Properties

Label 8379.2.a.cx.1.3
Level $8379$
Weight $2$
Character 8379.1
Self dual yes
Analytic conductor $66.907$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8379,2,Mod(1,8379)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8379.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8379, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8379 = 3^{2} \cdot 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8379.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,0,20,0,0,0,0,0,24,0,0,24,0,0,28,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.9066518536\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 30 x^{18} + 373 x^{16} - 2492 x^{14} + 9710 x^{12} - 22456 x^{10} + 30154 x^{8} - 22292 x^{6} + \cdots + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{10} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-2.39042\) of defining polynomial
Character \(\chi\) \(=\) 8379.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.39042 q^{2} +3.71410 q^{4} +2.19330 q^{5} -4.09743 q^{8} -5.24290 q^{10} +6.36271 q^{11} +4.92923 q^{13} +2.36636 q^{16} -3.58339 q^{17} +1.00000 q^{19} +8.14614 q^{20} -15.2095 q^{22} +3.94863 q^{23} -0.189447 q^{25} -11.7829 q^{26} -9.74344 q^{29} +0.500669 q^{31} +2.53826 q^{32} +8.56581 q^{34} -4.22117 q^{37} -2.39042 q^{38} -8.98688 q^{40} -10.7537 q^{41} +6.83768 q^{43} +23.6318 q^{44} -9.43889 q^{46} -8.65488 q^{47} +0.452859 q^{50} +18.3077 q^{52} -6.92482 q^{53} +13.9553 q^{55} +23.2909 q^{58} +15.3086 q^{59} +9.25254 q^{61} -1.19681 q^{62} -10.8002 q^{64} +10.8113 q^{65} +13.8432 q^{67} -13.3091 q^{68} +2.00326 q^{71} +2.90535 q^{73} +10.0904 q^{74} +3.71410 q^{76} -5.47327 q^{79} +5.19014 q^{80} +25.7058 q^{82} -2.75270 q^{83} -7.85945 q^{85} -16.3449 q^{86} -26.0707 q^{88} +1.72013 q^{89} +14.6656 q^{92} +20.6888 q^{94} +2.19330 q^{95} +4.29271 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 20 q^{4} + 24 q^{10} + 24 q^{13} + 28 q^{16} + 20 q^{19} - 16 q^{22} + 28 q^{25} + 40 q^{31} + 32 q^{34} - 16 q^{37} + 56 q^{40} + 8 q^{43} - 16 q^{46} + 64 q^{52} + 32 q^{55} + 8 q^{58} + 80 q^{61}+ \cdots + 64 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.39042 −1.69028 −0.845141 0.534544i \(-0.820484\pi\)
−0.845141 + 0.534544i \(0.820484\pi\)
\(3\) 0 0
\(4\) 3.71410 1.85705
\(5\) 2.19330 0.980872 0.490436 0.871477i \(-0.336837\pi\)
0.490436 + 0.871477i \(0.336837\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −4.09743 −1.44866
\(9\) 0 0
\(10\) −5.24290 −1.65795
\(11\) 6.36271 1.91843 0.959214 0.282680i \(-0.0912233\pi\)
0.959214 + 0.282680i \(0.0912233\pi\)
\(12\) 0 0
\(13\) 4.92923 1.36712 0.683562 0.729893i \(-0.260430\pi\)
0.683562 + 0.729893i \(0.260430\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 2.36636 0.591591
\(17\) −3.58339 −0.869101 −0.434550 0.900648i \(-0.643093\pi\)
−0.434550 + 0.900648i \(0.643093\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 8.14614 1.82153
\(21\) 0 0
\(22\) −15.2095 −3.24269
\(23\) 3.94863 0.823347 0.411673 0.911331i \(-0.364944\pi\)
0.411673 + 0.911331i \(0.364944\pi\)
\(24\) 0 0
\(25\) −0.189447 −0.0378895
\(26\) −11.7829 −2.31082
\(27\) 0 0
\(28\) 0 0
\(29\) −9.74344 −1.80931 −0.904656 0.426143i \(-0.859872\pi\)
−0.904656 + 0.426143i \(0.859872\pi\)
\(30\) 0 0
\(31\) 0.500669 0.0899228 0.0449614 0.998989i \(-0.485684\pi\)
0.0449614 + 0.998989i \(0.485684\pi\)
\(32\) 2.53826 0.448705
\(33\) 0 0
\(34\) 8.56581 1.46903
\(35\) 0 0
\(36\) 0 0
\(37\) −4.22117 −0.693956 −0.346978 0.937873i \(-0.612792\pi\)
−0.346978 + 0.937873i \(0.612792\pi\)
\(38\) −2.39042 −0.387777
\(39\) 0 0
\(40\) −8.98688 −1.42095
\(41\) −10.7537 −1.67944 −0.839722 0.543016i \(-0.817282\pi\)
−0.839722 + 0.543016i \(0.817282\pi\)
\(42\) 0 0
\(43\) 6.83768 1.04274 0.521368 0.853332i \(-0.325422\pi\)
0.521368 + 0.853332i \(0.325422\pi\)
\(44\) 23.6318 3.56262
\(45\) 0 0
\(46\) −9.43889 −1.39169
\(47\) −8.65488 −1.26244 −0.631222 0.775602i \(-0.717446\pi\)
−0.631222 + 0.775602i \(0.717446\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0.452859 0.0640439
\(51\) 0 0
\(52\) 18.3077 2.53882
\(53\) −6.92482 −0.951197 −0.475599 0.879662i \(-0.657768\pi\)
−0.475599 + 0.879662i \(0.657768\pi\)
\(54\) 0 0
\(55\) 13.9553 1.88173
\(56\) 0 0
\(57\) 0 0
\(58\) 23.2909 3.05825
\(59\) 15.3086 1.99301 0.996507 0.0835042i \(-0.0266112\pi\)
0.996507 + 0.0835042i \(0.0266112\pi\)
\(60\) 0 0
\(61\) 9.25254 1.18467 0.592333 0.805693i \(-0.298207\pi\)
0.592333 + 0.805693i \(0.298207\pi\)
\(62\) −1.19681 −0.151995
\(63\) 0 0
\(64\) −10.8002 −1.35003
\(65\) 10.8113 1.34097
\(66\) 0 0
\(67\) 13.8432 1.69122 0.845609 0.533802i \(-0.179237\pi\)
0.845609 + 0.533802i \(0.179237\pi\)
\(68\) −13.3091 −1.61397
\(69\) 0 0
\(70\) 0 0
\(71\) 2.00326 0.237744 0.118872 0.992910i \(-0.462072\pi\)
0.118872 + 0.992910i \(0.462072\pi\)
\(72\) 0 0
\(73\) 2.90535 0.340045 0.170023 0.985440i \(-0.445616\pi\)
0.170023 + 0.985440i \(0.445616\pi\)
\(74\) 10.0904 1.17298
\(75\) 0 0
\(76\) 3.71410 0.426037
\(77\) 0 0
\(78\) 0 0
\(79\) −5.47327 −0.615791 −0.307895 0.951420i \(-0.599625\pi\)
−0.307895 + 0.951420i \(0.599625\pi\)
\(80\) 5.19014 0.580275
\(81\) 0 0
\(82\) 25.7058 2.83873
\(83\) −2.75270 −0.302148 −0.151074 0.988522i \(-0.548273\pi\)
−0.151074 + 0.988522i \(0.548273\pi\)
\(84\) 0 0
\(85\) −7.85945 −0.852477
\(86\) −16.3449 −1.76252
\(87\) 0 0
\(88\) −26.0707 −2.77915
\(89\) 1.72013 0.182333 0.0911666 0.995836i \(-0.470940\pi\)
0.0911666 + 0.995836i \(0.470940\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 14.6656 1.52900
\(93\) 0 0
\(94\) 20.6888 2.13389
\(95\) 2.19330 0.225028
\(96\) 0 0
\(97\) 4.29271 0.435858 0.217929 0.975965i \(-0.430070\pi\)
0.217929 + 0.975965i \(0.430070\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −0.703627 −0.0703627
\(101\) −0.00555371 −0.000552615 0 −0.000276307 1.00000i \(-0.500088\pi\)
−0.000276307 1.00000i \(0.500088\pi\)
\(102\) 0 0
\(103\) 16.6252 1.63812 0.819062 0.573704i \(-0.194494\pi\)
0.819062 + 0.573704i \(0.194494\pi\)
\(104\) −20.1972 −1.98050
\(105\) 0 0
\(106\) 16.5532 1.60779
\(107\) −7.97389 −0.770865 −0.385432 0.922736i \(-0.625948\pi\)
−0.385432 + 0.922736i \(0.625948\pi\)
\(108\) 0 0
\(109\) 2.75836 0.264203 0.132102 0.991236i \(-0.457828\pi\)
0.132102 + 0.991236i \(0.457828\pi\)
\(110\) −33.3590 −3.18066
\(111\) 0 0
\(112\) 0 0
\(113\) 4.26115 0.400856 0.200428 0.979708i \(-0.435767\pi\)
0.200428 + 0.979708i \(0.435767\pi\)
\(114\) 0 0
\(115\) 8.66053 0.807598
\(116\) −36.1882 −3.35999
\(117\) 0 0
\(118\) −36.5941 −3.36876
\(119\) 0 0
\(120\) 0 0
\(121\) 29.4841 2.68037
\(122\) −22.1174 −2.00242
\(123\) 0 0
\(124\) 1.85954 0.166991
\(125\) −11.3820 −1.01804
\(126\) 0 0
\(127\) −16.9218 −1.50157 −0.750785 0.660546i \(-0.770325\pi\)
−0.750785 + 0.660546i \(0.770325\pi\)
\(128\) 20.7406 1.83322
\(129\) 0 0
\(130\) −25.8435 −2.26662
\(131\) 8.87465 0.775382 0.387691 0.921789i \(-0.373273\pi\)
0.387691 + 0.921789i \(0.373273\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −33.0911 −2.85864
\(135\) 0 0
\(136\) 14.6827 1.25903
\(137\) −5.92450 −0.506165 −0.253082 0.967445i \(-0.581444\pi\)
−0.253082 + 0.967445i \(0.581444\pi\)
\(138\) 0 0
\(139\) 11.2138 0.951141 0.475570 0.879678i \(-0.342242\pi\)
0.475570 + 0.879678i \(0.342242\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −4.78864 −0.401854
\(143\) 31.3633 2.62273
\(144\) 0 0
\(145\) −21.3703 −1.77470
\(146\) −6.94500 −0.574772
\(147\) 0 0
\(148\) −15.6779 −1.28871
\(149\) 17.7866 1.45713 0.728566 0.684975i \(-0.240187\pi\)
0.728566 + 0.684975i \(0.240187\pi\)
\(150\) 0 0
\(151\) 13.6969 1.11464 0.557321 0.830297i \(-0.311829\pi\)
0.557321 + 0.830297i \(0.311829\pi\)
\(152\) −4.09743 −0.332345
\(153\) 0 0
\(154\) 0 0
\(155\) 1.09812 0.0882027
\(156\) 0 0
\(157\) 2.51975 0.201098 0.100549 0.994932i \(-0.467940\pi\)
0.100549 + 0.994932i \(0.467940\pi\)
\(158\) 13.0834 1.04086
\(159\) 0 0
\(160\) 5.56715 0.440122
\(161\) 0 0
\(162\) 0 0
\(163\) 13.6563 1.06965 0.534823 0.844964i \(-0.320378\pi\)
0.534823 + 0.844964i \(0.320378\pi\)
\(164\) −39.9403 −3.11882
\(165\) 0 0
\(166\) 6.58010 0.510715
\(167\) −7.42644 −0.574675 −0.287337 0.957829i \(-0.592770\pi\)
−0.287337 + 0.957829i \(0.592770\pi\)
\(168\) 0 0
\(169\) 11.2973 0.869027
\(170\) 18.7874 1.44093
\(171\) 0 0
\(172\) 25.3959 1.93642
\(173\) 11.9783 0.910696 0.455348 0.890313i \(-0.349515\pi\)
0.455348 + 0.890313i \(0.349515\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 15.0565 1.13492
\(177\) 0 0
\(178\) −4.11183 −0.308195
\(179\) −6.47186 −0.483730 −0.241865 0.970310i \(-0.577759\pi\)
−0.241865 + 0.970310i \(0.577759\pi\)
\(180\) 0 0
\(181\) −2.55804 −0.190138 −0.0950688 0.995471i \(-0.530307\pi\)
−0.0950688 + 0.995471i \(0.530307\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −16.1792 −1.19275
\(185\) −9.25828 −0.680682
\(186\) 0 0
\(187\) −22.8001 −1.66731
\(188\) −32.1451 −2.34443
\(189\) 0 0
\(190\) −5.24290 −0.380360
\(191\) 23.7476 1.71832 0.859158 0.511710i \(-0.170988\pi\)
0.859158 + 0.511710i \(0.170988\pi\)
\(192\) 0 0
\(193\) 19.5170 1.40486 0.702432 0.711751i \(-0.252098\pi\)
0.702432 + 0.711751i \(0.252098\pi\)
\(194\) −10.2614 −0.736723
\(195\) 0 0
\(196\) 0 0
\(197\) −5.10766 −0.363906 −0.181953 0.983307i \(-0.558242\pi\)
−0.181953 + 0.983307i \(0.558242\pi\)
\(198\) 0 0
\(199\) 12.4766 0.884442 0.442221 0.896906i \(-0.354191\pi\)
0.442221 + 0.896906i \(0.354191\pi\)
\(200\) 0.776247 0.0548889
\(201\) 0 0
\(202\) 0.0132757 0.000934074 0
\(203\) 0 0
\(204\) 0 0
\(205\) −23.5860 −1.64732
\(206\) −39.7411 −2.76889
\(207\) 0 0
\(208\) 11.6644 0.808778
\(209\) 6.36271 0.440118
\(210\) 0 0
\(211\) −6.77802 −0.466618 −0.233309 0.972403i \(-0.574955\pi\)
−0.233309 + 0.972403i \(0.574955\pi\)
\(212\) −25.7195 −1.76642
\(213\) 0 0
\(214\) 19.0609 1.30298
\(215\) 14.9971 1.02279
\(216\) 0 0
\(217\) 0 0
\(218\) −6.59364 −0.446578
\(219\) 0 0
\(220\) 51.8315 3.49448
\(221\) −17.6634 −1.18817
\(222\) 0 0
\(223\) −7.01204 −0.469561 −0.234781 0.972048i \(-0.575437\pi\)
−0.234781 + 0.972048i \(0.575437\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −10.1859 −0.677559
\(227\) 16.6020 1.10192 0.550958 0.834533i \(-0.314263\pi\)
0.550958 + 0.834533i \(0.314263\pi\)
\(228\) 0 0
\(229\) 16.9021 1.11692 0.558461 0.829530i \(-0.311392\pi\)
0.558461 + 0.829530i \(0.311392\pi\)
\(230\) −20.7023 −1.36507
\(231\) 0 0
\(232\) 39.9231 2.62108
\(233\) 12.2730 0.804032 0.402016 0.915633i \(-0.368310\pi\)
0.402016 + 0.915633i \(0.368310\pi\)
\(234\) 0 0
\(235\) −18.9827 −1.23830
\(236\) 56.8579 3.70113
\(237\) 0 0
\(238\) 0 0
\(239\) 1.65508 0.107059 0.0535293 0.998566i \(-0.482953\pi\)
0.0535293 + 0.998566i \(0.482953\pi\)
\(240\) 0 0
\(241\) −22.5871 −1.45496 −0.727482 0.686127i \(-0.759309\pi\)
−0.727482 + 0.686127i \(0.759309\pi\)
\(242\) −70.4793 −4.53058
\(243\) 0 0
\(244\) 34.3649 2.19999
\(245\) 0 0
\(246\) 0 0
\(247\) 4.92923 0.313640
\(248\) −2.05145 −0.130267
\(249\) 0 0
\(250\) 27.2078 1.72077
\(251\) 27.3643 1.72722 0.863609 0.504163i \(-0.168199\pi\)
0.863609 + 0.504163i \(0.168199\pi\)
\(252\) 0 0
\(253\) 25.1240 1.57953
\(254\) 40.4503 2.53808
\(255\) 0 0
\(256\) −27.9782 −1.74864
\(257\) −25.9466 −1.61851 −0.809254 0.587460i \(-0.800128\pi\)
−0.809254 + 0.587460i \(0.800128\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 40.1542 2.49026
\(261\) 0 0
\(262\) −21.2141 −1.31061
\(263\) 14.0020 0.863399 0.431699 0.902018i \(-0.357914\pi\)
0.431699 + 0.902018i \(0.357914\pi\)
\(264\) 0 0
\(265\) −15.1882 −0.933003
\(266\) 0 0
\(267\) 0 0
\(268\) 51.4152 3.14068
\(269\) −4.50634 −0.274756 −0.137378 0.990519i \(-0.543868\pi\)
−0.137378 + 0.990519i \(0.543868\pi\)
\(270\) 0 0
\(271\) 11.8141 0.717656 0.358828 0.933404i \(-0.383177\pi\)
0.358828 + 0.933404i \(0.383177\pi\)
\(272\) −8.47961 −0.514152
\(273\) 0 0
\(274\) 14.1621 0.855561
\(275\) −1.20540 −0.0726882
\(276\) 0 0
\(277\) 13.0003 0.781114 0.390557 0.920579i \(-0.372282\pi\)
0.390557 + 0.920579i \(0.372282\pi\)
\(278\) −26.8056 −1.60770
\(279\) 0 0
\(280\) 0 0
\(281\) −23.6212 −1.40912 −0.704560 0.709644i \(-0.748856\pi\)
−0.704560 + 0.709644i \(0.748856\pi\)
\(282\) 0 0
\(283\) −28.1543 −1.67360 −0.836801 0.547507i \(-0.815577\pi\)
−0.836801 + 0.547507i \(0.815577\pi\)
\(284\) 7.44033 0.441502
\(285\) 0 0
\(286\) −74.9714 −4.43315
\(287\) 0 0
\(288\) 0 0
\(289\) −4.15929 −0.244664
\(290\) 51.0839 2.99975
\(291\) 0 0
\(292\) 10.7908 0.631482
\(293\) 8.39057 0.490182 0.245091 0.969500i \(-0.421182\pi\)
0.245091 + 0.969500i \(0.421182\pi\)
\(294\) 0 0
\(295\) 33.5764 1.95489
\(296\) 17.2959 1.00531
\(297\) 0 0
\(298\) −42.5174 −2.46296
\(299\) 19.4637 1.12562
\(300\) 0 0
\(301\) 0 0
\(302\) −32.7414 −1.88406
\(303\) 0 0
\(304\) 2.36636 0.135720
\(305\) 20.2936 1.16201
\(306\) 0 0
\(307\) 9.48925 0.541580 0.270790 0.962638i \(-0.412715\pi\)
0.270790 + 0.962638i \(0.412715\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −2.62496 −0.149087
\(311\) 15.3798 0.872109 0.436054 0.899920i \(-0.356376\pi\)
0.436054 + 0.899920i \(0.356376\pi\)
\(312\) 0 0
\(313\) −2.15660 −0.121898 −0.0609490 0.998141i \(-0.519413\pi\)
−0.0609490 + 0.998141i \(0.519413\pi\)
\(314\) −6.02326 −0.339912
\(315\) 0 0
\(316\) −20.3283 −1.14356
\(317\) 2.11686 0.118895 0.0594475 0.998231i \(-0.481066\pi\)
0.0594475 + 0.998231i \(0.481066\pi\)
\(318\) 0 0
\(319\) −61.9947 −3.47104
\(320\) −23.6881 −1.32421
\(321\) 0 0
\(322\) 0 0
\(323\) −3.58339 −0.199385
\(324\) 0 0
\(325\) −0.933830 −0.0517996
\(326\) −32.6443 −1.80800
\(327\) 0 0
\(328\) 44.0625 2.43294
\(329\) 0 0
\(330\) 0 0
\(331\) 0.891779 0.0490166 0.0245083 0.999700i \(-0.492198\pi\)
0.0245083 + 0.999700i \(0.492198\pi\)
\(332\) −10.2238 −0.561104
\(333\) 0 0
\(334\) 17.7523 0.971362
\(335\) 30.3623 1.65887
\(336\) 0 0
\(337\) −18.4091 −1.00281 −0.501405 0.865213i \(-0.667183\pi\)
−0.501405 + 0.865213i \(0.667183\pi\)
\(338\) −27.0054 −1.46890
\(339\) 0 0
\(340\) −29.1908 −1.58309
\(341\) 3.18561 0.172510
\(342\) 0 0
\(343\) 0 0
\(344\) −28.0169 −1.51057
\(345\) 0 0
\(346\) −28.6333 −1.53933
\(347\) −18.8503 −1.01194 −0.505968 0.862552i \(-0.668865\pi\)
−0.505968 + 0.862552i \(0.668865\pi\)
\(348\) 0 0
\(349\) 24.5754 1.31549 0.657746 0.753240i \(-0.271510\pi\)
0.657746 + 0.753240i \(0.271510\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 16.1502 0.860808
\(353\) −23.0527 −1.22697 −0.613486 0.789705i \(-0.710233\pi\)
−0.613486 + 0.789705i \(0.710233\pi\)
\(354\) 0 0
\(355\) 4.39375 0.233196
\(356\) 6.38874 0.338602
\(357\) 0 0
\(358\) 15.4705 0.817640
\(359\) −8.54108 −0.450781 −0.225390 0.974269i \(-0.572366\pi\)
−0.225390 + 0.974269i \(0.572366\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 6.11479 0.321386
\(363\) 0 0
\(364\) 0 0
\(365\) 6.37229 0.333541
\(366\) 0 0
\(367\) 13.9542 0.728403 0.364202 0.931320i \(-0.381342\pi\)
0.364202 + 0.931320i \(0.381342\pi\)
\(368\) 9.34390 0.487084
\(369\) 0 0
\(370\) 22.1312 1.15054
\(371\) 0 0
\(372\) 0 0
\(373\) 23.9949 1.24241 0.621206 0.783648i \(-0.286643\pi\)
0.621206 + 0.783648i \(0.286643\pi\)
\(374\) 54.5018 2.81822
\(375\) 0 0
\(376\) 35.4628 1.82885
\(377\) −48.0277 −2.47355
\(378\) 0 0
\(379\) 18.1983 0.934783 0.467392 0.884050i \(-0.345194\pi\)
0.467392 + 0.884050i \(0.345194\pi\)
\(380\) 8.14614 0.417888
\(381\) 0 0
\(382\) −56.7667 −2.90444
\(383\) −13.3959 −0.684497 −0.342249 0.939609i \(-0.611189\pi\)
−0.342249 + 0.939609i \(0.611189\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −46.6538 −2.37461
\(387\) 0 0
\(388\) 15.9436 0.809412
\(389\) 6.37101 0.323023 0.161511 0.986871i \(-0.448363\pi\)
0.161511 + 0.986871i \(0.448363\pi\)
\(390\) 0 0
\(391\) −14.1495 −0.715571
\(392\) 0 0
\(393\) 0 0
\(394\) 12.2094 0.615103
\(395\) −12.0045 −0.604012
\(396\) 0 0
\(397\) 23.3452 1.17166 0.585832 0.810433i \(-0.300768\pi\)
0.585832 + 0.810433i \(0.300768\pi\)
\(398\) −29.8243 −1.49496
\(399\) 0 0
\(400\) −0.448301 −0.0224151
\(401\) 12.1079 0.604642 0.302321 0.953206i \(-0.402239\pi\)
0.302321 + 0.953206i \(0.402239\pi\)
\(402\) 0 0
\(403\) 2.46791 0.122936
\(404\) −0.0206271 −0.00102623
\(405\) 0 0
\(406\) 0 0
\(407\) −26.8581 −1.33130
\(408\) 0 0
\(409\) 22.1376 1.09464 0.547318 0.836925i \(-0.315649\pi\)
0.547318 + 0.836925i \(0.315649\pi\)
\(410\) 56.3805 2.78444
\(411\) 0 0
\(412\) 61.7476 3.04208
\(413\) 0 0
\(414\) 0 0
\(415\) −6.03748 −0.296368
\(416\) 12.5117 0.613435
\(417\) 0 0
\(418\) −15.2095 −0.743923
\(419\) 5.72444 0.279657 0.139829 0.990176i \(-0.455345\pi\)
0.139829 + 0.990176i \(0.455345\pi\)
\(420\) 0 0
\(421\) −0.894050 −0.0435733 −0.0217867 0.999763i \(-0.506935\pi\)
−0.0217867 + 0.999763i \(0.506935\pi\)
\(422\) 16.2023 0.788716
\(423\) 0 0
\(424\) 28.3740 1.37796
\(425\) 0.678864 0.0329298
\(426\) 0 0
\(427\) 0 0
\(428\) −29.6159 −1.43154
\(429\) 0 0
\(430\) −35.8493 −1.72881
\(431\) 6.91659 0.333161 0.166580 0.986028i \(-0.446728\pi\)
0.166580 + 0.986028i \(0.446728\pi\)
\(432\) 0 0
\(433\) −27.1219 −1.30340 −0.651698 0.758478i \(-0.725943\pi\)
−0.651698 + 0.758478i \(0.725943\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 10.2448 0.490639
\(437\) 3.94863 0.188889
\(438\) 0 0
\(439\) −10.8706 −0.518825 −0.259413 0.965767i \(-0.583529\pi\)
−0.259413 + 0.965767i \(0.583529\pi\)
\(440\) −57.1809 −2.72599
\(441\) 0 0
\(442\) 42.2229 2.00834
\(443\) −12.7648 −0.606475 −0.303237 0.952915i \(-0.598068\pi\)
−0.303237 + 0.952915i \(0.598068\pi\)
\(444\) 0 0
\(445\) 3.77275 0.178846
\(446\) 16.7617 0.793691
\(447\) 0 0
\(448\) 0 0
\(449\) −18.2883 −0.863077 −0.431539 0.902094i \(-0.642029\pi\)
−0.431539 + 0.902094i \(0.642029\pi\)
\(450\) 0 0
\(451\) −68.4226 −3.22190
\(452\) 15.8264 0.744410
\(453\) 0 0
\(454\) −39.6858 −1.86255
\(455\) 0 0
\(456\) 0 0
\(457\) −25.1547 −1.17669 −0.588343 0.808612i \(-0.700219\pi\)
−0.588343 + 0.808612i \(0.700219\pi\)
\(458\) −40.4031 −1.88791
\(459\) 0 0
\(460\) 32.1661 1.49975
\(461\) 2.04065 0.0950424 0.0475212 0.998870i \(-0.484868\pi\)
0.0475212 + 0.998870i \(0.484868\pi\)
\(462\) 0 0
\(463\) 0.789344 0.0366839 0.0183420 0.999832i \(-0.494161\pi\)
0.0183420 + 0.999832i \(0.494161\pi\)
\(464\) −23.0565 −1.07037
\(465\) 0 0
\(466\) −29.3377 −1.35904
\(467\) 12.3150 0.569869 0.284935 0.958547i \(-0.408028\pi\)
0.284935 + 0.958547i \(0.408028\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 45.3767 2.09307
\(471\) 0 0
\(472\) −62.7260 −2.88720
\(473\) 43.5062 2.00042
\(474\) 0 0
\(475\) −0.189447 −0.00869244
\(476\) 0 0
\(477\) 0 0
\(478\) −3.95635 −0.180959
\(479\) 32.6218 1.49053 0.745265 0.666769i \(-0.232323\pi\)
0.745265 + 0.666769i \(0.232323\pi\)
\(480\) 0 0
\(481\) −20.8071 −0.948723
\(482\) 53.9927 2.45930
\(483\) 0 0
\(484\) 109.507 4.97759
\(485\) 9.41518 0.427521
\(486\) 0 0
\(487\) −5.51446 −0.249884 −0.124942 0.992164i \(-0.539874\pi\)
−0.124942 + 0.992164i \(0.539874\pi\)
\(488\) −37.9116 −1.71618
\(489\) 0 0
\(490\) 0 0
\(491\) 13.9087 0.627692 0.313846 0.949474i \(-0.398382\pi\)
0.313846 + 0.949474i \(0.398382\pi\)
\(492\) 0 0
\(493\) 34.9146 1.57247
\(494\) −11.7829 −0.530139
\(495\) 0 0
\(496\) 1.18476 0.0531975
\(497\) 0 0
\(498\) 0 0
\(499\) −17.0006 −0.761051 −0.380526 0.924770i \(-0.624257\pi\)
−0.380526 + 0.924770i \(0.624257\pi\)
\(500\) −42.2739 −1.89055
\(501\) 0 0
\(502\) −65.4121 −2.91948
\(503\) −38.2113 −1.70376 −0.851879 0.523739i \(-0.824537\pi\)
−0.851879 + 0.523739i \(0.824537\pi\)
\(504\) 0 0
\(505\) −0.0121809 −0.000542044 0
\(506\) −60.0569 −2.66985
\(507\) 0 0
\(508\) −62.8495 −2.78850
\(509\) −5.30397 −0.235094 −0.117547 0.993067i \(-0.537503\pi\)
−0.117547 + 0.993067i \(0.537503\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 25.3984 1.12246
\(513\) 0 0
\(514\) 62.0234 2.73573
\(515\) 36.4639 1.60679
\(516\) 0 0
\(517\) −55.0685 −2.42191
\(518\) 0 0
\(519\) 0 0
\(520\) −44.2984 −1.94261
\(521\) −3.18660 −0.139608 −0.0698038 0.997561i \(-0.522237\pi\)
−0.0698038 + 0.997561i \(0.522237\pi\)
\(522\) 0 0
\(523\) −5.47204 −0.239276 −0.119638 0.992818i \(-0.538173\pi\)
−0.119638 + 0.992818i \(0.538173\pi\)
\(524\) 32.9614 1.43992
\(525\) 0 0
\(526\) −33.4706 −1.45939
\(527\) −1.79409 −0.0781519
\(528\) 0 0
\(529\) −7.40830 −0.322100
\(530\) 36.3061 1.57704
\(531\) 0 0
\(532\) 0 0
\(533\) −53.0075 −2.29601
\(534\) 0 0
\(535\) −17.4891 −0.756120
\(536\) −56.7216 −2.45000
\(537\) 0 0
\(538\) 10.7720 0.464416
\(539\) 0 0
\(540\) 0 0
\(541\) −36.6714 −1.57663 −0.788314 0.615274i \(-0.789046\pi\)
−0.788314 + 0.615274i \(0.789046\pi\)
\(542\) −28.2407 −1.21304
\(543\) 0 0
\(544\) −9.09557 −0.389970
\(545\) 6.04991 0.259150
\(546\) 0 0
\(547\) −37.6225 −1.60862 −0.804311 0.594208i \(-0.797466\pi\)
−0.804311 + 0.594208i \(0.797466\pi\)
\(548\) −22.0042 −0.939974
\(549\) 0 0
\(550\) 2.88141 0.122864
\(551\) −9.74344 −0.415085
\(552\) 0 0
\(553\) 0 0
\(554\) −31.0762 −1.32030
\(555\) 0 0
\(556\) 41.6492 1.76632
\(557\) 4.72745 0.200308 0.100154 0.994972i \(-0.468066\pi\)
0.100154 + 0.994972i \(0.468066\pi\)
\(558\) 0 0
\(559\) 33.7045 1.42555
\(560\) 0 0
\(561\) 0 0
\(562\) 56.4645 2.38181
\(563\) −29.3726 −1.23791 −0.618953 0.785428i \(-0.712443\pi\)
−0.618953 + 0.785428i \(0.712443\pi\)
\(564\) 0 0
\(565\) 9.34597 0.393188
\(566\) 67.3007 2.82886
\(567\) 0 0
\(568\) −8.20823 −0.344410
\(569\) −4.92439 −0.206441 −0.103220 0.994658i \(-0.532915\pi\)
−0.103220 + 0.994658i \(0.532915\pi\)
\(570\) 0 0
\(571\) −2.99018 −0.125135 −0.0625676 0.998041i \(-0.519929\pi\)
−0.0625676 + 0.998041i \(0.519929\pi\)
\(572\) 116.486 4.87054
\(573\) 0 0
\(574\) 0 0
\(575\) −0.748058 −0.0311962
\(576\) 0 0
\(577\) 1.49749 0.0623412 0.0311706 0.999514i \(-0.490076\pi\)
0.0311706 + 0.999514i \(0.490076\pi\)
\(578\) 9.94244 0.413551
\(579\) 0 0
\(580\) −79.3714 −3.29572
\(581\) 0 0
\(582\) 0 0
\(583\) −44.0606 −1.82480
\(584\) −11.9045 −0.492610
\(585\) 0 0
\(586\) −20.0570 −0.828546
\(587\) −12.3454 −0.509548 −0.254774 0.967001i \(-0.582001\pi\)
−0.254774 + 0.967001i \(0.582001\pi\)
\(588\) 0 0
\(589\) 0.500669 0.0206297
\(590\) −80.2617 −3.30432
\(591\) 0 0
\(592\) −9.98882 −0.410538
\(593\) 5.13280 0.210779 0.105389 0.994431i \(-0.466391\pi\)
0.105389 + 0.994431i \(0.466391\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 66.0612 2.70597
\(597\) 0 0
\(598\) −46.5265 −1.90261
\(599\) 35.9941 1.47068 0.735340 0.677699i \(-0.237023\pi\)
0.735340 + 0.677699i \(0.237023\pi\)
\(600\) 0 0
\(601\) 38.8330 1.58403 0.792016 0.610500i \(-0.209031\pi\)
0.792016 + 0.610500i \(0.209031\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 50.8719 2.06995
\(605\) 64.6673 2.62910
\(606\) 0 0
\(607\) −21.8458 −0.886693 −0.443346 0.896350i \(-0.646209\pi\)
−0.443346 + 0.896350i \(0.646209\pi\)
\(608\) 2.53826 0.102940
\(609\) 0 0
\(610\) −48.5101 −1.96412
\(611\) −42.6619 −1.72592
\(612\) 0 0
\(613\) −36.5678 −1.47696 −0.738480 0.674276i \(-0.764456\pi\)
−0.738480 + 0.674276i \(0.764456\pi\)
\(614\) −22.6833 −0.915423
\(615\) 0 0
\(616\) 0 0
\(617\) −6.29559 −0.253451 −0.126725 0.991938i \(-0.540447\pi\)
−0.126725 + 0.991938i \(0.540447\pi\)
\(618\) 0 0
\(619\) −38.0518 −1.52943 −0.764716 0.644368i \(-0.777121\pi\)
−0.764716 + 0.644368i \(0.777121\pi\)
\(620\) 4.07851 0.163797
\(621\) 0 0
\(622\) −36.7642 −1.47411
\(623\) 0 0
\(624\) 0 0
\(625\) −24.0169 −0.960675
\(626\) 5.15517 0.206042
\(627\) 0 0
\(628\) 9.35862 0.373449
\(629\) 15.1261 0.603117
\(630\) 0 0
\(631\) −42.5926 −1.69558 −0.847792 0.530328i \(-0.822069\pi\)
−0.847792 + 0.530328i \(0.822069\pi\)
\(632\) 22.4263 0.892071
\(633\) 0 0
\(634\) −5.06019 −0.200966
\(635\) −37.1146 −1.47285
\(636\) 0 0
\(637\) 0 0
\(638\) 148.193 5.86703
\(639\) 0 0
\(640\) 45.4902 1.79816
\(641\) 46.8912 1.85209 0.926045 0.377414i \(-0.123187\pi\)
0.926045 + 0.377414i \(0.123187\pi\)
\(642\) 0 0
\(643\) −10.9693 −0.432587 −0.216293 0.976328i \(-0.569397\pi\)
−0.216293 + 0.976328i \(0.569397\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 8.56581 0.337017
\(647\) 28.3982 1.11645 0.558225 0.829690i \(-0.311483\pi\)
0.558225 + 0.829690i \(0.311483\pi\)
\(648\) 0 0
\(649\) 97.4044 3.82346
\(650\) 2.23225 0.0875559
\(651\) 0 0
\(652\) 50.7210 1.98639
\(653\) 9.44253 0.369515 0.184757 0.982784i \(-0.440850\pi\)
0.184757 + 0.982784i \(0.440850\pi\)
\(654\) 0 0
\(655\) 19.4647 0.760550
\(656\) −25.4471 −0.993544
\(657\) 0 0
\(658\) 0 0
\(659\) −30.8658 −1.20236 −0.601181 0.799113i \(-0.705303\pi\)
−0.601181 + 0.799113i \(0.705303\pi\)
\(660\) 0 0
\(661\) 31.0096 1.20613 0.603066 0.797691i \(-0.293945\pi\)
0.603066 + 0.797691i \(0.293945\pi\)
\(662\) −2.13173 −0.0828519
\(663\) 0 0
\(664\) 11.2790 0.437709
\(665\) 0 0
\(666\) 0 0
\(667\) −38.4733 −1.48969
\(668\) −27.5826 −1.06720
\(669\) 0 0
\(670\) −72.5786 −2.80396
\(671\) 58.8712 2.27270
\(672\) 0 0
\(673\) −0.411588 −0.0158656 −0.00793278 0.999969i \(-0.502525\pi\)
−0.00793278 + 0.999969i \(0.502525\pi\)
\(674\) 44.0056 1.69503
\(675\) 0 0
\(676\) 41.9595 1.61383
\(677\) −13.8372 −0.531806 −0.265903 0.964000i \(-0.585670\pi\)
−0.265903 + 0.964000i \(0.585670\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 32.2035 1.23495
\(681\) 0 0
\(682\) −7.61494 −0.291591
\(683\) −17.4041 −0.665949 −0.332975 0.942936i \(-0.608052\pi\)
−0.332975 + 0.942936i \(0.608052\pi\)
\(684\) 0 0
\(685\) −12.9942 −0.496483
\(686\) 0 0
\(687\) 0 0
\(688\) 16.1804 0.616873
\(689\) −34.1341 −1.30040
\(690\) 0 0
\(691\) 18.8299 0.716324 0.358162 0.933659i \(-0.383403\pi\)
0.358162 + 0.933659i \(0.383403\pi\)
\(692\) 44.4888 1.69121
\(693\) 0 0
\(694\) 45.0601 1.71046
\(695\) 24.5952 0.932947
\(696\) 0 0
\(697\) 38.5347 1.45961
\(698\) −58.7456 −2.22355
\(699\) 0 0
\(700\) 0 0
\(701\) 25.8485 0.976286 0.488143 0.872764i \(-0.337675\pi\)
0.488143 + 0.872764i \(0.337675\pi\)
\(702\) 0 0
\(703\) −4.22117 −0.159204
\(704\) −68.7187 −2.58993
\(705\) 0 0
\(706\) 55.1057 2.07393
\(707\) 0 0
\(708\) 0 0
\(709\) −44.7265 −1.67974 −0.839870 0.542788i \(-0.817369\pi\)
−0.839870 + 0.542788i \(0.817369\pi\)
\(710\) −10.5029 −0.394167
\(711\) 0 0
\(712\) −7.04810 −0.264139
\(713\) 1.97696 0.0740376
\(714\) 0 0
\(715\) 68.7890 2.57256
\(716\) −24.0372 −0.898311
\(717\) 0 0
\(718\) 20.4168 0.761947
\(719\) 30.1687 1.12510 0.562551 0.826763i \(-0.309820\pi\)
0.562551 + 0.826763i \(0.309820\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −2.39042 −0.0889622
\(723\) 0 0
\(724\) −9.50082 −0.353095
\(725\) 1.84587 0.0685539
\(726\) 0 0
\(727\) 35.2752 1.30828 0.654142 0.756372i \(-0.273030\pi\)
0.654142 + 0.756372i \(0.273030\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −15.2325 −0.563778
\(731\) −24.5021 −0.906243
\(732\) 0 0
\(733\) −41.4144 −1.52968 −0.764838 0.644223i \(-0.777181\pi\)
−0.764838 + 0.644223i \(0.777181\pi\)
\(734\) −33.3564 −1.23121
\(735\) 0 0
\(736\) 10.0226 0.369440
\(737\) 88.0804 3.24448
\(738\) 0 0
\(739\) −1.44475 −0.0531458 −0.0265729 0.999647i \(-0.508459\pi\)
−0.0265729 + 0.999647i \(0.508459\pi\)
\(740\) −34.3862 −1.26406
\(741\) 0 0
\(742\) 0 0
\(743\) 0.788993 0.0289453 0.0144727 0.999895i \(-0.495393\pi\)
0.0144727 + 0.999895i \(0.495393\pi\)
\(744\) 0 0
\(745\) 39.0112 1.42926
\(746\) −57.3580 −2.10002
\(747\) 0 0
\(748\) −84.6819 −3.09628
\(749\) 0 0
\(750\) 0 0
\(751\) 17.5000 0.638585 0.319292 0.947656i \(-0.396555\pi\)
0.319292 + 0.947656i \(0.396555\pi\)
\(752\) −20.4806 −0.746851
\(753\) 0 0
\(754\) 114.806 4.18100
\(755\) 30.0415 1.09332
\(756\) 0 0
\(757\) 3.17391 0.115358 0.0576788 0.998335i \(-0.481630\pi\)
0.0576788 + 0.998335i \(0.481630\pi\)
\(758\) −43.5015 −1.58005
\(759\) 0 0
\(760\) −8.98688 −0.325988
\(761\) −22.5797 −0.818515 −0.409258 0.912419i \(-0.634212\pi\)
−0.409258 + 0.912419i \(0.634212\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 88.2011 3.19100
\(765\) 0 0
\(766\) 32.0218 1.15699
\(767\) 75.4599 2.72470
\(768\) 0 0
\(769\) 45.6701 1.64691 0.823453 0.567385i \(-0.192045\pi\)
0.823453 + 0.567385i \(0.192045\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 72.4881 2.60890
\(773\) 37.9098 1.36352 0.681761 0.731575i \(-0.261214\pi\)
0.681761 + 0.731575i \(0.261214\pi\)
\(774\) 0 0
\(775\) −0.0948504 −0.00340713
\(776\) −17.5891 −0.631410
\(777\) 0 0
\(778\) −15.2294 −0.546000
\(779\) −10.7537 −0.385291
\(780\) 0 0
\(781\) 12.7462 0.456094
\(782\) 33.8233 1.20952
\(783\) 0 0
\(784\) 0 0
\(785\) 5.52656 0.197251
\(786\) 0 0
\(787\) 7.80181 0.278105 0.139052 0.990285i \(-0.455594\pi\)
0.139052 + 0.990285i \(0.455594\pi\)
\(788\) −18.9704 −0.675792
\(789\) 0 0
\(790\) 28.6958 1.02095
\(791\) 0 0
\(792\) 0 0
\(793\) 45.6079 1.61958
\(794\) −55.8049 −1.98044
\(795\) 0 0
\(796\) 46.3394 1.64246
\(797\) −38.6404 −1.36871 −0.684357 0.729147i \(-0.739917\pi\)
−0.684357 + 0.729147i \(0.739917\pi\)
\(798\) 0 0
\(799\) 31.0139 1.09719
\(800\) −0.480866 −0.0170012
\(801\) 0 0
\(802\) −28.9431 −1.02202
\(803\) 18.4859 0.652353
\(804\) 0 0
\(805\) 0 0
\(806\) −5.89935 −0.207796
\(807\) 0 0
\(808\) 0.0227559 0.000800551 0
\(809\) 42.6750 1.50037 0.750187 0.661226i \(-0.229963\pi\)
0.750187 + 0.661226i \(0.229963\pi\)
\(810\) 0 0
\(811\) 1.08816 0.0382103 0.0191052 0.999817i \(-0.493918\pi\)
0.0191052 + 0.999817i \(0.493918\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 64.2020 2.25028
\(815\) 29.9524 1.04919
\(816\) 0 0
\(817\) 6.83768 0.239220
\(818\) −52.9182 −1.85024
\(819\) 0 0
\(820\) −87.6010 −3.05916
\(821\) −48.5646 −1.69492 −0.847458 0.530863i \(-0.821868\pi\)
−0.847458 + 0.530863i \(0.821868\pi\)
\(822\) 0 0
\(823\) 23.9237 0.833926 0.416963 0.908923i \(-0.363094\pi\)
0.416963 + 0.908923i \(0.363094\pi\)
\(824\) −68.1204 −2.37309
\(825\) 0 0
\(826\) 0 0
\(827\) 6.63171 0.230607 0.115304 0.993330i \(-0.463216\pi\)
0.115304 + 0.993330i \(0.463216\pi\)
\(828\) 0 0
\(829\) 47.8849 1.66311 0.831555 0.555442i \(-0.187451\pi\)
0.831555 + 0.555442i \(0.187451\pi\)
\(830\) 14.4321 0.500946
\(831\) 0 0
\(832\) −53.2368 −1.84566
\(833\) 0 0
\(834\) 0 0
\(835\) −16.2884 −0.563683
\(836\) 23.6318 0.817322
\(837\) 0 0
\(838\) −13.6838 −0.472700
\(839\) 17.4432 0.602208 0.301104 0.953591i \(-0.402645\pi\)
0.301104 + 0.953591i \(0.402645\pi\)
\(840\) 0 0
\(841\) 65.9347 2.27361
\(842\) 2.13715 0.0736512
\(843\) 0 0
\(844\) −25.1743 −0.866534
\(845\) 24.7784 0.852404
\(846\) 0 0
\(847\) 0 0
\(848\) −16.3866 −0.562719
\(849\) 0 0
\(850\) −1.62277 −0.0556606
\(851\) −16.6678 −0.571366
\(852\) 0 0
\(853\) −14.3567 −0.491564 −0.245782 0.969325i \(-0.579045\pi\)
−0.245782 + 0.969325i \(0.579045\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 32.6724 1.11672
\(857\) 44.1973 1.50975 0.754875 0.655868i \(-0.227697\pi\)
0.754875 + 0.655868i \(0.227697\pi\)
\(858\) 0 0
\(859\) 56.5625 1.92989 0.964944 0.262455i \(-0.0845322\pi\)
0.964944 + 0.262455i \(0.0845322\pi\)
\(860\) 55.7007 1.89938
\(861\) 0 0
\(862\) −16.5336 −0.563135
\(863\) −54.6050 −1.85877 −0.929387 0.369106i \(-0.879664\pi\)
−0.929387 + 0.369106i \(0.879664\pi\)
\(864\) 0 0
\(865\) 26.2721 0.893277
\(866\) 64.8328 2.20311
\(867\) 0 0
\(868\) 0 0
\(869\) −34.8248 −1.18135
\(870\) 0 0
\(871\) 68.2365 2.31210
\(872\) −11.3022 −0.382740
\(873\) 0 0
\(874\) −9.43889 −0.319275
\(875\) 0 0
\(876\) 0 0
\(877\) 23.1578 0.781985 0.390992 0.920394i \(-0.372132\pi\)
0.390992 + 0.920394i \(0.372132\pi\)
\(878\) 25.9853 0.876961
\(879\) 0 0
\(880\) 33.0233 1.11322
\(881\) 20.5800 0.693358 0.346679 0.937984i \(-0.387309\pi\)
0.346679 + 0.937984i \(0.387309\pi\)
\(882\) 0 0
\(883\) 27.0434 0.910084 0.455042 0.890470i \(-0.349624\pi\)
0.455042 + 0.890470i \(0.349624\pi\)
\(884\) −65.6037 −2.20649
\(885\) 0 0
\(886\) 30.5133 1.02511
\(887\) −20.7239 −0.695840 −0.347920 0.937524i \(-0.613112\pi\)
−0.347920 + 0.937524i \(0.613112\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −9.01846 −0.302300
\(891\) 0 0
\(892\) −26.0435 −0.872000
\(893\) −8.65488 −0.289625
\(894\) 0 0
\(895\) −14.1947 −0.474477
\(896\) 0 0
\(897\) 0 0
\(898\) 43.7167 1.45884
\(899\) −4.87824 −0.162698
\(900\) 0 0
\(901\) 24.8144 0.826686
\(902\) 163.559 5.44591
\(903\) 0 0
\(904\) −17.4598 −0.580703
\(905\) −5.61054 −0.186501
\(906\) 0 0
\(907\) 4.53996 0.150747 0.0753735 0.997155i \(-0.475985\pi\)
0.0753735 + 0.997155i \(0.475985\pi\)
\(908\) 61.6617 2.04631
\(909\) 0 0
\(910\) 0 0
\(911\) 5.37973 0.178238 0.0891192 0.996021i \(-0.471595\pi\)
0.0891192 + 0.996021i \(0.471595\pi\)
\(912\) 0 0
\(913\) −17.5146 −0.579649
\(914\) 60.1302 1.98893
\(915\) 0 0
\(916\) 62.7762 2.07418
\(917\) 0 0
\(918\) 0 0
\(919\) −15.2344 −0.502536 −0.251268 0.967918i \(-0.580847\pi\)
−0.251268 + 0.967918i \(0.580847\pi\)
\(920\) −35.4859 −1.16993
\(921\) 0 0
\(922\) −4.87800 −0.160648
\(923\) 9.87455 0.325025
\(924\) 0 0
\(925\) 0.799689 0.0262936
\(926\) −1.88686 −0.0620061
\(927\) 0 0
\(928\) −24.7314 −0.811847
\(929\) 29.0939 0.954540 0.477270 0.878757i \(-0.341626\pi\)
0.477270 + 0.878757i \(0.341626\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 45.5833 1.49313
\(933\) 0 0
\(934\) −29.4380 −0.963240
\(935\) −50.0074 −1.63542
\(936\) 0 0
\(937\) 43.9646 1.43626 0.718131 0.695908i \(-0.244998\pi\)
0.718131 + 0.695908i \(0.244998\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −70.5039 −2.29958
\(941\) 13.1347 0.428177 0.214089 0.976814i \(-0.431322\pi\)
0.214089 + 0.976814i \(0.431322\pi\)
\(942\) 0 0
\(943\) −42.4624 −1.38277
\(944\) 36.2258 1.17905
\(945\) 0 0
\(946\) −103.998 −3.38127
\(947\) −46.8502 −1.52243 −0.761213 0.648502i \(-0.775396\pi\)
−0.761213 + 0.648502i \(0.775396\pi\)
\(948\) 0 0
\(949\) 14.3211 0.464884
\(950\) 0.452859 0.0146927
\(951\) 0 0
\(952\) 0 0
\(953\) −0.621467 −0.0201313 −0.0100656 0.999949i \(-0.503204\pi\)
−0.0100656 + 0.999949i \(0.503204\pi\)
\(954\) 0 0
\(955\) 52.0856 1.68545
\(956\) 6.14716 0.198813
\(957\) 0 0
\(958\) −77.9799 −2.51941
\(959\) 0 0
\(960\) 0 0
\(961\) −30.7493 −0.991914
\(962\) 49.7378 1.60361
\(963\) 0 0
\(964\) −83.8909 −2.70194
\(965\) 42.8065 1.37799
\(966\) 0 0
\(967\) −15.3631 −0.494045 −0.247022 0.969010i \(-0.579452\pi\)
−0.247022 + 0.969010i \(0.579452\pi\)
\(968\) −120.809 −3.88294
\(969\) 0 0
\(970\) −22.5062 −0.722632
\(971\) 15.8647 0.509123 0.254562 0.967057i \(-0.418069\pi\)
0.254562 + 0.967057i \(0.418069\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 13.1819 0.422374
\(975\) 0 0
\(976\) 21.8949 0.700837
\(977\) −50.0609 −1.60159 −0.800795 0.598938i \(-0.795589\pi\)
−0.800795 + 0.598938i \(0.795589\pi\)
\(978\) 0 0
\(979\) 10.9447 0.349793
\(980\) 0 0
\(981\) 0 0
\(982\) −33.2477 −1.06098
\(983\) 21.5881 0.688553 0.344277 0.938868i \(-0.388124\pi\)
0.344277 + 0.938868i \(0.388124\pi\)
\(984\) 0 0
\(985\) −11.2026 −0.356945
\(986\) −83.4605 −2.65792
\(987\) 0 0
\(988\) 18.3077 0.582445
\(989\) 26.9995 0.858534
\(990\) 0 0
\(991\) −38.9528 −1.23738 −0.618688 0.785637i \(-0.712336\pi\)
−0.618688 + 0.785637i \(0.712336\pi\)
\(992\) 1.27083 0.0403488
\(993\) 0 0
\(994\) 0 0
\(995\) 27.3649 0.867525
\(996\) 0 0
\(997\) −13.1724 −0.417174 −0.208587 0.978004i \(-0.566886\pi\)
−0.208587 + 0.978004i \(0.566886\pi\)
\(998\) 40.6386 1.28639
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8379.2.a.cx.1.3 yes 20
3.2 odd 2 inner 8379.2.a.cx.1.18 yes 20
7.6 odd 2 8379.2.a.cw.1.3 20
21.20 even 2 8379.2.a.cw.1.18 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
8379.2.a.cw.1.3 20 7.6 odd 2
8379.2.a.cw.1.18 yes 20 21.20 even 2
8379.2.a.cx.1.3 yes 20 1.1 even 1 trivial
8379.2.a.cx.1.18 yes 20 3.2 odd 2 inner