Properties

Label 8379.2.a.bv.1.4
Level $8379$
Weight $2$
Character 8379.1
Self dual yes
Analytic conductor $66.907$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8379,2,Mod(1,8379)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8379.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8379, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8379 = 3^{2} \cdot 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8379.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,2,8,0,0,-6,0,-10,6,0,-2,0,0,2,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.9066518536\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.5744.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 5x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 931)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-1.92022\) of defining polynomial
Character \(\chi\) \(=\) 8379.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.92022 q^{2} +1.68725 q^{4} -2.00692 q^{5} -0.600553 q^{8} -3.85372 q^{10} +0.645701 q^{11} +0.232973 q^{13} -4.52769 q^{16} +5.71912 q^{17} +1.00000 q^{19} -3.38617 q^{20} +1.23989 q^{22} -4.21494 q^{23} -0.972286 q^{25} +0.447359 q^{26} -3.65262 q^{29} -1.75375 q^{31} -7.49306 q^{32} +10.9820 q^{34} +3.06650 q^{37} +1.92022 q^{38} +1.20526 q^{40} +6.88559 q^{41} +3.13184 q^{43} +1.08946 q^{44} -8.09361 q^{46} +12.5133 q^{47} -1.86700 q^{50} +0.393083 q^{52} +0.719116 q^{53} -1.29587 q^{55} -7.01383 q^{58} -3.78086 q^{59} -3.12493 q^{61} -3.36758 q^{62} -5.33295 q^{64} -0.467557 q^{65} +3.07702 q^{67} +9.64957 q^{68} +6.14844 q^{71} +3.95485 q^{73} +5.88835 q^{74} +1.68725 q^{76} -14.1872 q^{79} +9.08670 q^{80} +13.2219 q^{82} +15.6761 q^{83} -11.4778 q^{85} +6.01383 q^{86} -0.387778 q^{88} +8.41604 q^{89} -7.11165 q^{92} +24.0282 q^{94} -2.00692 q^{95} -15.7044 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{4} + 8 q^{5} - 6 q^{8} - 10 q^{10} + 6 q^{11} - 2 q^{13} + 2 q^{16} + 8 q^{17} + 4 q^{19} - 14 q^{22} + 8 q^{23} + 20 q^{25} + 16 q^{26} - 2 q^{29} - 2 q^{32} + 22 q^{34} + 10 q^{37} - 22 q^{40}+ \cdots - 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.92022 1.35780 0.678901 0.734230i \(-0.262457\pi\)
0.678901 + 0.734230i \(0.262457\pi\)
\(3\) 0 0
\(4\) 1.68725 0.843624
\(5\) −2.00692 −0.897520 −0.448760 0.893652i \(-0.648134\pi\)
−0.448760 + 0.893652i \(0.648134\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −0.600553 −0.212327
\(9\) 0 0
\(10\) −3.85372 −1.21865
\(11\) 0.645701 0.194686 0.0973431 0.995251i \(-0.468966\pi\)
0.0973431 + 0.995251i \(0.468966\pi\)
\(12\) 0 0
\(13\) 0.232973 0.0646150 0.0323075 0.999478i \(-0.489714\pi\)
0.0323075 + 0.999478i \(0.489714\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −4.52769 −1.13192
\(17\) 5.71912 1.38709 0.693545 0.720414i \(-0.256048\pi\)
0.693545 + 0.720414i \(0.256048\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) −3.38617 −0.757170
\(21\) 0 0
\(22\) 1.23989 0.264345
\(23\) −4.21494 −0.878875 −0.439438 0.898273i \(-0.644822\pi\)
−0.439438 + 0.898273i \(0.644822\pi\)
\(24\) 0 0
\(25\) −0.972286 −0.194457
\(26\) 0.447359 0.0877343
\(27\) 0 0
\(28\) 0 0
\(29\) −3.65262 −0.678274 −0.339137 0.940737i \(-0.610135\pi\)
−0.339137 + 0.940737i \(0.610135\pi\)
\(30\) 0 0
\(31\) −1.75375 −0.314982 −0.157491 0.987520i \(-0.550341\pi\)
−0.157491 + 0.987520i \(0.550341\pi\)
\(32\) −7.49306 −1.32460
\(33\) 0 0
\(34\) 10.9820 1.88339
\(35\) 0 0
\(36\) 0 0
\(37\) 3.06650 0.504129 0.252065 0.967710i \(-0.418890\pi\)
0.252065 + 0.967710i \(0.418890\pi\)
\(38\) 1.92022 0.311501
\(39\) 0 0
\(40\) 1.20526 0.190568
\(41\) 6.88559 1.07535 0.537674 0.843153i \(-0.319303\pi\)
0.537674 + 0.843153i \(0.319303\pi\)
\(42\) 0 0
\(43\) 3.13184 0.477602 0.238801 0.971069i \(-0.423246\pi\)
0.238801 + 0.971069i \(0.423246\pi\)
\(44\) 1.08946 0.164242
\(45\) 0 0
\(46\) −8.09361 −1.19334
\(47\) 12.5133 1.82525 0.912623 0.408802i \(-0.134053\pi\)
0.912623 + 0.408802i \(0.134053\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −1.86700 −0.264034
\(51\) 0 0
\(52\) 0.393083 0.0545108
\(53\) 0.719116 0.0987781 0.0493891 0.998780i \(-0.484273\pi\)
0.0493891 + 0.998780i \(0.484273\pi\)
\(54\) 0 0
\(55\) −1.29587 −0.174735
\(56\) 0 0
\(57\) 0 0
\(58\) −7.01383 −0.920961
\(59\) −3.78086 −0.492226 −0.246113 0.969241i \(-0.579153\pi\)
−0.246113 + 0.969241i \(0.579153\pi\)
\(60\) 0 0
\(61\) −3.12493 −0.400106 −0.200053 0.979785i \(-0.564111\pi\)
−0.200053 + 0.979785i \(0.564111\pi\)
\(62\) −3.36758 −0.427683
\(63\) 0 0
\(64\) −5.33295 −0.666619
\(65\) −0.467557 −0.0579933
\(66\) 0 0
\(67\) 3.07702 0.375917 0.187959 0.982177i \(-0.439813\pi\)
0.187959 + 0.982177i \(0.439813\pi\)
\(68\) 9.64957 1.17018
\(69\) 0 0
\(70\) 0 0
\(71\) 6.14844 0.729686 0.364843 0.931069i \(-0.381123\pi\)
0.364843 + 0.931069i \(0.381123\pi\)
\(72\) 0 0
\(73\) 3.95485 0.462880 0.231440 0.972849i \(-0.425656\pi\)
0.231440 + 0.972849i \(0.425656\pi\)
\(74\) 5.88835 0.684507
\(75\) 0 0
\(76\) 1.68725 0.193541
\(77\) 0 0
\(78\) 0 0
\(79\) −14.1872 −1.59619 −0.798094 0.602533i \(-0.794158\pi\)
−0.798094 + 0.602533i \(0.794158\pi\)
\(80\) 9.08670 1.01592
\(81\) 0 0
\(82\) 13.2219 1.46011
\(83\) 15.6761 1.72068 0.860339 0.509722i \(-0.170252\pi\)
0.860339 + 0.509722i \(0.170252\pi\)
\(84\) 0 0
\(85\) −11.4778 −1.24494
\(86\) 6.01383 0.648488
\(87\) 0 0
\(88\) −0.387778 −0.0413372
\(89\) 8.41604 0.892099 0.446049 0.895008i \(-0.352831\pi\)
0.446049 + 0.895008i \(0.352831\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −7.11165 −0.741440
\(93\) 0 0
\(94\) 24.0282 2.47832
\(95\) −2.00692 −0.205905
\(96\) 0 0
\(97\) −15.7044 −1.59454 −0.797270 0.603623i \(-0.793723\pi\)
−0.797270 + 0.603623i \(0.793723\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −1.64049 −0.164049
\(101\) 18.0900 1.80002 0.900012 0.435866i \(-0.143558\pi\)
0.900012 + 0.435866i \(0.143558\pi\)
\(102\) 0 0
\(103\) 4.02351 0.396448 0.198224 0.980157i \(-0.436483\pi\)
0.198224 + 0.980157i \(0.436483\pi\)
\(104\) −0.139912 −0.0137195
\(105\) 0 0
\(106\) 1.38086 0.134121
\(107\) −15.4133 −1.49006 −0.745029 0.667032i \(-0.767564\pi\)
−0.745029 + 0.667032i \(0.767564\pi\)
\(108\) 0 0
\(109\) 13.4133 1.28476 0.642380 0.766387i \(-0.277947\pi\)
0.642380 + 0.766387i \(0.277947\pi\)
\(110\) −2.48835 −0.237255
\(111\) 0 0
\(112\) 0 0
\(113\) 14.8022 1.39247 0.696237 0.717812i \(-0.254856\pi\)
0.696237 + 0.717812i \(0.254856\pi\)
\(114\) 0 0
\(115\) 8.45903 0.788809
\(116\) −6.16287 −0.572208
\(117\) 0 0
\(118\) −7.26009 −0.668345
\(119\) 0 0
\(120\) 0 0
\(121\) −10.5831 −0.962097
\(122\) −6.00055 −0.543264
\(123\) 0 0
\(124\) −2.95900 −0.265726
\(125\) 11.9859 1.07205
\(126\) 0 0
\(127\) 17.9639 1.59404 0.797021 0.603952i \(-0.206408\pi\)
0.797021 + 0.603952i \(0.206408\pi\)
\(128\) 4.74568 0.419463
\(129\) 0 0
\(130\) −0.897812 −0.0787433
\(131\) 10.2183 0.892773 0.446386 0.894840i \(-0.352711\pi\)
0.446386 + 0.894840i \(0.352711\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 5.90855 0.510421
\(135\) 0 0
\(136\) −3.43463 −0.294517
\(137\) 2.79889 0.239126 0.119563 0.992827i \(-0.461851\pi\)
0.119563 + 0.992827i \(0.461851\pi\)
\(138\) 0 0
\(139\) −16.2440 −1.37780 −0.688901 0.724856i \(-0.741906\pi\)
−0.688901 + 0.724856i \(0.741906\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 11.8064 0.990768
\(143\) 0.150431 0.0125797
\(144\) 0 0
\(145\) 7.33050 0.608765
\(146\) 7.59419 0.628499
\(147\) 0 0
\(148\) 5.17394 0.425295
\(149\) 23.8055 1.95022 0.975112 0.221712i \(-0.0711644\pi\)
0.975112 + 0.221712i \(0.0711644\pi\)
\(150\) 0 0
\(151\) 13.0836 1.06473 0.532366 0.846514i \(-0.321303\pi\)
0.532366 + 0.846514i \(0.321303\pi\)
\(152\) −0.600553 −0.0487112
\(153\) 0 0
\(154\) 0 0
\(155\) 3.51962 0.282703
\(156\) 0 0
\(157\) 15.5734 1.24289 0.621446 0.783457i \(-0.286546\pi\)
0.621446 + 0.783457i \(0.286546\pi\)
\(158\) −27.2426 −2.16731
\(159\) 0 0
\(160\) 15.0379 1.18885
\(161\) 0 0
\(162\) 0 0
\(163\) 5.26285 0.412218 0.206109 0.978529i \(-0.433920\pi\)
0.206109 + 0.978529i \(0.433920\pi\)
\(164\) 11.6177 0.907190
\(165\) 0 0
\(166\) 30.1016 2.33634
\(167\) −17.3853 −1.34531 −0.672657 0.739955i \(-0.734847\pi\)
−0.672657 + 0.739955i \(0.734847\pi\)
\(168\) 0 0
\(169\) −12.9457 −0.995825
\(170\) −22.0399 −1.69038
\(171\) 0 0
\(172\) 5.28420 0.402916
\(173\) −5.63819 −0.428663 −0.214332 0.976761i \(-0.568757\pi\)
−0.214332 + 0.976761i \(0.568757\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −2.92354 −0.220370
\(177\) 0 0
\(178\) 16.1607 1.21129
\(179\) 11.1795 0.835593 0.417796 0.908541i \(-0.362803\pi\)
0.417796 + 0.908541i \(0.362803\pi\)
\(180\) 0 0
\(181\) −9.64409 −0.716840 −0.358420 0.933561i \(-0.616684\pi\)
−0.358420 + 0.933561i \(0.616684\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 2.53129 0.186609
\(185\) −6.15421 −0.452466
\(186\) 0 0
\(187\) 3.69284 0.270047
\(188\) 21.1130 1.53982
\(189\) 0 0
\(190\) −3.85372 −0.279578
\(191\) −0.298871 −0.0216255 −0.0108128 0.999942i \(-0.503442\pi\)
−0.0108128 + 0.999942i \(0.503442\pi\)
\(192\) 0 0
\(193\) −13.4100 −0.965270 −0.482635 0.875821i \(-0.660320\pi\)
−0.482635 + 0.875821i \(0.660320\pi\)
\(194\) −30.1559 −2.16507
\(195\) 0 0
\(196\) 0 0
\(197\) −9.80636 −0.698674 −0.349337 0.936997i \(-0.613593\pi\)
−0.349337 + 0.936997i \(0.613593\pi\)
\(198\) 0 0
\(199\) 14.9515 1.05989 0.529943 0.848033i \(-0.322213\pi\)
0.529943 + 0.848033i \(0.322213\pi\)
\(200\) 0.583909 0.0412886
\(201\) 0 0
\(202\) 34.7368 2.44407
\(203\) 0 0
\(204\) 0 0
\(205\) −13.8188 −0.965147
\(206\) 7.72603 0.538298
\(207\) 0 0
\(208\) −1.05483 −0.0731392
\(209\) 0.645701 0.0446641
\(210\) 0 0
\(211\) −6.50966 −0.448143 −0.224072 0.974573i \(-0.571935\pi\)
−0.224072 + 0.974573i \(0.571935\pi\)
\(212\) 1.21333 0.0833316
\(213\) 0 0
\(214\) −29.5969 −2.02320
\(215\) −6.28535 −0.428657
\(216\) 0 0
\(217\) 0 0
\(218\) 25.7565 1.74445
\(219\) 0 0
\(220\) −2.18645 −0.147411
\(221\) 1.33240 0.0896268
\(222\) 0 0
\(223\) 5.10113 0.341597 0.170798 0.985306i \(-0.445365\pi\)
0.170798 + 0.985306i \(0.445365\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 28.4235 1.89070
\(227\) −2.70500 −0.179537 −0.0897684 0.995963i \(-0.528613\pi\)
−0.0897684 + 0.995963i \(0.528613\pi\)
\(228\) 0 0
\(229\) −2.55624 −0.168921 −0.0844606 0.996427i \(-0.526917\pi\)
−0.0844606 + 0.996427i \(0.526917\pi\)
\(230\) 16.2432 1.07105
\(231\) 0 0
\(232\) 2.19359 0.144016
\(233\) 23.5692 1.54407 0.772034 0.635581i \(-0.219239\pi\)
0.772034 + 0.635581i \(0.219239\pi\)
\(234\) 0 0
\(235\) −25.1131 −1.63820
\(236\) −6.37925 −0.415254
\(237\) 0 0
\(238\) 0 0
\(239\) −19.7767 −1.27925 −0.639623 0.768689i \(-0.720909\pi\)
−0.639623 + 0.768689i \(0.720909\pi\)
\(240\) 0 0
\(241\) −9.14568 −0.589125 −0.294562 0.955632i \(-0.595174\pi\)
−0.294562 + 0.955632i \(0.595174\pi\)
\(242\) −20.3218 −1.30634
\(243\) 0 0
\(244\) −5.27253 −0.337539
\(245\) 0 0
\(246\) 0 0
\(247\) 0.232973 0.0148237
\(248\) 1.05322 0.0668793
\(249\) 0 0
\(250\) 23.0155 1.45563
\(251\) −8.53737 −0.538874 −0.269437 0.963018i \(-0.586838\pi\)
−0.269437 + 0.963018i \(0.586838\pi\)
\(252\) 0 0
\(253\) −2.72159 −0.171105
\(254\) 34.4947 2.16439
\(255\) 0 0
\(256\) 19.7786 1.23617
\(257\) −0.529129 −0.0330061 −0.0165031 0.999864i \(-0.505253\pi\)
−0.0165031 + 0.999864i \(0.505253\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −0.788884 −0.0489245
\(261\) 0 0
\(262\) 19.6213 1.21221
\(263\) 19.4235 1.19771 0.598853 0.800859i \(-0.295624\pi\)
0.598853 + 0.800859i \(0.295624\pi\)
\(264\) 0 0
\(265\) −1.44321 −0.0886554
\(266\) 0 0
\(267\) 0 0
\(268\) 5.19169 0.317133
\(269\) 25.3323 1.54454 0.772270 0.635294i \(-0.219121\pi\)
0.772270 + 0.635294i \(0.219121\pi\)
\(270\) 0 0
\(271\) 8.39164 0.509756 0.254878 0.966973i \(-0.417965\pi\)
0.254878 + 0.966973i \(0.417965\pi\)
\(272\) −25.8944 −1.57008
\(273\) 0 0
\(274\) 5.37450 0.324685
\(275\) −0.627806 −0.0378582
\(276\) 0 0
\(277\) −6.32575 −0.380077 −0.190039 0.981777i \(-0.560861\pi\)
−0.190039 + 0.981777i \(0.560861\pi\)
\(278\) −31.1922 −1.87078
\(279\) 0 0
\(280\) 0 0
\(281\) 16.6210 0.991527 0.495763 0.868458i \(-0.334888\pi\)
0.495763 + 0.868458i \(0.334888\pi\)
\(282\) 0 0
\(283\) 23.8495 1.41771 0.708853 0.705356i \(-0.249213\pi\)
0.708853 + 0.705356i \(0.249213\pi\)
\(284\) 10.3739 0.615580
\(285\) 0 0
\(286\) 0.288860 0.0170807
\(287\) 0 0
\(288\) 0 0
\(289\) 15.7083 0.924017
\(290\) 14.0762 0.826582
\(291\) 0 0
\(292\) 6.67282 0.390497
\(293\) 2.00305 0.117019 0.0585097 0.998287i \(-0.481365\pi\)
0.0585097 + 0.998287i \(0.481365\pi\)
\(294\) 0 0
\(295\) 7.58787 0.441783
\(296\) −1.84159 −0.107040
\(297\) 0 0
\(298\) 45.7119 2.64802
\(299\) −0.981965 −0.0567885
\(300\) 0 0
\(301\) 0 0
\(302\) 25.1235 1.44569
\(303\) 0 0
\(304\) −4.52769 −0.259681
\(305\) 6.27147 0.359103
\(306\) 0 0
\(307\) 7.55379 0.431118 0.215559 0.976491i \(-0.430843\pi\)
0.215559 + 0.976491i \(0.430843\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 6.75845 0.383854
\(311\) 14.1352 0.801531 0.400766 0.916181i \(-0.368744\pi\)
0.400766 + 0.916181i \(0.368744\pi\)
\(312\) 0 0
\(313\) 28.2914 1.59912 0.799561 0.600585i \(-0.205066\pi\)
0.799561 + 0.600585i \(0.205066\pi\)
\(314\) 29.9043 1.68760
\(315\) 0 0
\(316\) −23.9374 −1.34658
\(317\) −23.9013 −1.34243 −0.671215 0.741262i \(-0.734227\pi\)
−0.671215 + 0.741262i \(0.734227\pi\)
\(318\) 0 0
\(319\) −2.35850 −0.132051
\(320\) 10.7028 0.598304
\(321\) 0 0
\(322\) 0 0
\(323\) 5.71912 0.318220
\(324\) 0 0
\(325\) −0.226516 −0.0125649
\(326\) 10.1058 0.559710
\(327\) 0 0
\(328\) −4.13516 −0.228326
\(329\) 0 0
\(330\) 0 0
\(331\) −4.23381 −0.232711 −0.116356 0.993208i \(-0.537121\pi\)
−0.116356 + 0.993208i \(0.537121\pi\)
\(332\) 26.4495 1.45161
\(333\) 0 0
\(334\) −33.3836 −1.82667
\(335\) −6.17531 −0.337393
\(336\) 0 0
\(337\) −12.4792 −0.679784 −0.339892 0.940464i \(-0.610391\pi\)
−0.339892 + 0.940464i \(0.610391\pi\)
\(338\) −24.8586 −1.35213
\(339\) 0 0
\(340\) −19.3659 −1.05026
\(341\) −1.13240 −0.0613227
\(342\) 0 0
\(343\) 0 0
\(344\) −1.88084 −0.101408
\(345\) 0 0
\(346\) −10.8266 −0.582040
\(347\) 34.2362 1.83790 0.918949 0.394377i \(-0.129040\pi\)
0.918949 + 0.394377i \(0.129040\pi\)
\(348\) 0 0
\(349\) 2.57805 0.138000 0.0690000 0.997617i \(-0.478019\pi\)
0.0690000 + 0.997617i \(0.478019\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −4.83828 −0.257881
\(353\) −3.24044 −0.172471 −0.0862356 0.996275i \(-0.527484\pi\)
−0.0862356 + 0.996275i \(0.527484\pi\)
\(354\) 0 0
\(355\) −12.3394 −0.654908
\(356\) 14.2000 0.752596
\(357\) 0 0
\(358\) 21.4670 1.13457
\(359\) −11.3254 −0.597734 −0.298867 0.954295i \(-0.596609\pi\)
−0.298867 + 0.954295i \(0.596609\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) −18.5188 −0.973326
\(363\) 0 0
\(364\) 0 0
\(365\) −7.93706 −0.415445
\(366\) 0 0
\(367\) 20.2579 1.05745 0.528726 0.848792i \(-0.322670\pi\)
0.528726 + 0.848792i \(0.322670\pi\)
\(368\) 19.0839 0.994819
\(369\) 0 0
\(370\) −11.8174 −0.614359
\(371\) 0 0
\(372\) 0 0
\(373\) 33.9822 1.75953 0.879765 0.475408i \(-0.157700\pi\)
0.879765 + 0.475408i \(0.157700\pi\)
\(374\) 7.09107 0.366670
\(375\) 0 0
\(376\) −7.51487 −0.387550
\(377\) −0.850960 −0.0438267
\(378\) 0 0
\(379\) −20.2122 −1.03823 −0.519115 0.854704i \(-0.673738\pi\)
−0.519115 + 0.854704i \(0.673738\pi\)
\(380\) −3.38617 −0.173707
\(381\) 0 0
\(382\) −0.573898 −0.0293632
\(383\) 32.4978 1.66056 0.830279 0.557348i \(-0.188181\pi\)
0.830279 + 0.557348i \(0.188181\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −25.7501 −1.31065
\(387\) 0 0
\(388\) −26.4972 −1.34519
\(389\) 6.65953 0.337652 0.168826 0.985646i \(-0.446002\pi\)
0.168826 + 0.985646i \(0.446002\pi\)
\(390\) 0 0
\(391\) −24.1057 −1.21908
\(392\) 0 0
\(393\) 0 0
\(394\) −18.8304 −0.948661
\(395\) 28.4726 1.43261
\(396\) 0 0
\(397\) −27.3950 −1.37491 −0.687457 0.726225i \(-0.741273\pi\)
−0.687457 + 0.726225i \(0.741273\pi\)
\(398\) 28.7103 1.43911
\(399\) 0 0
\(400\) 4.40221 0.220111
\(401\) −11.5291 −0.575737 −0.287869 0.957670i \(-0.592947\pi\)
−0.287869 + 0.957670i \(0.592947\pi\)
\(402\) 0 0
\(403\) −0.408575 −0.0203526
\(404\) 30.5223 1.51854
\(405\) 0 0
\(406\) 0 0
\(407\) 1.98004 0.0981470
\(408\) 0 0
\(409\) 39.7423 1.96513 0.982565 0.185920i \(-0.0595264\pi\)
0.982565 + 0.185920i \(0.0595264\pi\)
\(410\) −26.5352 −1.31048
\(411\) 0 0
\(412\) 6.78866 0.334453
\(413\) 0 0
\(414\) 0 0
\(415\) −31.4607 −1.54434
\(416\) −1.74568 −0.0855889
\(417\) 0 0
\(418\) 1.23989 0.0606450
\(419\) −22.8335 −1.11549 −0.557744 0.830013i \(-0.688333\pi\)
−0.557744 + 0.830013i \(0.688333\pi\)
\(420\) 0 0
\(421\) 18.8016 0.916334 0.458167 0.888866i \(-0.348506\pi\)
0.458167 + 0.888866i \(0.348506\pi\)
\(422\) −12.5000 −0.608489
\(423\) 0 0
\(424\) −0.431867 −0.0209733
\(425\) −5.56062 −0.269730
\(426\) 0 0
\(427\) 0 0
\(428\) −26.0060 −1.25705
\(429\) 0 0
\(430\) −12.0693 −0.582031
\(431\) −26.7224 −1.28717 −0.643587 0.765373i \(-0.722555\pi\)
−0.643587 + 0.765373i \(0.722555\pi\)
\(432\) 0 0
\(433\) −20.7393 −0.996668 −0.498334 0.866985i \(-0.666055\pi\)
−0.498334 + 0.866985i \(0.666055\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 22.6315 1.08385
\(437\) −4.21494 −0.201628
\(438\) 0 0
\(439\) −28.9789 −1.38309 −0.691544 0.722334i \(-0.743069\pi\)
−0.691544 + 0.722334i \(0.743069\pi\)
\(440\) 0.778237 0.0371010
\(441\) 0 0
\(442\) 2.55850 0.121695
\(443\) 9.13936 0.434224 0.217112 0.976147i \(-0.430336\pi\)
0.217112 + 0.976147i \(0.430336\pi\)
\(444\) 0 0
\(445\) −16.8903 −0.800677
\(446\) 9.79529 0.463821
\(447\) 0 0
\(448\) 0 0
\(449\) −7.36398 −0.347528 −0.173764 0.984787i \(-0.555593\pi\)
−0.173764 + 0.984787i \(0.555593\pi\)
\(450\) 0 0
\(451\) 4.44604 0.209356
\(452\) 24.9750 1.17473
\(453\) 0 0
\(454\) −5.19419 −0.243775
\(455\) 0 0
\(456\) 0 0
\(457\) −18.8052 −0.879671 −0.439835 0.898078i \(-0.644963\pi\)
−0.439835 + 0.898078i \(0.644963\pi\)
\(458\) −4.90855 −0.229362
\(459\) 0 0
\(460\) 14.2725 0.665458
\(461\) −6.42512 −0.299248 −0.149624 0.988743i \(-0.547806\pi\)
−0.149624 + 0.988743i \(0.547806\pi\)
\(462\) 0 0
\(463\) 2.03434 0.0945439 0.0472720 0.998882i \(-0.484947\pi\)
0.0472720 + 0.998882i \(0.484947\pi\)
\(464\) 16.5379 0.767754
\(465\) 0 0
\(466\) 45.2580 2.09654
\(467\) −11.0506 −0.511362 −0.255681 0.966761i \(-0.582300\pi\)
−0.255681 + 0.966761i \(0.582300\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −48.2226 −2.22434
\(471\) 0 0
\(472\) 2.27061 0.104513
\(473\) 2.02224 0.0929825
\(474\) 0 0
\(475\) −0.972286 −0.0446115
\(476\) 0 0
\(477\) 0 0
\(478\) −37.9756 −1.73696
\(479\) −17.0714 −0.780011 −0.390006 0.920813i \(-0.627527\pi\)
−0.390006 + 0.920813i \(0.627527\pi\)
\(480\) 0 0
\(481\) 0.714410 0.0325743
\(482\) −17.5617 −0.799914
\(483\) 0 0
\(484\) −17.8563 −0.811648
\(485\) 31.5174 1.43113
\(486\) 0 0
\(487\) 5.59220 0.253407 0.126703 0.991941i \(-0.459560\pi\)
0.126703 + 0.991941i \(0.459560\pi\)
\(488\) 1.87668 0.0849535
\(489\) 0 0
\(490\) 0 0
\(491\) −30.2011 −1.36295 −0.681477 0.731839i \(-0.738662\pi\)
−0.681477 + 0.731839i \(0.738662\pi\)
\(492\) 0 0
\(493\) −20.8897 −0.940827
\(494\) 0.447359 0.0201276
\(495\) 0 0
\(496\) 7.94042 0.356535
\(497\) 0 0
\(498\) 0 0
\(499\) −0.903338 −0.0404390 −0.0202195 0.999796i \(-0.506436\pi\)
−0.0202195 + 0.999796i \(0.506436\pi\)
\(500\) 20.2232 0.904407
\(501\) 0 0
\(502\) −16.3936 −0.731684
\(503\) 0.668202 0.0297937 0.0148968 0.999889i \(-0.495258\pi\)
0.0148968 + 0.999889i \(0.495258\pi\)
\(504\) 0 0
\(505\) −36.3051 −1.61556
\(506\) −5.22606 −0.232327
\(507\) 0 0
\(508\) 30.3096 1.34477
\(509\) −7.41600 −0.328708 −0.164354 0.986401i \(-0.552554\pi\)
−0.164354 + 0.986401i \(0.552554\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 28.4880 1.25900
\(513\) 0 0
\(514\) −1.01604 −0.0448158
\(515\) −8.07485 −0.355821
\(516\) 0 0
\(517\) 8.07983 0.355350
\(518\) 0 0
\(519\) 0 0
\(520\) 0.280792 0.0123136
\(521\) 39.6778 1.73832 0.869159 0.494533i \(-0.164661\pi\)
0.869159 + 0.494533i \(0.164661\pi\)
\(522\) 0 0
\(523\) −31.7681 −1.38912 −0.694562 0.719433i \(-0.744402\pi\)
−0.694562 + 0.719433i \(0.744402\pi\)
\(524\) 17.2407 0.753165
\(525\) 0 0
\(526\) 37.2974 1.62625
\(527\) −10.0299 −0.436908
\(528\) 0 0
\(529\) −5.23430 −0.227578
\(530\) −2.77127 −0.120376
\(531\) 0 0
\(532\) 0 0
\(533\) 1.60415 0.0694836
\(534\) 0 0
\(535\) 30.9332 1.33736
\(536\) −1.84791 −0.0798176
\(537\) 0 0
\(538\) 48.6437 2.09718
\(539\) 0 0
\(540\) 0 0
\(541\) 34.2022 1.47047 0.735233 0.677815i \(-0.237073\pi\)
0.735233 + 0.677815i \(0.237073\pi\)
\(542\) 16.1138 0.692147
\(543\) 0 0
\(544\) −42.8537 −1.83734
\(545\) −26.9193 −1.15310
\(546\) 0 0
\(547\) −8.74798 −0.374037 −0.187018 0.982356i \(-0.559882\pi\)
−0.187018 + 0.982356i \(0.559882\pi\)
\(548\) 4.72243 0.201732
\(549\) 0 0
\(550\) −1.20553 −0.0514038
\(551\) −3.65262 −0.155607
\(552\) 0 0
\(553\) 0 0
\(554\) −12.1468 −0.516069
\(555\) 0 0
\(556\) −27.4077 −1.16235
\(557\) −24.2097 −1.02580 −0.512899 0.858449i \(-0.671429\pi\)
−0.512899 + 0.858449i \(0.671429\pi\)
\(558\) 0 0
\(559\) 0.729634 0.0308602
\(560\) 0 0
\(561\) 0 0
\(562\) 31.9160 1.34630
\(563\) −23.5382 −0.992017 −0.496009 0.868318i \(-0.665202\pi\)
−0.496009 + 0.868318i \(0.665202\pi\)
\(564\) 0 0
\(565\) −29.7068 −1.24977
\(566\) 45.7963 1.92496
\(567\) 0 0
\(568\) −3.69246 −0.154932
\(569\) −40.8720 −1.71344 −0.856721 0.515780i \(-0.827502\pi\)
−0.856721 + 0.515780i \(0.827502\pi\)
\(570\) 0 0
\(571\) −8.95010 −0.374550 −0.187275 0.982308i \(-0.559966\pi\)
−0.187275 + 0.982308i \(0.559966\pi\)
\(572\) 0.253814 0.0106125
\(573\) 0 0
\(574\) 0 0
\(575\) 4.09813 0.170904
\(576\) 0 0
\(577\) −10.9327 −0.455133 −0.227566 0.973763i \(-0.573077\pi\)
−0.227566 + 0.973763i \(0.573077\pi\)
\(578\) 30.1634 1.25463
\(579\) 0 0
\(580\) 12.3684 0.513569
\(581\) 0 0
\(582\) 0 0
\(583\) 0.464334 0.0192307
\(584\) −2.37510 −0.0982822
\(585\) 0 0
\(586\) 3.84630 0.158889
\(587\) −37.5213 −1.54867 −0.774335 0.632775i \(-0.781916\pi\)
−0.774335 + 0.632775i \(0.781916\pi\)
\(588\) 0 0
\(589\) −1.75375 −0.0722618
\(590\) 14.5704 0.599853
\(591\) 0 0
\(592\) −13.8842 −0.570635
\(593\) 12.1249 0.497909 0.248955 0.968515i \(-0.419913\pi\)
0.248955 + 0.968515i \(0.419913\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 40.1658 1.64526
\(597\) 0 0
\(598\) −1.88559 −0.0771075
\(599\) −21.8083 −0.891061 −0.445531 0.895267i \(-0.646985\pi\)
−0.445531 + 0.895267i \(0.646985\pi\)
\(600\) 0 0
\(601\) 18.1878 0.741895 0.370947 0.928654i \(-0.379033\pi\)
0.370947 + 0.928654i \(0.379033\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 22.0754 0.898234
\(605\) 21.2393 0.863502
\(606\) 0 0
\(607\) 27.4341 1.11351 0.556757 0.830675i \(-0.312045\pi\)
0.556757 + 0.830675i \(0.312045\pi\)
\(608\) −7.49306 −0.303884
\(609\) 0 0
\(610\) 12.0426 0.487591
\(611\) 2.91525 0.117938
\(612\) 0 0
\(613\) 24.8456 1.00350 0.501752 0.865011i \(-0.332689\pi\)
0.501752 + 0.865011i \(0.332689\pi\)
\(614\) 14.5049 0.585372
\(615\) 0 0
\(616\) 0 0
\(617\) −22.9991 −0.925909 −0.462955 0.886382i \(-0.653211\pi\)
−0.462955 + 0.886382i \(0.653211\pi\)
\(618\) 0 0
\(619\) 1.64294 0.0660353 0.0330176 0.999455i \(-0.489488\pi\)
0.0330176 + 0.999455i \(0.489488\pi\)
\(620\) 5.93848 0.238495
\(621\) 0 0
\(622\) 27.1426 1.08832
\(623\) 0 0
\(624\) 0 0
\(625\) −19.1932 −0.767729
\(626\) 54.3256 2.17129
\(627\) 0 0
\(628\) 26.2762 1.04853
\(629\) 17.5377 0.699272
\(630\) 0 0
\(631\) −5.63823 −0.224455 −0.112227 0.993683i \(-0.535798\pi\)
−0.112227 + 0.993683i \(0.535798\pi\)
\(632\) 8.52017 0.338914
\(633\) 0 0
\(634\) −45.8958 −1.82275
\(635\) −36.0521 −1.43068
\(636\) 0 0
\(637\) 0 0
\(638\) −4.52884 −0.179299
\(639\) 0 0
\(640\) −9.52418 −0.376476
\(641\) −34.9878 −1.38194 −0.690968 0.722885i \(-0.742815\pi\)
−0.690968 + 0.722885i \(0.742815\pi\)
\(642\) 0 0
\(643\) 9.93598 0.391837 0.195918 0.980620i \(-0.437231\pi\)
0.195918 + 0.980620i \(0.437231\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 10.9820 0.432080
\(647\) −0.220703 −0.00867674 −0.00433837 0.999991i \(-0.501381\pi\)
−0.00433837 + 0.999991i \(0.501381\pi\)
\(648\) 0 0
\(649\) −2.44131 −0.0958297
\(650\) −0.434961 −0.0170606
\(651\) 0 0
\(652\) 8.87973 0.347757
\(653\) −26.3684 −1.03188 −0.515938 0.856626i \(-0.672556\pi\)
−0.515938 + 0.856626i \(0.672556\pi\)
\(654\) 0 0
\(655\) −20.5072 −0.801282
\(656\) −31.1758 −1.21721
\(657\) 0 0
\(658\) 0 0
\(659\) 19.0242 0.741079 0.370540 0.928817i \(-0.379173\pi\)
0.370540 + 0.928817i \(0.379173\pi\)
\(660\) 0 0
\(661\) −33.1950 −1.29114 −0.645568 0.763703i \(-0.723379\pi\)
−0.645568 + 0.763703i \(0.723379\pi\)
\(662\) −8.12985 −0.315976
\(663\) 0 0
\(664\) −9.41434 −0.365347
\(665\) 0 0
\(666\) 0 0
\(667\) 15.3956 0.596118
\(668\) −29.3333 −1.13494
\(669\) 0 0
\(670\) −11.8580 −0.458113
\(671\) −2.01777 −0.0778952
\(672\) 0 0
\(673\) −31.3013 −1.20658 −0.603289 0.797523i \(-0.706143\pi\)
−0.603289 + 0.797523i \(0.706143\pi\)
\(674\) −23.9628 −0.923012
\(675\) 0 0
\(676\) −21.8426 −0.840102
\(677\) −12.0271 −0.462240 −0.231120 0.972925i \(-0.574239\pi\)
−0.231120 + 0.972925i \(0.574239\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 6.89301 0.264335
\(681\) 0 0
\(682\) −2.17445 −0.0832640
\(683\) 7.00387 0.267995 0.133998 0.990982i \(-0.457219\pi\)
0.133998 + 0.990982i \(0.457219\pi\)
\(684\) 0 0
\(685\) −5.61715 −0.214620
\(686\) 0 0
\(687\) 0 0
\(688\) −14.1800 −0.540608
\(689\) 0.167534 0.00638255
\(690\) 0 0
\(691\) −38.5256 −1.46558 −0.732792 0.680453i \(-0.761783\pi\)
−0.732792 + 0.680453i \(0.761783\pi\)
\(692\) −9.51302 −0.361631
\(693\) 0 0
\(694\) 65.7411 2.49550
\(695\) 32.6004 1.23661
\(696\) 0 0
\(697\) 39.3795 1.49160
\(698\) 4.95043 0.187377
\(699\) 0 0
\(700\) 0 0
\(701\) 32.9668 1.24514 0.622569 0.782565i \(-0.286089\pi\)
0.622569 + 0.782565i \(0.286089\pi\)
\(702\) 0 0
\(703\) 3.06650 0.115655
\(704\) −3.44349 −0.129782
\(705\) 0 0
\(706\) −6.22236 −0.234182
\(707\) 0 0
\(708\) 0 0
\(709\) 32.2564 1.21142 0.605708 0.795687i \(-0.292890\pi\)
0.605708 + 0.795687i \(0.292890\pi\)
\(710\) −23.6944 −0.889234
\(711\) 0 0
\(712\) −5.05428 −0.189417
\(713\) 7.39193 0.276830
\(714\) 0 0
\(715\) −0.301902 −0.0112905
\(716\) 18.8625 0.704926
\(717\) 0 0
\(718\) −21.7473 −0.811603
\(719\) −37.9595 −1.41565 −0.707825 0.706387i \(-0.750324\pi\)
−0.707825 + 0.706387i \(0.750324\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 1.92022 0.0714632
\(723\) 0 0
\(724\) −16.2720 −0.604743
\(725\) 3.55139 0.131895
\(726\) 0 0
\(727\) −5.40908 −0.200612 −0.100306 0.994957i \(-0.531982\pi\)
−0.100306 + 0.994957i \(0.531982\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −15.2409 −0.564091
\(731\) 17.9114 0.662476
\(732\) 0 0
\(733\) 40.3312 1.48967 0.744833 0.667251i \(-0.232529\pi\)
0.744833 + 0.667251i \(0.232529\pi\)
\(734\) 38.8996 1.43581
\(735\) 0 0
\(736\) 31.5828 1.16416
\(737\) 1.98683 0.0731860
\(738\) 0 0
\(739\) −17.8947 −0.658268 −0.329134 0.944283i \(-0.606757\pi\)
−0.329134 + 0.944283i \(0.606757\pi\)
\(740\) −10.3837 −0.381711
\(741\) 0 0
\(742\) 0 0
\(743\) 0.0581426 0.00213305 0.00106652 0.999999i \(-0.499661\pi\)
0.00106652 + 0.999999i \(0.499661\pi\)
\(744\) 0 0
\(745\) −47.7757 −1.75037
\(746\) 65.2533 2.38909
\(747\) 0 0
\(748\) 6.23074 0.227818
\(749\) 0 0
\(750\) 0 0
\(751\) −46.2886 −1.68909 −0.844547 0.535482i \(-0.820130\pi\)
−0.844547 + 0.535482i \(0.820130\pi\)
\(752\) −56.6561 −2.06604
\(753\) 0 0
\(754\) −1.63403 −0.0595079
\(755\) −26.2578 −0.955619
\(756\) 0 0
\(757\) 28.3733 1.03125 0.515623 0.856815i \(-0.327560\pi\)
0.515623 + 0.856815i \(0.327560\pi\)
\(758\) −38.8118 −1.40971
\(759\) 0 0
\(760\) 1.20526 0.0437193
\(761\) −39.2965 −1.42450 −0.712249 0.701927i \(-0.752323\pi\)
−0.712249 + 0.701927i \(0.752323\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −0.504270 −0.0182438
\(765\) 0 0
\(766\) 62.4029 2.25471
\(767\) −0.880837 −0.0318052
\(768\) 0 0
\(769\) −41.1096 −1.48245 −0.741225 0.671256i \(-0.765755\pi\)
−0.741225 + 0.671256i \(0.765755\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −22.6259 −0.814325
\(773\) 44.3906 1.59662 0.798309 0.602248i \(-0.205728\pi\)
0.798309 + 0.602248i \(0.205728\pi\)
\(774\) 0 0
\(775\) 1.70514 0.0612505
\(776\) 9.43132 0.338564
\(777\) 0 0
\(778\) 12.7878 0.458464
\(779\) 6.88559 0.246702
\(780\) 0 0
\(781\) 3.97006 0.142060
\(782\) −46.2883 −1.65527
\(783\) 0 0
\(784\) 0 0
\(785\) −31.2545 −1.11552
\(786\) 0 0
\(787\) −39.4575 −1.40651 −0.703254 0.710939i \(-0.748270\pi\)
−0.703254 + 0.710939i \(0.748270\pi\)
\(788\) −16.5458 −0.589419
\(789\) 0 0
\(790\) 54.6736 1.94520
\(791\) 0 0
\(792\) 0 0
\(793\) −0.728023 −0.0258528
\(794\) −52.6044 −1.86686
\(795\) 0 0
\(796\) 25.2270 0.894146
\(797\) −23.3858 −0.828369 −0.414184 0.910193i \(-0.635933\pi\)
−0.414184 + 0.910193i \(0.635933\pi\)
\(798\) 0 0
\(799\) 71.5648 2.53178
\(800\) 7.28540 0.257578
\(801\) 0 0
\(802\) −22.1385 −0.781737
\(803\) 2.55365 0.0901164
\(804\) 0 0
\(805\) 0 0
\(806\) −0.784554 −0.0276347
\(807\) 0 0
\(808\) −10.8640 −0.382194
\(809\) 12.5745 0.442094 0.221047 0.975263i \(-0.429053\pi\)
0.221047 + 0.975263i \(0.429053\pi\)
\(810\) 0 0
\(811\) −7.91138 −0.277806 −0.138903 0.990306i \(-0.544358\pi\)
−0.138903 + 0.990306i \(0.544358\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 3.80212 0.133264
\(815\) −10.5621 −0.369974
\(816\) 0 0
\(817\) 3.13184 0.109569
\(818\) 76.3140 2.66826
\(819\) 0 0
\(820\) −23.3158 −0.814221
\(821\) −31.2830 −1.09178 −0.545892 0.837855i \(-0.683809\pi\)
−0.545892 + 0.837855i \(0.683809\pi\)
\(822\) 0 0
\(823\) −6.04702 −0.210786 −0.105393 0.994431i \(-0.533610\pi\)
−0.105393 + 0.994431i \(0.533610\pi\)
\(824\) −2.41633 −0.0841769
\(825\) 0 0
\(826\) 0 0
\(827\) 30.6559 1.06601 0.533005 0.846112i \(-0.321063\pi\)
0.533005 + 0.846112i \(0.321063\pi\)
\(828\) 0 0
\(829\) 42.1300 1.46324 0.731618 0.681715i \(-0.238765\pi\)
0.731618 + 0.681715i \(0.238765\pi\)
\(830\) −60.4115 −2.09691
\(831\) 0 0
\(832\) −1.24243 −0.0430736
\(833\) 0 0
\(834\) 0 0
\(835\) 34.8908 1.20745
\(836\) 1.08946 0.0376797
\(837\) 0 0
\(838\) −43.8453 −1.51461
\(839\) −14.4798 −0.499897 −0.249949 0.968259i \(-0.580414\pi\)
−0.249949 + 0.968259i \(0.580414\pi\)
\(840\) 0 0
\(841\) −15.6584 −0.539944
\(842\) 36.1032 1.24420
\(843\) 0 0
\(844\) −10.9834 −0.378064
\(845\) 25.9810 0.893773
\(846\) 0 0
\(847\) 0 0
\(848\) −3.25593 −0.111809
\(849\) 0 0
\(850\) −10.6776 −0.366239
\(851\) −12.9251 −0.443067
\(852\) 0 0
\(853\) 31.7188 1.08603 0.543016 0.839722i \(-0.317282\pi\)
0.543016 + 0.839722i \(0.317282\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 9.25648 0.316380
\(857\) −33.3132 −1.13796 −0.568978 0.822353i \(-0.692661\pi\)
−0.568978 + 0.822353i \(0.692661\pi\)
\(858\) 0 0
\(859\) −5.57339 −0.190162 −0.0950808 0.995470i \(-0.530311\pi\)
−0.0950808 + 0.995470i \(0.530311\pi\)
\(860\) −10.6049 −0.361626
\(861\) 0 0
\(862\) −51.3130 −1.74773
\(863\) 30.8841 1.05131 0.525654 0.850699i \(-0.323821\pi\)
0.525654 + 0.850699i \(0.323821\pi\)
\(864\) 0 0
\(865\) 11.3154 0.384734
\(866\) −39.8241 −1.35328
\(867\) 0 0
\(868\) 0 0
\(869\) −9.16071 −0.310756
\(870\) 0 0
\(871\) 0.716861 0.0242899
\(872\) −8.05538 −0.272790
\(873\) 0 0
\(874\) −8.09361 −0.273771
\(875\) 0 0
\(876\) 0 0
\(877\) 8.83319 0.298276 0.149138 0.988816i \(-0.452350\pi\)
0.149138 + 0.988816i \(0.452350\pi\)
\(878\) −55.6459 −1.87796
\(879\) 0 0
\(880\) 5.86729 0.197786
\(881\) 36.3004 1.22299 0.611496 0.791247i \(-0.290568\pi\)
0.611496 + 0.791247i \(0.290568\pi\)
\(882\) 0 0
\(883\) 39.9694 1.34508 0.672539 0.740062i \(-0.265204\pi\)
0.672539 + 0.740062i \(0.265204\pi\)
\(884\) 2.24809 0.0756113
\(885\) 0 0
\(886\) 17.5496 0.589590
\(887\) 3.13202 0.105163 0.0525814 0.998617i \(-0.483255\pi\)
0.0525814 + 0.998617i \(0.483255\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −32.4331 −1.08716
\(891\) 0 0
\(892\) 8.60687 0.288179
\(893\) 12.5133 0.418740
\(894\) 0 0
\(895\) −22.4363 −0.749961
\(896\) 0 0
\(897\) 0 0
\(898\) −14.1405 −0.471873
\(899\) 6.40576 0.213644
\(900\) 0 0
\(901\) 4.11271 0.137014
\(902\) 8.53737 0.284263
\(903\) 0 0
\(904\) −8.88950 −0.295661
\(905\) 19.3549 0.643378
\(906\) 0 0
\(907\) 10.5535 0.350424 0.175212 0.984531i \(-0.443939\pi\)
0.175212 + 0.984531i \(0.443939\pi\)
\(908\) −4.56400 −0.151462
\(909\) 0 0
\(910\) 0 0
\(911\) 20.6476 0.684087 0.342043 0.939684i \(-0.388881\pi\)
0.342043 + 0.939684i \(0.388881\pi\)
\(912\) 0 0
\(913\) 10.1221 0.334993
\(914\) −36.1102 −1.19442
\(915\) 0 0
\(916\) −4.31302 −0.142506
\(917\) 0 0
\(918\) 0 0
\(919\) 29.5158 0.973638 0.486819 0.873503i \(-0.338157\pi\)
0.486819 + 0.873503i \(0.338157\pi\)
\(920\) −5.08009 −0.167486
\(921\) 0 0
\(922\) −12.3377 −0.406319
\(923\) 1.43242 0.0471486
\(924\) 0 0
\(925\) −2.98151 −0.0980316
\(926\) 3.90639 0.128372
\(927\) 0 0
\(928\) 27.3693 0.898441
\(929\) −1.17531 −0.0385608 −0.0192804 0.999814i \(-0.506138\pi\)
−0.0192804 + 0.999814i \(0.506138\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 39.7671 1.30261
\(933\) 0 0
\(934\) −21.2196 −0.694328
\(935\) −7.41122 −0.242373
\(936\) 0 0
\(937\) −6.87262 −0.224519 −0.112259 0.993679i \(-0.535809\pi\)
−0.112259 + 0.993679i \(0.535809\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −42.3720 −1.38202
\(941\) −28.0438 −0.914202 −0.457101 0.889415i \(-0.651112\pi\)
−0.457101 + 0.889415i \(0.651112\pi\)
\(942\) 0 0
\(943\) −29.0223 −0.945097
\(944\) 17.1186 0.557162
\(945\) 0 0
\(946\) 3.88314 0.126252
\(947\) 9.09378 0.295508 0.147754 0.989024i \(-0.452796\pi\)
0.147754 + 0.989024i \(0.452796\pi\)
\(948\) 0 0
\(949\) 0.921372 0.0299090
\(950\) −1.86700 −0.0605736
\(951\) 0 0
\(952\) 0 0
\(953\) −7.70805 −0.249688 −0.124844 0.992176i \(-0.539843\pi\)
−0.124844 + 0.992176i \(0.539843\pi\)
\(954\) 0 0
\(955\) 0.599809 0.0194094
\(956\) −33.3681 −1.07920
\(957\) 0 0
\(958\) −32.7808 −1.05910
\(959\) 0 0
\(960\) 0 0
\(961\) −27.9244 −0.900786
\(962\) 1.37183 0.0442294
\(963\) 0 0
\(964\) −15.4310 −0.497000
\(965\) 26.9127 0.866350
\(966\) 0 0
\(967\) −16.2862 −0.523729 −0.261864 0.965105i \(-0.584337\pi\)
−0.261864 + 0.965105i \(0.584337\pi\)
\(968\) 6.35569 0.204280
\(969\) 0 0
\(970\) 60.5204 1.94319
\(971\) 15.2756 0.490218 0.245109 0.969496i \(-0.421176\pi\)
0.245109 + 0.969496i \(0.421176\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 10.7383 0.344076
\(975\) 0 0
\(976\) 14.1487 0.452889
\(977\) −51.3383 −1.64246 −0.821229 0.570598i \(-0.806711\pi\)
−0.821229 + 0.570598i \(0.806711\pi\)
\(978\) 0 0
\(979\) 5.43425 0.173679
\(980\) 0 0
\(981\) 0 0
\(982\) −57.9927 −1.85062
\(983\) 26.2107 0.835993 0.417996 0.908449i \(-0.362732\pi\)
0.417996 + 0.908449i \(0.362732\pi\)
\(984\) 0 0
\(985\) 19.6806 0.627075
\(986\) −40.1129 −1.27746
\(987\) 0 0
\(988\) 0.393083 0.0125056
\(989\) −13.2005 −0.419752
\(990\) 0 0
\(991\) 27.9607 0.888201 0.444101 0.895977i \(-0.353523\pi\)
0.444101 + 0.895977i \(0.353523\pi\)
\(992\) 13.1409 0.417225
\(993\) 0 0
\(994\) 0 0
\(995\) −30.0065 −0.951270
\(996\) 0 0
\(997\) −26.4041 −0.836226 −0.418113 0.908395i \(-0.637308\pi\)
−0.418113 + 0.908395i \(0.637308\pi\)
\(998\) −1.73461 −0.0549081
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8379.2.a.bv.1.4 4
3.2 odd 2 931.2.a.l.1.1 4
7.6 odd 2 8379.2.a.bu.1.4 4
21.2 odd 6 931.2.f.o.704.4 8
21.5 even 6 931.2.f.n.704.4 8
21.11 odd 6 931.2.f.o.324.4 8
21.17 even 6 931.2.f.n.324.4 8
21.20 even 2 931.2.a.m.1.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
931.2.a.l.1.1 4 3.2 odd 2
931.2.a.m.1.1 yes 4 21.20 even 2
931.2.f.n.324.4 8 21.17 even 6
931.2.f.n.704.4 8 21.5 even 6
931.2.f.o.324.4 8 21.11 odd 6
931.2.f.o.704.4 8 21.2 odd 6
8379.2.a.bu.1.4 4 7.6 odd 2
8379.2.a.bv.1.4 4 1.1 even 1 trivial