82998
\(173\) −4.00000 −0.304114 −0.152057 0.988372i \(-0.548590\pi\)
−0.152057 + 0.988372i \(0.548590\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 12.0000 0.904534
\(177\) 0 0
\(178\) 0 0
\(179\) −10.0000 −0.747435 −0.373718 0.927543i \(-0.621917\pi\)
−0.373718 + 0.927543i \(0.621917\pi\)
\(180\) 0 0
\(181\) 16.0000 1.18927 0.594635 0.803996i \(-0.297296\pi\)
0.594635 + 0.803996i \(0.297296\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −16.0000 −1.17634
\(186\) 0 0
\(187\) 21.0000 1.53567
\(188\) −10.0000 −0.729325
\(189\) 0 0
\(190\) 0 0
\(191\) 8.00000 0.578860 0.289430 0.957199i \(-0.406534\pi\)
0.289430 + 0.957199i \(0.406534\pi\)
\(192\) 0 0
\(193\) 8.00000 0.575853 0.287926 0.957653i \(-0.407034\pi\)
0.287926 + 0.957653i \(0.407034\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 5.00000 0.356235 0.178118 0.984009i \(-0.442999\pi\)
0.178118 + 0.984009i \(0.442999\pi\)
\(198\) 0 0
\(199\) −16.0000 −1.13421 −0.567105 0.823646i \(-0.691937\pi\)
−0.567105 + 0.823646i \(0.691937\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 12.0000 0.838116
\(206\) 0 0
\(207\) 0 0
\(208\) 8.00000 0.554700
\(209\) −3.00000 −0.207514
\(210\) 0 0
\(211\) −8.00000 −0.550743 −0.275371 0.961338i \(-0.588801\pi\)
−0.275371 + 0.961338i \(0.588801\pi\)
\(212\) 8.00000 0.549442
\(213\) 0 0
\(214\) 0 0
\(215\) −24.0000 −1.63679
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 12.0000 0.809040
\(221\) 14.0000 0.941742
\(222\) 0 0
\(223\) 2.00000 0.133930 0.0669650 0.997755i \(-0.478668\pi\)
0.0669650 + 0.997755i \(0.478668\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −10.0000 −0.663723 −0.331862 0.943328i \(-0.607677\pi\)
−0.331862 + 0.943328i \(0.607677\pi\)
\(228\) 0 0
\(229\) 1.00000 0.0660819 0.0330409 0.999454i \(-0.489481\pi\)
0.0330409 + 0.999454i \(0.489481\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 21.0000 1.37576 0.687878 0.725826i \(-0.258542\pi\)
0.687878 + 0.725826i \(0.258542\pi\)
\(234\) 0 0
\(235\) −10.0000 −0.652328
\(236\) 28.0000 1.82264
\(237\) 0 0
\(238\) 0 0
\(239\) 1.00000 0.0646846 0.0323423 0.999477i \(-0.489703\pi\)
0.0323423 + 0.999477i \(0.489703\pi\)
\(240\) 0 0
\(241\) −8.00000 −0.515325 −0.257663 0.966235i \(-0.582952\pi\)
−0.257663 + 0.966235i \(0.582952\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 26.0000 1.66448
\(245\) 0 0
\(246\) 0 0
\(247\) −2.00000 −0.127257
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −16.0000 −1.00991 −0.504956 0.863145i \(-0.668491\pi\)
−0.504956 + 0.863145i \(0.668491\pi\)
\(252\) 0 0
\(253\) −15.0000 −0.943042
\(254\) 0 0
\(255\) 0 0
\(256\) 16.0000 1.00000
\(257\) 12.0000 0.748539 0.374270 0.927320i \(-0.377893\pi\)
0.374270 + 0.927320i \(0.377893\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 8.00000 0.496139
\(261\) 0 0
\(262\) 0 0
\(263\) 11.0000 0.678289 0.339145 0.940734i \(-0.389862\pi\)
0.339145 + 0.940734i \(0.389862\pi\)
\(264\) 0 0
\(265\) 8.00000 0.491436
\(266\) 0 0
\(267\) 0 0
\(268\) 4.00000 0.244339
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) −1.00000 −0.0607457 −0.0303728 0.999539i \(-0.509669\pi\)
−0.0303728 + 0.999539i \(0.509669\pi\)
\(272\) 28.0000 1.69775
\(273\) 0 0
\(274\) 0 0
\(275\) −3.00000 −0.180907
\(276\) 0 0
\(277\) 17.0000 1.02143 0.510716 0.859750i \(-0.329381\pi\)
0.510716 + 0.859750i \(0.329381\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 20.0000 1.19310 0.596550 0.802576i \(-0.296538\pi\)
0.596550 + 0.802576i \(0.296538\pi\)
\(282\) 0 0
\(283\) −4.00000 −0.237775 −0.118888 0.992908i \(-0.537933\pi\)
−0.118888 + 0.992908i \(0.537933\pi\)
\(284\) −20.0000 −1.18678
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 32.0000 1.88235
\(290\) 0 0
\(291\) 0 0
\(292\) −2.00000 −0.117041
\(293\) 18.0000 1.05157 0.525786 0.850617i \(-0.323771\pi\)
0.525786 + 0.850617i \(0.323771\pi\)
\(294\) 0 0
\(295\) 28.0000 1.63022
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −10.0000 −0.578315
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) −4.00000 −0.229416
\(305\) 26.0000 1.48876
\(306\) 0 0
\(307\) 16.0000 0.913168 0.456584 0.889680i \(-0.349073\pi\)
0.456584 + 0.889680i \(0.349073\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −5.00000 −0.283524 −0.141762 0.989901i \(-0.545277\pi\)
−0.141762 + 0.989901i \(0.545277\pi\)
\(312\) 0 0
\(313\) 19.0000 1.07394 0.536972 0.843600i \(-0.319568\pi\)
0.536972 + 0.843600i \(0.319568\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 8.00000 0.450035
\(317\) 30.0000 1.68497 0.842484 0.538721i \(-0.181092\pi\)
0.842484 + 0.538721i \(0.181092\pi\)
\(318\) 0 0
\(319\) −6.00000 −0.335936
\(320\) 16.0000 0.894427
\(321\) 0 0
\(322\) 0 0
\(323\) −7.00000 −0.389490
\(324\) 0 0
\(325\) −2.00000 −0.110940
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 26.0000 1.42909 0.714545 0.699590i \(-0.246634\pi\)
0.714545 + 0.699590i \(0.246634\pi\)
\(332\) −18.0000 −0.987878
\(333\) 0 0
\(334\) 0 0
\(335\) 4.00000 0.218543
\(336\) 0 0
\(337\) 12.0000 0.653682 0.326841 0.945079i \(-0.394016\pi\)
0.326841 + 0.945079i \(0.394016\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 28.0000 1.51851
\(341\) 30.0000 1.62459
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 12.0000 0.644194 0.322097 0.946707i \(-0.395612\pi\)
0.322097 + 0.946707i \(0.395612\pi\)
\(348\) 0 0
\(349\) −27.0000 −1.44528 −0.722638 0.691226i \(-0.757071\pi\)
−0.722638 + 0.691226i \(0.757071\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 14.0000 0.745145 0.372572 0.928003i \(-0.378476\pi\)
0.372572 + 0.928003i \(0.378476\pi\)
\(354\) 0 0
\(355\) −20.0000 −1.06149
\(356\) 36.0000 1.90800
\(357\) 0 0
\(358\) 0 0
\(359\) 31.0000 1.63612 0.818059 0.575135i \(-0.195050\pi\)
0.818059 + 0.575135i \(0.195050\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −2.00000 −0.104685
\(366\) 0 0
\(367\) 16.0000 0.835193 0.417597 0.908633i \(-0.362873\pi\)
0.417597 + 0.908633i \(0.362873\pi\)
\(368\) −20.0000 −1.04257
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −10.0000 −0.517780 −0.258890 0.965907i \(-0.583357\pi\)
−0.258890 + 0.965907i \(0.583357\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −4.00000 −0.206010
\(378\) 0 0
\(379\) 8.00000 0.410932 0.205466 0.978664i \(-0.434129\pi\)
0.205466 + 0.978664i \(0.434129\pi\)
\(380\) −4.00000 −0.205196
\(381\) 0 0
\(382\) 0 0
\(383\) −6.00000 −0.306586 −0.153293 0.988181i \(-0.548988\pi\)
−0.153293 + 0.988181i \(0.548988\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) −12.0000 −0.609208
\(389\) 29.0000 1.47036 0.735179 0.677873i \(-0.237098\pi\)
0.735179 + 0.677873i \(0.237098\pi\)
\(390\) 0 0
\(391\) −35.0000 −1.77003
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 8.00000 0.402524
\(396\) 0 0
\(397\) −23.0000 −1.15434 −0.577168 0.816625i \(-0.695842\pi\)
−0.577168 + 0.816625i \(0.695842\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −4.00000 −0.200000
\(401\) 6.00000 0.299626 0.149813 0.988714i \(-0.452133\pi\)
0.149813 + 0.988714i \(0.452133\pi\)
\(402\) 0 0
\(403\) 20.0000 0.996271
\(404\) 26.0000 1.29355
\(405\) 0 0
\(406\) 0 0
\(407\) 24.0000 1.18964
\(408\) 0 0
\(409\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −16.0000 −0.788263
\(413\) 0 0
\(414\) 0 0
\(415\) −18.0000 −0.883585
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 9.00000 0.439679 0.219839 0.975536i \(-0.429447\pi\)
0.219839 + 0.975536i \(0.429447\pi\)
\(420\) 0 0
\(421\) 4.00000 0.194948 0.0974740 0.995238i \(-0.468924\pi\)
0.0974740 + 0.995238i \(0.468924\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −7.00000 −0.339550
\(426\) 0 0
\(427\) 0 0
\(428\) −36.0000 −1.74013
\(429\) 0 0
\(430\) 0 0
\(431\) 6.00000 0.289010 0.144505 0.989504i \(-0.453841\pi\)
0.144505 + 0.989504i \(0.453841\pi\)
\(432\) 0 0
\(433\) −18.0000 −0.865025 −0.432512 0.901628i \(-0.642373\pi\)
−0.432512 + 0.901628i \(0.642373\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −12.0000 −0.574696
\(437\) 5.00000 0.239182
\(438\) 0 0
\(439\) 14.0000 0.668184 0.334092 0.942541i \(-0.391570\pi\)
0.334092 + 0.942541i \(0.391570\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −21.0000 −0.997740 −0.498870 0.866677i \(-0.666252\pi\)
−0.498870 + 0.866677i \(0.666252\pi\)
\(444\) 0 0
\(445\) 36.0000 1.70656
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 18.0000 0.849473 0.424736 0.905317i \(-0.360367\pi\)
0.424736 + 0.905317i \(0.360367\pi\)
\(450\) 0 0
\(451\) −18.0000 −0.847587
\(452\) 24.0000 1.12887
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −25.0000 −1.16945 −0.584725 0.811231i \(-0.698798\pi\)
−0.584725 + 0.811231i \(0.698798\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) −20.0000 −0.932505
\(461\) 15.0000 0.698620 0.349310 0.937007i \(-0.386416\pi\)
0.349310 + 0.937007i \(0.386416\pi\)
\(462\) 0 0
\(463\) −9.00000 −0.418265 −0.209133 0.977887i \(-0.567064\pi\)
−0.209133 + 0.977887i \(0.567064\pi\)
\(464\) −8.00000 −0.371391
\(465\) 0 0
\(466\) 0 0
\(467\) 5.00000 0.231372 0.115686 0.993286i \(-0.463093\pi\)
0.115686 + 0.993286i \(0.463093\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 36.0000 1.65528
\(474\) 0 0
\(475\) 1.00000 0.0458831
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −31.0000 −1.41643 −0.708213 0.705999i \(-0.750498\pi\)
−0.708213 + 0.705999i \(0.750498\pi\)
\(480\) 0 0
\(481\) 16.0000 0.729537
\(482\) 0 0
\(483\) 0 0
\(484\) 4.00000 0.181818
\(485\) −12.0000 −0.544892
\(486\) 0 0
\(487\) 2.00000 0.0906287 0.0453143 0.998973i \(-0.485571\pi\)
0.0453143 + 0.998973i \(0.485571\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −27.0000 −1.21849 −0.609246 0.792981i \(-0.708528\pi\)
−0.609246 + 0.792981i \(0.708528\pi\)
\(492\) 0 0
\(493\) −14.0000 −0.630528
\(494\) 0 0
\(495\) 0 0
\(496\) 40.0000 1.79605
\(497\) 0 0
\(498\) 0 0
\(499\) −12.0000 −0.537194 −0.268597 0.963253i \(-0.586560\pi\)
−0.268597 + 0.963253i \(0.586560\pi\)
\(500\) −24.0000 −1.07331
\(501\) 0 0
\(502\) 0 0
\(503\) 11.0000 0.490466 0.245233 0.969464i \(-0.421136\pi\)
0.245233 + 0.969464i \(0.421136\pi\)
\(504\) 0 0
\(505\) 26.0000 1.15698
\(506\) 0 0
\(507\) 0 0
\(508\) −32.0000 −1.41977
\(509\) −30.0000 −1.32973 −0.664863 0.746965i \(-0.731510\pi\)
−0.664863 + 0.746965i \(0.731510\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −16.0000 −0.705044
\(516\) 0 0
\(517\) 15.0000 0.659699
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 28.0000 1.22670 0.613351 0.789810i \(-0.289821\pi\)
0.613351 + 0.789810i \(0.289821\pi\)
\(522\) 0 0
\(523\) 34.0000 1.48672 0.743358 0.668894i \(-0.233232\pi\)
0.743358 + 0.668894i \(0.233232\pi\)
\(524\) 2.00000 0.0873704
\(525\) 0 0
\(526\) 0 0
\(527\) 70.0000 3.04925
\(528\) 0 0
\(529\) 2.00000 0.0869565
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −12.0000 −0.519778
\(534\) 0 0
\(535\) −36.0000 −1.55642
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −14.0000 −0.601907 −0.300954 0.953639i \(-0.597305\pi\)
−0.300954 + 0.953639i \(0.597305\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −12.0000 −0.514024
\(546\) 0 0
\(547\) −14.0000 −0.598597 −0.299298 0.954160i \(-0.596753\pi\)
−0.299298 + 0.954160i \(0.596753\pi\)
\(548\) −6.00000 −0.256307
\(549\) 0 0
\(550\) 0 0
\(551\) 2.00000 0.0852029
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) −10.0000 −0.424094
\(557\) 10.0000 0.423714 0.211857 0.977301i \(-0.432049\pi\)
0.211857 + 0.977301i \(0.432049\pi\)
\(558\) 0 0
\(559\) 24.0000 1.01509
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 10.0000 0.421450 0.210725 0.977545i \(-0.432418\pi\)
0.210725 + 0.977545i \(0.432418\pi\)
\(564\) 0 0
\(565\) 24.0000 1.00969
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −20.0000 −0.838444 −0.419222 0.907884i \(-0.637697\pi\)
−0.419222 + 0.907884i \(0.637697\pi\)
\(570\) 0 0
\(571\) 47.0000 1.96689 0.983444 0.181210i \(-0.0580014\pi\)
0.983444 + 0.181210i \(0.0580014\pi\)
\(572\) −12.0000 −0.501745
\(573\) 0 0
\(574\) 0 0
\(575\) 5.00000 0.208514
\(576\) 0 0
\(577\) −29.0000 −1.20729 −0.603643 0.797255i \(-0.706285\pi\)
−0.603643 + 0.797255i \(0.706285\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) −8.00000 −0.332182
\(581\) 0 0
\(582\) 0 0
\(583\) −12.0000 −0.496989
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 15.0000 0.619116 0.309558 0.950881i \(-0.399819\pi\)
0.309558 + 0.950881i \(0.399819\pi\)
\(588\) 0 0
\(589\) −10.0000 −0.412043
\(590\) 0 0
\(591\) 0 0
\(592\) 32.0000 1.31519
\(593\) −7.00000 −0.287456 −0.143728 0.989617i \(-0.545909\pi\)
−0.143728 + 0.989617i \(0.545909\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 12.0000 0.491539
\(597\) 0 0
\(598\) 0 0
\(599\) 16.0000 0.653742 0.326871 0.945069i \(-0.394006\pi\)
0.326871 + 0.945069i \(0.394006\pi\)
\(600\) 0 0
\(601\) −20.0000 −0.815817 −0.407909 0.913023i \(-0.633742\pi\)
−0.407909 + 0.913023i \(0.633742\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 16.0000 0.651031
\(605\) 4.00000 0.162623
\(606\) 0 0
\(607\) −18.0000 −0.730597 −0.365299 0.930890i \(-0.619033\pi\)
−0.365299 + 0.930890i \(0.619033\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 10.0000 0.404557
\(612\) 0 0
\(613\) −43.0000 −1.73675 −0.868377 0.495905i \(-0.834836\pi\)
−0.868377 + 0.495905i \(0.834836\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −10.0000 −0.402585 −0.201292 0.979531i \(-0.564514\pi\)
−0.201292 + 0.979531i \(0.564514\pi\)
\(618\) 0 0
\(619\) 39.0000 1.56754 0.783771 0.621050i \(-0.213294\pi\)
0.783771 + 0.621050i \(0.213294\pi\)
\(620\) 40.0000 1.60644
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −19.0000 −0.760000
\(626\) 0 0
\(627\) 0 0
\(628\) −10.0000 −0.399043
\(629\) 56.0000 2.23287
\(630\) 0 0
\(631\) 48.0000 1.91085 0.955425 0.295234i \(-0.0953977\pi\)
0.955425 + 0.295234i \(0.0953977\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −32.0000 −1.26988
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −26.0000 −1.02694 −0.513469 0.858108i \(-0.671640\pi\)
−0.513469 + 0.858108i \(0.671640\pi\)
\(642\) 0 0
\(643\) −9.00000 −0.354925 −0.177463 0.984128i \(-0.556789\pi\)
−0.177463 + 0.984128i \(0.556789\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −24.0000 −0.943537 −0.471769 0.881722i \(-0.656384\pi\)
−0.471769 + 0.881722i \(0.656384\pi\)
\(648\) 0 0
\(649\) −42.0000 −1.64864
\(650\) 0 0
\(651\) 0 0
\(652\) −18.0000 −0.704934
\(653\) 23.0000 0.900060 0.450030 0.893014i \(-0.351413\pi\)
0.450030 + 0.893014i \(0.351413\pi\)
\(654\) 0 0
\(655\) 2.00000 0.0781465
\(656\) −24.0000 −0.937043
\(657\) 0 0
\(658\) 0 0
\(659\) 18.0000 0.701180 0.350590 0.936529i \(-0.385981\pi\)
0.350590 + 0.936529i \(0.385981\pi\)
\(660\) 0 0
\(661\) 12.0000 0.466746 0.233373 0.972387i \(-0.425024\pi\)
0.233373 + 0.972387i \(0.425024\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 10.0000 0.387202
\(668\) 28.0000 1.08335
\(669\) 0 0
\(670\) 0 0
\(671\) −39.0000 −1.50558
\(672\) 0 0
\(673\) 34.0000 1.31060 0.655302 0.755367i \(-0.272541\pi\)
0.655302 + 0.755367i \(0.272541\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 18.0000 0.692308
\(677\) 12.0000 0.461197 0.230599 0.973049i \(-0.425932\pi\)
0.230599 + 0.973049i \(0.425932\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −44.0000 −1.68361 −0.841807 0.539779i \(-0.818508\pi\)
−0.841807 + 0.539779i \(0.818508\pi\)
\(684\) 0 0
\(685\) −6.00000 −0.229248
\(686\) 0 0
\(687\) 0 0
\(688\) 48.0000 1.82998
\(689\) −8.00000 −0.304776
\(690\) 0 0
\(691\) −19.0000 −0.722794 −0.361397 0.932412i \(-0.617700\pi\)
−0.361397 + 0.932412i \(0.617700\pi\)
\(692\) 8.00000 0.304114
\(693\) 0 0
\(694\) 0 0
\(695\) −10.0000 −0.379322
\(696\) 0 0
\(697\) −42.0000 −1.59086
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 15.0000 0.566542 0.283271 0.959040i \(-0.408580\pi\)
0.283271 + 0.959040i \(0.408580\pi\)
\(702\) 0 0
\(703\) −8.00000 −0.301726
\(704\) −24.0000 −0.904534
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 1.00000 0.0375558 0.0187779 0.999824i \(-0.494022\pi\)
0.0187779 + 0.999824i \(0.494022\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −50.0000 −1.87251
\(714\) 0 0
\(715\) −12.0000 −0.448775
\(716\) 20.0000 0.747435
\(717\) 0 0
\(718\) 0 0
\(719\) −27.0000 −1.00693 −0.503465 0.864016i \(-0.667942\pi\)
−0.503465 + 0.864016i \(0.667942\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) −32.0000 −1.18927
\(725\) 2.00000 0.0742781
\(726\) 0 0
\(727\) 28.0000 1.03846 0.519231 0.854634i \(-0.326218\pi\)
0.519231 + 0.854634i \(0.326218\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 84.0000 3.10685
\(732\) 0 0
\(733\) −18.0000 −0.664845 −0.332423 0.943131i \(-0.607866\pi\)
−0.332423 + 0.943131i \(0.607866\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −6.00000 −0.221013
\(738\) 0 0
\(739\) −41.0000 −1.50821 −0.754105 0.656754i \(-0.771929\pi\)
−0.754105 + 0.656754i \(0.771929\pi\)
\(740\) 32.0000 1.17634
\(741\) 0 0
\(742\) 0 0
\(743\) 44.0000 1.61420 0.807102 0.590412i \(-0.201035\pi\)
0.807102 + 0.590412i \(0.201035\pi\)
\(744\) 0 0
\(745\) 12.0000 0.439646
\(746\) 0 0
\(747\) 0 0
\(748\) −42.0000 −1.53567
\(749\) 0 0
\(750\) 0 0
\(751\) −38.0000 −1.38664 −0.693320 0.720630i \(-0.743853\pi\)
−0.693320 + 0.720630i \(0.743853\pi\)
\(752\) 20.0000 0.729325
\(753\) 0 0
\(754\) 0 0
\(755\) 16.0000 0.582300
\(756\) 0 0
\(757\) −17.0000 −0.617876 −0.308938 0.951082i \(-0.599973\pi\)
−0.308938 + 0.951082i \(0.599973\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −10.0000 −0.362500 −0.181250 0.983437i \(-0.558014\pi\)
−0.181250 + 0.983437i \(0.558014\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −16.0000 −0.578860
\(765\) 0 0
\(766\) 0 0
\(767\) −28.0000 −1.01102
\(768\) 0 0
\(769\) 30.0000 1.08183 0.540914 0.841078i \(-0.318079\pi\)
0.540914 + 0.841078i \(0.318079\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −16.0000 −0.575853
\(773\) 36.0000 1.29483 0.647415 0.762138i \(-0.275850\pi\)
0.647415 + 0.762138i \(0.275850\pi\)
\(774\) 0 0
\(775\) −10.0000 −0.359211
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 6.00000 0.214972
\(780\) 0 0
\(781\) 30.0000 1.07348
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −10.0000 −0.356915
\(786\) 0 0
\(787\) 20.0000 0.712923 0.356462 0.934310i \(-0.383983\pi\)
0.356462 + 0.934310i \(0.383983\pi\)
\(788\) −10.0000 −0.356235
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −26.0000 −0.923287
\(794\) 0 0
\(795\) 0 0
\(796\) 32.0000 1.13421
\(797\) 22.0000 0.779280 0.389640 0.920967i \(-0.372599\pi\)
0.389640 + 0.920967i \(0.372599\pi\)
\(798\) 0 0
\(799\) 35.0000 1.23821
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 3.00000 0.105868
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 50.0000 1.75791 0.878953 0.476908i \(-0.158243\pi\)
0.878953 + 0.476908i \(0.158243\pi\)
\(810\) 0 0
\(811\) 14.0000 0.491606 0.245803 0.969320i \(-0.420948\pi\)
0.245803 + 0.969320i \(0.420948\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −18.0000 −0.630512
\(816\) 0 0
\(817\) −12.0000 −0.419827
\(818\) 0 0
\(819\) 0 0
\(820\) −24.0000 −0.838116
\(821\) 51.0000 1.77991 0.889956 0.456046i \(-0.150735\pi\)
0.889956 + 0.456046i \(0.150735\pi\)
\(822\) 0 0
\(823\) −15.0000 −0.522867 −0.261434 0.965221i \(-0.584195\pi\)
−0.261434 + 0.965221i \(0.584195\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −2.00000 −0.0695468 −0.0347734 0.999395i \(-0.511071\pi\)
−0.0347734 + 0.999395i \(0.511071\pi\)
\(828\) 0 0
\(829\) 34.0000 1.18087 0.590434 0.807086i \(-0.298956\pi\)
0.590434 + 0.807086i \(0.298956\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −16.0000 −0.554700
\(833\) 0 0
\(834\) 0 0
\(835\) 28.0000 0.968980
\(836\) 6.00000 0.207514
\(837\) 0 0
\(838\) 0 0
\(839\) 12.0000 0.414286 0.207143 0.978311i \(-0.433583\pi\)
0.207143 + 0.978311i \(0.433583\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 0 0
\(843\) 0 0
\(844\) 16.0000 0.550743
\(845\) 18.0000 0.619219
\(846\) 0 0
\(847\) 0 0
\(848\) −16.0000 −0.549442
\(849\) 0 0
\(850\) 0 0
\(851\) −40.0000 −1.37118
\(852\) 0 0
\(853\) −5.00000 −0.171197 −0.0855984 0.996330i \(-0.527280\pi\)
−0.0855984 + 0.996330i \(0.527280\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 6.00000 0.204956 0.102478 0.994735i \(-0.467323\pi\)
0.102478 + 0.994735i \(0.467323\pi\)
\(858\) 0 0
\(859\) 4.00000 0.136478 0.0682391 0.997669i \(-0.478262\pi\)
0.0682391 + 0.997669i \(0.478262\pi\)
\(860\) 48.0000 1.63679
\(861\) 0 0
\(862\) 0 0
\(863\) 12.0000 0.408485 0.204242 0.978920i \(-0.434527\pi\)
0.204242 + 0.978920i \(0.434527\pi\)
\(864\) 0 0
\(865\) 8.00000 0.272008
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −12.0000 −0.407072
\(870\) 0 0
\(871\) −4.00000 −0.135535
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 36.0000 1.21563 0.607817 0.794077i \(-0.292045\pi\)
0.607817 + 0.794077i \(0.292045\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) −24.0000 −0.809040
\(881\) −33.0000 −1.11180 −0.555899 0.831250i \(-0.687626\pi\)
−0.555899 + 0.831250i \(0.687626\pi\)
\(882\) 0 0
\(883\) −9.00000 −0.302874 −0.151437 0.988467i \(-0.548390\pi\)
−0.151437 + 0.988467i \(0.548390\pi\)
\(884\) −28.0000 −0.941742
\(885\) 0 0
\(886\) 0 0
\(887\) −42.0000 −1.41022 −0.705111 0.709097i \(-0.749103\pi\)
−0.705111 + 0.709097i \(0.749103\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) −4.00000 −0.133930
\(893\) −5.00000 −0.167319
\(894\) 0 0
\(895\) 20.0000 0.668526
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −20.0000 −0.667037
\(900\) 0 0
\(901\) −28.0000 −0.932815
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −32.0000 −1.06372
\(906\) 0 0
\(907\) −2.00000 −0.0664089 −0.0332045 0.999449i \(-0.510571\pi\)
−0.0332045 + 0.999449i \(0.510571\pi\)
\(908\) 20.0000 0.663723
\(909\) 0 0
\(910\) 0 0
\(911\) 50.0000 1.65657 0.828287 0.560304i \(-0.189316\pi\)
0.828287 + 0.560304i \(0.189316\pi\)
\(912\) 0 0
\(913\) 27.0000 0.893570
\(914\) 0 0
\(915\) 0 0
\(916\) −2.00000 −0.0660819
\(917\) 0 0
\(918\) 0 0
\(919\) 3.00000 0.0989609 0.0494804 0.998775i \(-0.484243\pi\)
0.0494804 + 0.998775i \(0.484243\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 20.0000 0.658308
\(924\) 0 0
\(925\) −8.00000 −0.263038
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −35.0000 −1.14831 −0.574156 0.818746i \(-0.694670\pi\)
−0.574156 + 0.818746i \(0.694670\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −42.0000 −1.37576
\(933\) 0 0
\(934\) 0 0
\(935\) −42.0000 −1.37355
\(936\) 0 0
\(937\) −10.0000 −0.326686 −0.163343 0.986569i \(-0.552228\pi\)
−0.163343 + 0.986569i \(0.552228\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 20.0000 0.652328
\(941\) −38.0000 −1.23876 −0.619382 0.785090i \(-0.712617\pi\)
−0.619382 + 0.785090i \(0.712617\pi\)
\(942\) 0 0
\(943\) 30.0000 0.976934
\(944\) −56.0000 −1.82264
\(945\) 0 0
\(946\) 0 0
\(947\) 24.0000 0.779895 0.389948 0.920837i \(-0.372493\pi\)
0.389948 + 0.920837i \(0.372493\pi\)
\(948\) 0 0
\(949\) 2.00000 0.0649227
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −26.0000 −0.842223 −0.421111 0.907009i \(-0.638360\pi\)
−0.421111 + 0.907009i \(0.638360\pi\)
\(954\) 0 0
\(955\) −16.0000 −0.517748
\(956\) −2.00000 −0.0646846
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 69.0000 2.22581
\(962\) 0 0
\(963\) 0 0
\(964\) 16.0000 0.515325
\(965\) −16.0000 −0.515058
\(966\) 0 0
\(967\) −32.0000 −1.02905 −0.514525 0.857475i \(-0.672032\pi\)
−0.514525 + 0.857475i \(0.672032\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 18.0000 0.577647 0.288824 0.957382i \(-0.406736\pi\)
0.288824 + 0.957382i \(0.406736\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) −52.0000 −1.66448
\(977\) 24.0000 0.767828 0.383914 0.923369i \(-0.374576\pi\)
0.383914 + 0.923369i \(0.374576\pi\)
\(978\) 0 0
\(979\) −54.0000 −1.72585
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −40.0000 −1.27580 −0.637901 0.770118i \(-0.720197\pi\)
−0.637901 + 0.770118i \(0.720197\pi\)
\(984\) 0 0
\(985\) −10.0000 −0.318626
\(986\) 0 0
\(987\) 0 0
\(988\) 4.00000 0.127257
\(989\) −60.0000 −1.90789
\(990\) 0 0
\(991\) −42.0000 −1.33417 −0.667087 0.744980i \(-0.732459\pi\)
−0.667087 + 0.744980i \(0.732459\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 32.0000 1.01447
\(996\) 0 0
\(997\) 1.00000 0.0316703 0.0158352 0.999875i \(-0.494959\pi\)
0.0158352 + 0.999875i \(0.494959\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8379.2.a.h.1.1 1
3.2 odd 2 2793.2.a.h.1.1 1
7.2 even 3 1197.2.j.a.172.1 2
7.4 even 3 1197.2.j.a.856.1 2
7.6 odd 2 8379.2.a.i.1.1 1
21.2 odd 6 399.2.j.b.172.1 yes 2
21.11 odd 6 399.2.j.b.58.1 2
21.20 even 2 2793.2.a.g.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
399.2.j.b.58.1 2 21.11 odd 6
399.2.j.b.172.1 yes 2 21.2 odd 6
1197.2.j.a.172.1 2 7.2 even 3
1197.2.j.a.856.1 2 7.4 even 3
2793.2.a.g.1.1 1 21.20 even 2
2793.2.a.h.1.1 1 3.2 odd 2
8379.2.a.h.1.1 1 1.1 even 1 trivial
8379.2.a.i.1.1 1 7.6 odd 2