Properties

Label 8379.2.a.cn
Level $8379$
Weight $2$
Character orbit 8379.a
Self dual yes
Analytic conductor $66.907$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8379,2,Mod(1,8379)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8379.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8379, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8379 = 3^{2} \cdot 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8379.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,4,0,0,0,0,0,-4,0,0,16,0,0,-8,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.9066518536\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.8.8446345216.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 8x^{6} + 19x^{4} - 14x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{4} q^{2} - \beta_{5} q^{4} - \beta_{7} q^{5} - \beta_{2} q^{8} + ( - \beta_{6} + \beta_{5} + \beta_{3}) q^{10} + ( - \beta_{7} - \beta_{4} - \beta_1) q^{11} + ( - \beta_{5} - \beta_{3} + 2) q^{13}+ \cdots + ( - \beta_{6} + 3 \beta_{3} + 1) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{4} - 4 q^{10} + 16 q^{13} - 8 q^{16} - 8 q^{19} + 8 q^{22} + 16 q^{25} + 24 q^{31} + 28 q^{34} - 16 q^{37} - 4 q^{40} - 16 q^{43} - 16 q^{46} + 32 q^{52} + 32 q^{55} - 4 q^{58} + 16 q^{61} - 28 q^{64}+ \cdots + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 8x^{6} + 19x^{4} - 14x^{2} + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{3} - 2\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{3} - 4\nu \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -\nu^{6} + 6\nu^{4} - 6\nu^{2} - 2 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{5} - 6\nu^{3} + 7\nu \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{6} - 6\nu^{4} + 8\nu^{2} - 2 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( -\nu^{6} + 8\nu^{4} - 16\nu^{2} + 5 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( 2\nu^{7} - 15\nu^{5} + 31\nu^{3} - 17\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{2} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{5} + \beta_{3} + 4 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{2} + 2\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( \beta_{6} + 5\beta_{5} + 4\beta_{3} + 13 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 2\beta_{4} - 5\beta_{2} + 17\beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 3\beta_{6} + 12\beta_{5} + 8\beta_{3} + 25 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( \beta_{7} + 15\beta_{4} - 15\beta_{2} + 74\beta_1 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.51373
0.282452
1.11758
−2.09282
2.09282
−1.11758
−0.282452
1.51373
−2.26732 0 3.14073 −1.00216 0 0 −2.58640 0 2.27221
1.2 −1.84376 0 1.39945 4.12982 0 0 1.10727 0 −7.61439
1.3 −1.19143 0 −0.580491 −2.47632 0 0 3.07448 0 2.95037
1.4 −0.200777 0 −1.95969 −1.95144 0 0 0.795015 0 0.391805
1.5 0.200777 0 −1.95969 1.95144 0 0 −0.795015 0 0.391805
1.6 1.19143 0 −0.580491 2.47632 0 0 −3.07448 0 2.95037
1.7 1.84376 0 1.39945 −4.12982 0 0 −1.10727 0 −7.61439
1.8 2.26732 0 3.14073 1.00216 0 0 2.58640 0 2.27221
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.8
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(7\) \( -1 \)
\(19\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8379.2.a.cn 8
3.b odd 2 1 inner 8379.2.a.cn 8
7.b odd 2 1 8379.2.a.co yes 8
21.c even 2 1 8379.2.a.co yes 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
8379.2.a.cn 8 1.a even 1 1 trivial
8379.2.a.cn 8 3.b odd 2 1 inner
8379.2.a.co yes 8 7.b odd 2 1
8379.2.a.co yes 8 21.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8379))\):

\( T_{2}^{8} - 10T_{2}^{6} + 30T_{2}^{4} - 26T_{2}^{2} + 1 \) Copy content Toggle raw display
\( T_{5}^{8} - 28T_{5}^{6} + 220T_{5}^{4} - 592T_{5}^{2} + 400 \) Copy content Toggle raw display
\( T_{11}^{2} - 8 \) Copy content Toggle raw display
\( T_{13}^{4} - 8T_{13}^{3} + 4T_{13}^{2} + 64T_{13} - 80 \) Copy content Toggle raw display
\( T_{17}^{8} - 92T_{17}^{6} + 2076T_{17}^{4} - 13648T_{17}^{2} + 400 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} - 10 T^{6} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( T^{8} - 28 T^{6} + \cdots + 400 \) Copy content Toggle raw display
$7$ \( T^{8} \) Copy content Toggle raw display
$11$ \( (T^{2} - 8)^{4} \) Copy content Toggle raw display
$13$ \( (T^{4} - 8 T^{3} + 4 T^{2} + \cdots - 80)^{2} \) Copy content Toggle raw display
$17$ \( T^{8} - 92 T^{6} + \cdots + 400 \) Copy content Toggle raw display
$19$ \( (T + 1)^{8} \) Copy content Toggle raw display
$23$ \( T^{8} - 80 T^{6} + \cdots + 4096 \) Copy content Toggle raw display
$29$ \( T^{8} - 92 T^{6} + \cdots + 2704 \) Copy content Toggle raw display
$31$ \( (T^{4} - 12 T^{3} + \cdots + 80)^{2} \) Copy content Toggle raw display
$37$ \( (T^{4} + 8 T^{3} + \cdots - 1456)^{2} \) Copy content Toggle raw display
$41$ \( T^{8} - 240 T^{6} + \cdots + 2560000 \) Copy content Toggle raw display
$43$ \( (T^{4} + 8 T^{3} + \cdots - 208)^{2} \) Copy content Toggle raw display
$47$ \( T^{8} - 124 T^{6} + \cdots + 400 \) Copy content Toggle raw display
$53$ \( T^{8} - 268 T^{6} + \cdots + 132496 \) Copy content Toggle raw display
$59$ \( T^{8} - 368 T^{6} + \cdots + 36966400 \) Copy content Toggle raw display
$61$ \( (T^{4} - 8 T^{3} + \cdots + 1280)^{2} \) Copy content Toggle raw display
$67$ \( (T^{4} - 8 T^{3} + \cdots + 688)^{2} \) Copy content Toggle raw display
$71$ \( T^{8} - 204 T^{6} + \cdots + 283024 \) Copy content Toggle raw display
$73$ \( (T^{4} - 8 T^{3} + \cdots - 1280)^{2} \) Copy content Toggle raw display
$79$ \( (T^{4} - 16 T^{3} + \cdots - 16)^{2} \) Copy content Toggle raw display
$83$ \( T^{8} - 348 T^{6} + \cdots + 19600 \) Copy content Toggle raw display
$89$ \( T^{8} - 480 T^{6} + \cdots + 80281600 \) Copy content Toggle raw display
$97$ \( (T^{4} - 8 T^{3} + \cdots + 560)^{2} \) Copy content Toggle raw display
show more
show less