Properties

Label 8379.2.a.bv.1.3
Level $8379$
Weight $2$
Character 8379.1
Self dual yes
Analytic conductor $66.907$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8379,2,Mod(1,8379)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8379.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8379, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8379 = 3^{2} \cdot 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8379.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,2,8,0,0,-6,0,-10,6,0,-2,0,0,2,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.9066518536\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.5744.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 5x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 931)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.751024\) of defining polynomial
Character \(\chi\) \(=\) 8379.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.751024 q^{2} -1.43596 q^{4} +4.26543 q^{5} -2.58049 q^{8} +3.20344 q^{10} -4.09899 q^{11} +2.18699 q^{13} +0.933914 q^{16} +0.590042 q^{17} +1.00000 q^{19} -6.12500 q^{20} -3.07844 q^{22} +4.36988 q^{23} +13.1939 q^{25} +1.64248 q^{26} +7.36442 q^{29} -4.51850 q^{31} +5.86237 q^{32} +0.443136 q^{34} +8.95446 q^{37} +0.751024 q^{38} -11.0069 q^{40} -2.17744 q^{41} -8.69594 q^{43} +5.88600 q^{44} +3.28188 q^{46} -11.8333 q^{47} +9.90893 q^{50} -3.14043 q^{52} -4.40996 q^{53} -17.4840 q^{55} +5.53086 q^{58} +10.7178 q^{59} +2.43051 q^{61} -3.39350 q^{62} +2.53496 q^{64} +9.32844 q^{65} -5.65348 q^{67} -0.847279 q^{68} -8.32434 q^{71} +10.6795 q^{73} +6.72502 q^{74} -1.43596 q^{76} +8.56377 q^{79} +3.98355 q^{80} -1.63531 q^{82} -4.25826 q^{83} +2.51678 q^{85} -6.53086 q^{86} +10.5774 q^{88} +3.79110 q^{89} -6.27498 q^{92} -8.88709 q^{94} +4.26543 q^{95} -2.11026 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{4} + 8 q^{5} - 6 q^{8} - 10 q^{10} + 6 q^{11} - 2 q^{13} + 2 q^{16} + 8 q^{17} + 4 q^{19} - 14 q^{22} + 8 q^{23} + 20 q^{25} + 16 q^{26} - 2 q^{29} - 2 q^{32} + 22 q^{34} + 10 q^{37} - 22 q^{40}+ \cdots - 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.751024 0.531054 0.265527 0.964103i \(-0.414454\pi\)
0.265527 + 0.964103i \(0.414454\pi\)
\(3\) 0 0
\(4\) −1.43596 −0.717981
\(5\) 4.26543 1.90756 0.953779 0.300509i \(-0.0971565\pi\)
0.953779 + 0.300509i \(0.0971565\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −2.58049 −0.912341
\(9\) 0 0
\(10\) 3.20344 1.01302
\(11\) −4.09899 −1.23589 −0.617946 0.786220i \(-0.712035\pi\)
−0.617946 + 0.786220i \(0.712035\pi\)
\(12\) 0 0
\(13\) 2.18699 0.606561 0.303281 0.952901i \(-0.401918\pi\)
0.303281 + 0.952901i \(0.401918\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0.933914 0.233479
\(17\) 0.590042 0.143106 0.0715531 0.997437i \(-0.477204\pi\)
0.0715531 + 0.997437i \(0.477204\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) −6.12500 −1.36959
\(21\) 0 0
\(22\) −3.07844 −0.656326
\(23\) 4.36988 0.911182 0.455591 0.890189i \(-0.349428\pi\)
0.455591 + 0.890189i \(0.349428\pi\)
\(24\) 0 0
\(25\) 13.1939 2.63878
\(26\) 1.64248 0.322117
\(27\) 0 0
\(28\) 0 0
\(29\) 7.36442 1.36754 0.683769 0.729698i \(-0.260339\pi\)
0.683769 + 0.729698i \(0.260339\pi\)
\(30\) 0 0
\(31\) −4.51850 −0.811547 −0.405773 0.913974i \(-0.632998\pi\)
−0.405773 + 0.913974i \(0.632998\pi\)
\(32\) 5.86237 1.03633
\(33\) 0 0
\(34\) 0.443136 0.0759972
\(35\) 0 0
\(36\) 0 0
\(37\) 8.95446 1.47210 0.736052 0.676924i \(-0.236688\pi\)
0.736052 + 0.676924i \(0.236688\pi\)
\(38\) 0.751024 0.121832
\(39\) 0 0
\(40\) −11.0069 −1.74034
\(41\) −2.17744 −0.340058 −0.170029 0.985439i \(-0.554386\pi\)
−0.170029 + 0.985439i \(0.554386\pi\)
\(42\) 0 0
\(43\) −8.69594 −1.32612 −0.663059 0.748567i \(-0.730742\pi\)
−0.663059 + 0.748567i \(0.730742\pi\)
\(44\) 5.88600 0.887348
\(45\) 0 0
\(46\) 3.28188 0.483887
\(47\) −11.8333 −1.72606 −0.863032 0.505150i \(-0.831437\pi\)
−0.863032 + 0.505150i \(0.831437\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 9.90893 1.40133
\(51\) 0 0
\(52\) −3.14043 −0.435500
\(53\) −4.40996 −0.605754 −0.302877 0.953030i \(-0.597947\pi\)
−0.302877 + 0.953030i \(0.597947\pi\)
\(54\) 0 0
\(55\) −17.4840 −2.35754
\(56\) 0 0
\(57\) 0 0
\(58\) 5.53086 0.726237
\(59\) 10.7178 1.39534 0.697672 0.716417i \(-0.254219\pi\)
0.697672 + 0.716417i \(0.254219\pi\)
\(60\) 0 0
\(61\) 2.43051 0.311195 0.155597 0.987821i \(-0.450270\pi\)
0.155597 + 0.987821i \(0.450270\pi\)
\(62\) −3.39350 −0.430975
\(63\) 0 0
\(64\) 2.53496 0.316869
\(65\) 9.32844 1.15705
\(66\) 0 0
\(67\) −5.65348 −0.690682 −0.345341 0.938477i \(-0.612237\pi\)
−0.345341 + 0.938477i \(0.612237\pi\)
\(68\) −0.847279 −0.102748
\(69\) 0 0
\(70\) 0 0
\(71\) −8.32434 −0.987918 −0.493959 0.869485i \(-0.664451\pi\)
−0.493959 + 0.869485i \(0.664451\pi\)
\(72\) 0 0
\(73\) 10.6795 1.24994 0.624970 0.780649i \(-0.285111\pi\)
0.624970 + 0.780649i \(0.285111\pi\)
\(74\) 6.72502 0.781768
\(75\) 0 0
\(76\) −1.43596 −0.164716
\(77\) 0 0
\(78\) 0 0
\(79\) 8.56377 0.963499 0.481750 0.876309i \(-0.340002\pi\)
0.481750 + 0.876309i \(0.340002\pi\)
\(80\) 3.98355 0.445374
\(81\) 0 0
\(82\) −1.63531 −0.180589
\(83\) −4.25826 −0.467404 −0.233702 0.972308i \(-0.575084\pi\)
−0.233702 + 0.972308i \(0.575084\pi\)
\(84\) 0 0
\(85\) 2.51678 0.272983
\(86\) −6.53086 −0.704241
\(87\) 0 0
\(88\) 10.5774 1.12756
\(89\) 3.79110 0.401856 0.200928 0.979606i \(-0.435604\pi\)
0.200928 + 0.979606i \(0.435604\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −6.27498 −0.654212
\(93\) 0 0
\(94\) −8.88709 −0.916633
\(95\) 4.26543 0.437624
\(96\) 0 0
\(97\) −2.11026 −0.214265 −0.107132 0.994245i \(-0.534167\pi\)
−0.107132 + 0.994245i \(0.534167\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −18.9459 −1.89459
\(101\) 15.0606 1.49859 0.749294 0.662237i \(-0.230393\pi\)
0.749294 + 0.662237i \(0.230393\pi\)
\(102\) 0 0
\(103\) −4.89383 −0.482204 −0.241102 0.970500i \(-0.577509\pi\)
−0.241102 + 0.970500i \(0.577509\pi\)
\(104\) −5.64350 −0.553391
\(105\) 0 0
\(106\) −3.31198 −0.321688
\(107\) −0.888650 −0.0859090 −0.0429545 0.999077i \(-0.513677\pi\)
−0.0429545 + 0.999077i \(0.513677\pi\)
\(108\) 0 0
\(109\) −1.11135 −0.106448 −0.0532240 0.998583i \(-0.516950\pi\)
−0.0532240 + 0.998583i \(0.516950\pi\)
\(110\) −13.1309 −1.25198
\(111\) 0 0
\(112\) 0 0
\(113\) 12.9161 1.21504 0.607522 0.794303i \(-0.292164\pi\)
0.607522 + 0.794303i \(0.292164\pi\)
\(114\) 0 0
\(115\) 18.6394 1.73813
\(116\) −10.5750 −0.981867
\(117\) 0 0
\(118\) 8.04936 0.741004
\(119\) 0 0
\(120\) 0 0
\(121\) 5.80174 0.527431
\(122\) 1.82537 0.165261
\(123\) 0 0
\(124\) 6.48840 0.582676
\(125\) 34.9505 3.12606
\(126\) 0 0
\(127\) −3.11373 −0.276299 −0.138149 0.990411i \(-0.544115\pi\)
−0.138149 + 0.990411i \(0.544115\pi\)
\(128\) −9.82094 −0.868056
\(129\) 0 0
\(130\) 7.00588 0.614457
\(131\) 3.70721 0.323900 0.161950 0.986799i \(-0.448222\pi\)
0.161950 + 0.986799i \(0.448222\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −4.24590 −0.366790
\(135\) 0 0
\(136\) −1.52260 −0.130562
\(137\) −1.16098 −0.0991894 −0.0495947 0.998769i \(-0.515793\pi\)
−0.0495947 + 0.998769i \(0.515793\pi\)
\(138\) 0 0
\(139\) 4.24633 0.360169 0.180084 0.983651i \(-0.442363\pi\)
0.180084 + 0.983651i \(0.442363\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −6.25178 −0.524638
\(143\) −8.96444 −0.749644
\(144\) 0 0
\(145\) 31.4124 2.60866
\(146\) 8.02055 0.663785
\(147\) 0 0
\(148\) −12.8583 −1.05694
\(149\) 23.9932 1.96560 0.982799 0.184677i \(-0.0591239\pi\)
0.982799 + 0.184677i \(0.0591239\pi\)
\(150\) 0 0
\(151\) 8.50069 0.691776 0.345888 0.938276i \(-0.387578\pi\)
0.345888 + 0.938276i \(0.387578\pi\)
\(152\) −2.58049 −0.209305
\(153\) 0 0
\(154\) 0 0
\(155\) −19.2734 −1.54807
\(156\) 0 0
\(157\) −4.43877 −0.354252 −0.177126 0.984188i \(-0.556680\pi\)
−0.177126 + 0.984188i \(0.556680\pi\)
\(158\) 6.43160 0.511670
\(159\) 0 0
\(160\) 25.0055 1.97686
\(161\) 0 0
\(162\) 0 0
\(163\) −0.146906 −0.0115066 −0.00575329 0.999983i \(-0.501831\pi\)
−0.00575329 + 0.999983i \(0.501831\pi\)
\(164\) 3.12672 0.244156
\(165\) 0 0
\(166\) −3.19805 −0.248217
\(167\) 0.885641 0.0685329 0.0342665 0.999413i \(-0.489091\pi\)
0.0342665 + 0.999413i \(0.489091\pi\)
\(168\) 0 0
\(169\) −8.21709 −0.632084
\(170\) 1.89017 0.144969
\(171\) 0 0
\(172\) 12.4870 0.952128
\(173\) 24.2638 1.84474 0.922371 0.386305i \(-0.126249\pi\)
0.922371 + 0.386305i \(0.126249\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −3.82811 −0.288555
\(177\) 0 0
\(178\) 2.84721 0.213408
\(179\) 12.9466 0.967677 0.483838 0.875157i \(-0.339242\pi\)
0.483838 + 0.875157i \(0.339242\pi\)
\(180\) 0 0
\(181\) −18.6034 −1.38278 −0.691391 0.722481i \(-0.743002\pi\)
−0.691391 + 0.722481i \(0.743002\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −11.2764 −0.831309
\(185\) 38.1946 2.80813
\(186\) 0 0
\(187\) −2.41858 −0.176864
\(188\) 16.9922 1.23928
\(189\) 0 0
\(190\) 3.20344 0.232402
\(191\) 23.2888 1.68512 0.842559 0.538605i \(-0.181048\pi\)
0.842559 + 0.538605i \(0.181048\pi\)
\(192\) 0 0
\(193\) 3.18843 0.229509 0.114754 0.993394i \(-0.463392\pi\)
0.114754 + 0.993394i \(0.463392\pi\)
\(194\) −1.58486 −0.113786
\(195\) 0 0
\(196\) 0 0
\(197\) 8.25178 0.587915 0.293958 0.955818i \(-0.405028\pi\)
0.293958 + 0.955818i \(0.405028\pi\)
\(198\) 0 0
\(199\) 19.6024 1.38958 0.694789 0.719214i \(-0.255498\pi\)
0.694789 + 0.719214i \(0.255498\pi\)
\(200\) −34.0467 −2.40747
\(201\) 0 0
\(202\) 11.3109 0.795832
\(203\) 0 0
\(204\) 0 0
\(205\) −9.28770 −0.648681
\(206\) −3.67539 −0.256076
\(207\) 0 0
\(208\) 2.04246 0.141619
\(209\) −4.09899 −0.283533
\(210\) 0 0
\(211\) 9.49078 0.653372 0.326686 0.945133i \(-0.394068\pi\)
0.326686 + 0.945133i \(0.394068\pi\)
\(212\) 6.33254 0.434920
\(213\) 0 0
\(214\) −0.667398 −0.0456224
\(215\) −37.0919 −2.52965
\(216\) 0 0
\(217\) 0 0
\(218\) −0.834651 −0.0565297
\(219\) 0 0
\(220\) 25.1063 1.69267
\(221\) 1.29041 0.0868027
\(222\) 0 0
\(223\) 18.8829 1.26449 0.632247 0.774767i \(-0.282133\pi\)
0.632247 + 0.774767i \(0.282133\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 9.70030 0.645255
\(227\) −20.5405 −1.36332 −0.681660 0.731669i \(-0.738742\pi\)
−0.681660 + 0.731669i \(0.738742\pi\)
\(228\) 0 0
\(229\) 6.98499 0.461581 0.230791 0.973003i \(-0.425869\pi\)
0.230791 + 0.973003i \(0.425869\pi\)
\(230\) 13.9986 0.923043
\(231\) 0 0
\(232\) −19.0038 −1.24766
\(233\) −19.5265 −1.27922 −0.639612 0.768698i \(-0.720905\pi\)
−0.639612 + 0.768698i \(0.720905\pi\)
\(234\) 0 0
\(235\) −50.4741 −3.29257
\(236\) −15.3904 −1.00183
\(237\) 0 0
\(238\) 0 0
\(239\) 17.8056 1.15175 0.575873 0.817539i \(-0.304662\pi\)
0.575873 + 0.817539i \(0.304662\pi\)
\(240\) 0 0
\(241\) 15.2268 0.980844 0.490422 0.871485i \(-0.336843\pi\)
0.490422 + 0.871485i \(0.336843\pi\)
\(242\) 4.35725 0.280095
\(243\) 0 0
\(244\) −3.49012 −0.223432
\(245\) 0 0
\(246\) 0 0
\(247\) 2.18699 0.139155
\(248\) 11.6600 0.740408
\(249\) 0 0
\(250\) 26.2486 1.66011
\(251\) −6.70311 −0.423097 −0.211548 0.977368i \(-0.567851\pi\)
−0.211548 + 0.977368i \(0.567851\pi\)
\(252\) 0 0
\(253\) −17.9121 −1.12612
\(254\) −2.33848 −0.146730
\(255\) 0 0
\(256\) −12.4457 −0.777854
\(257\) −8.25135 −0.514705 −0.257353 0.966318i \(-0.582850\pi\)
−0.257353 + 0.966318i \(0.582850\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −13.3953 −0.830741
\(261\) 0 0
\(262\) 2.78420 0.172009
\(263\) 0.700305 0.0431827 0.0215913 0.999767i \(-0.493127\pi\)
0.0215913 + 0.999767i \(0.493127\pi\)
\(264\) 0 0
\(265\) −18.8104 −1.15551
\(266\) 0 0
\(267\) 0 0
\(268\) 8.11819 0.495897
\(269\) −13.9652 −0.851473 −0.425736 0.904847i \(-0.639985\pi\)
−0.425736 + 0.904847i \(0.639985\pi\)
\(270\) 0 0
\(271\) −8.32570 −0.505750 −0.252875 0.967499i \(-0.581376\pi\)
−0.252875 + 0.967499i \(0.581376\pi\)
\(272\) 0.551049 0.0334122
\(273\) 0 0
\(274\) −0.871925 −0.0526749
\(275\) −54.0817 −3.26125
\(276\) 0 0
\(277\) −15.1501 −0.910280 −0.455140 0.890420i \(-0.650411\pi\)
−0.455140 + 0.890420i \(0.650411\pi\)
\(278\) 3.18909 0.191269
\(279\) 0 0
\(280\) 0 0
\(281\) 10.2038 0.608708 0.304354 0.952559i \(-0.401559\pi\)
0.304354 + 0.952559i \(0.401559\pi\)
\(282\) 0 0
\(283\) −6.29116 −0.373971 −0.186985 0.982363i \(-0.559872\pi\)
−0.186985 + 0.982363i \(0.559872\pi\)
\(284\) 11.9534 0.709306
\(285\) 0 0
\(286\) −6.73251 −0.398102
\(287\) 0 0
\(288\) 0 0
\(289\) −16.6519 −0.979521
\(290\) 23.5915 1.38534
\(291\) 0 0
\(292\) −15.3353 −0.897433
\(293\) 1.48286 0.0866294 0.0433147 0.999061i \(-0.486208\pi\)
0.0433147 + 0.999061i \(0.486208\pi\)
\(294\) 0 0
\(295\) 45.7162 2.66170
\(296\) −23.1069 −1.34306
\(297\) 0 0
\(298\) 18.0195 1.04384
\(299\) 9.55686 0.552688
\(300\) 0 0
\(301\) 0 0
\(302\) 6.38422 0.367371
\(303\) 0 0
\(304\) 0.933914 0.0535637
\(305\) 10.3672 0.593622
\(306\) 0 0
\(307\) 29.9624 1.71004 0.855022 0.518592i \(-0.173544\pi\)
0.855022 + 0.518592i \(0.173544\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −14.4748 −0.822111
\(311\) 4.38115 0.248432 0.124216 0.992255i \(-0.460358\pi\)
0.124216 + 0.992255i \(0.460358\pi\)
\(312\) 0 0
\(313\) −20.4536 −1.15611 −0.578053 0.815999i \(-0.696187\pi\)
−0.578053 + 0.815999i \(0.696187\pi\)
\(314\) −3.33362 −0.188127
\(315\) 0 0
\(316\) −12.2972 −0.691774
\(317\) 8.81648 0.495183 0.247591 0.968865i \(-0.420361\pi\)
0.247591 + 0.968865i \(0.420361\pi\)
\(318\) 0 0
\(319\) −30.1867 −1.69013
\(320\) 10.8127 0.604447
\(321\) 0 0
\(322\) 0 0
\(323\) 0.590042 0.0328308
\(324\) 0 0
\(325\) 28.8549 1.60058
\(326\) −0.110330 −0.00611062
\(327\) 0 0
\(328\) 5.61885 0.310249
\(329\) 0 0
\(330\) 0 0
\(331\) 12.0580 0.662767 0.331383 0.943496i \(-0.392485\pi\)
0.331383 + 0.943496i \(0.392485\pi\)
\(332\) 6.11470 0.335588
\(333\) 0 0
\(334\) 0.665138 0.0363947
\(335\) −24.1145 −1.31752
\(336\) 0 0
\(337\) 27.5871 1.50277 0.751383 0.659866i \(-0.229387\pi\)
0.751383 + 0.659866i \(0.229387\pi\)
\(338\) −6.17123 −0.335671
\(339\) 0 0
\(340\) −3.61401 −0.195997
\(341\) 18.5213 1.00299
\(342\) 0 0
\(343\) 0 0
\(344\) 22.4398 1.20987
\(345\) 0 0
\(346\) 18.2227 0.979658
\(347\) −0.991536 −0.0532284 −0.0266142 0.999646i \(-0.508473\pi\)
−0.0266142 + 0.999646i \(0.508473\pi\)
\(348\) 0 0
\(349\) −31.6583 −1.69463 −0.847316 0.531090i \(-0.821783\pi\)
−0.847316 + 0.531090i \(0.821783\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −24.0298 −1.28079
\(353\) 8.90381 0.473902 0.236951 0.971522i \(-0.423852\pi\)
0.236951 + 0.971522i \(0.423852\pi\)
\(354\) 0 0
\(355\) −35.5069 −1.88451
\(356\) −5.44389 −0.288525
\(357\) 0 0
\(358\) 9.72323 0.513889
\(359\) 21.6998 1.14527 0.572635 0.819811i \(-0.305921\pi\)
0.572635 + 0.819811i \(0.305921\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) −13.9716 −0.734332
\(363\) 0 0
\(364\) 0 0
\(365\) 45.5526 2.38433
\(366\) 0 0
\(367\) −12.7772 −0.666964 −0.333482 0.942757i \(-0.608224\pi\)
−0.333482 + 0.942757i \(0.608224\pi\)
\(368\) 4.08109 0.212742
\(369\) 0 0
\(370\) 28.6851 1.49127
\(371\) 0 0
\(372\) 0 0
\(373\) −13.2182 −0.684415 −0.342207 0.939624i \(-0.611175\pi\)
−0.342207 + 0.939624i \(0.611175\pi\)
\(374\) −1.81641 −0.0939244
\(375\) 0 0
\(376\) 30.5357 1.57476
\(377\) 16.1059 0.829496
\(378\) 0 0
\(379\) −1.72767 −0.0887443 −0.0443722 0.999015i \(-0.514129\pi\)
−0.0443722 + 0.999015i \(0.514129\pi\)
\(380\) −6.12500 −0.314206
\(381\) 0 0
\(382\) 17.4904 0.894889
\(383\) −4.85563 −0.248111 −0.124056 0.992275i \(-0.539590\pi\)
−0.124056 + 0.992275i \(0.539590\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 2.39459 0.121881
\(387\) 0 0
\(388\) 3.03026 0.153838
\(389\) −10.6299 −0.538955 −0.269477 0.963007i \(-0.586851\pi\)
−0.269477 + 0.963007i \(0.586851\pi\)
\(390\) 0 0
\(391\) 2.57841 0.130396
\(392\) 0 0
\(393\) 0 0
\(394\) 6.19729 0.312215
\(395\) 36.5281 1.83793
\(396\) 0 0
\(397\) −12.7514 −0.639974 −0.319987 0.947422i \(-0.603678\pi\)
−0.319987 + 0.947422i \(0.603678\pi\)
\(398\) 14.7219 0.737941
\(399\) 0 0
\(400\) 12.3220 0.616098
\(401\) −19.2514 −0.961367 −0.480683 0.876894i \(-0.659611\pi\)
−0.480683 + 0.876894i \(0.659611\pi\)
\(402\) 0 0
\(403\) −9.88190 −0.492253
\(404\) −21.6265 −1.07596
\(405\) 0 0
\(406\) 0 0
\(407\) −36.7043 −1.81936
\(408\) 0 0
\(409\) −3.13980 −0.155253 −0.0776266 0.996983i \(-0.524734\pi\)
−0.0776266 + 0.996983i \(0.524734\pi\)
\(410\) −6.97529 −0.344485
\(411\) 0 0
\(412\) 7.02736 0.346213
\(413\) 0 0
\(414\) 0 0
\(415\) −18.1633 −0.891601
\(416\) 12.8209 0.628598
\(417\) 0 0
\(418\) −3.07844 −0.150572
\(419\) 12.4881 0.610085 0.305043 0.952339i \(-0.401329\pi\)
0.305043 + 0.952339i \(0.401329\pi\)
\(420\) 0 0
\(421\) −14.5141 −0.707376 −0.353688 0.935364i \(-0.615072\pi\)
−0.353688 + 0.935364i \(0.615072\pi\)
\(422\) 7.12780 0.346976
\(423\) 0 0
\(424\) 11.3799 0.552655
\(425\) 7.78495 0.377626
\(426\) 0 0
\(427\) 0 0
\(428\) 1.27607 0.0616811
\(429\) 0 0
\(430\) −27.8569 −1.34338
\(431\) −23.6671 −1.14001 −0.570003 0.821643i \(-0.693058\pi\)
−0.570003 + 0.821643i \(0.693058\pi\)
\(432\) 0 0
\(433\) −4.61912 −0.221981 −0.110990 0.993821i \(-0.535402\pi\)
−0.110990 + 0.993821i \(0.535402\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 1.59586 0.0764277
\(437\) 4.36988 0.209040
\(438\) 0 0
\(439\) −18.9603 −0.904925 −0.452462 0.891783i \(-0.649454\pi\)
−0.452462 + 0.891783i \(0.649454\pi\)
\(440\) 45.1172 2.15088
\(441\) 0 0
\(442\) 0.969132 0.0460969
\(443\) 22.4689 1.06753 0.533764 0.845633i \(-0.320777\pi\)
0.533764 + 0.845633i \(0.320777\pi\)
\(444\) 0 0
\(445\) 16.1707 0.766564
\(446\) 14.1815 0.671515
\(447\) 0 0
\(448\) 0 0
\(449\) −15.7360 −0.742629 −0.371314 0.928507i \(-0.621093\pi\)
−0.371314 + 0.928507i \(0.621093\pi\)
\(450\) 0 0
\(451\) 8.92529 0.420276
\(452\) −18.5470 −0.872379
\(453\) 0 0
\(454\) −15.4264 −0.723997
\(455\) 0 0
\(456\) 0 0
\(457\) 22.8566 1.06919 0.534594 0.845109i \(-0.320464\pi\)
0.534594 + 0.845109i \(0.320464\pi\)
\(458\) 5.24590 0.245125
\(459\) 0 0
\(460\) −26.7655 −1.24795
\(461\) 26.0021 1.21104 0.605519 0.795831i \(-0.292965\pi\)
0.605519 + 0.795831i \(0.292965\pi\)
\(462\) 0 0
\(463\) 20.3481 0.945654 0.472827 0.881155i \(-0.343233\pi\)
0.472827 + 0.881155i \(0.343233\pi\)
\(464\) 6.87774 0.319291
\(465\) 0 0
\(466\) −14.6649 −0.679337
\(467\) 15.1302 0.700141 0.350071 0.936723i \(-0.386158\pi\)
0.350071 + 0.936723i \(0.386158\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −37.9073 −1.74853
\(471\) 0 0
\(472\) −27.6573 −1.27303
\(473\) 35.6446 1.63894
\(474\) 0 0
\(475\) 13.1939 0.605377
\(476\) 0 0
\(477\) 0 0
\(478\) 13.3724 0.611640
\(479\) 27.9265 1.27599 0.637997 0.770039i \(-0.279763\pi\)
0.637997 + 0.770039i \(0.279763\pi\)
\(480\) 0 0
\(481\) 19.5833 0.892921
\(482\) 11.4357 0.520881
\(483\) 0 0
\(484\) −8.33109 −0.378686
\(485\) −9.00118 −0.408722
\(486\) 0 0
\(487\) 0.660652 0.0299370 0.0149685 0.999888i \(-0.495235\pi\)
0.0149685 + 0.999888i \(0.495235\pi\)
\(488\) −6.27190 −0.283916
\(489\) 0 0
\(490\) 0 0
\(491\) 5.09463 0.229917 0.114959 0.993370i \(-0.463326\pi\)
0.114959 + 0.993370i \(0.463326\pi\)
\(492\) 0 0
\(493\) 4.34532 0.195703
\(494\) 1.64248 0.0738987
\(495\) 0 0
\(496\) −4.21989 −0.189479
\(497\) 0 0
\(498\) 0 0
\(499\) −12.7990 −0.572963 −0.286482 0.958086i \(-0.592486\pi\)
−0.286482 + 0.958086i \(0.592486\pi\)
\(500\) −50.1876 −2.24446
\(501\) 0 0
\(502\) −5.03420 −0.224687
\(503\) 32.1398 1.43304 0.716522 0.697565i \(-0.245733\pi\)
0.716522 + 0.697565i \(0.245733\pi\)
\(504\) 0 0
\(505\) 64.2401 2.85865
\(506\) −13.4524 −0.598033
\(507\) 0 0
\(508\) 4.47120 0.198377
\(509\) 36.4645 1.61626 0.808130 0.589004i \(-0.200480\pi\)
0.808130 + 0.589004i \(0.200480\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 10.2949 0.454973
\(513\) 0 0
\(514\) −6.19697 −0.273336
\(515\) −20.8743 −0.919832
\(516\) 0 0
\(517\) 48.5046 2.13323
\(518\) 0 0
\(519\) 0 0
\(520\) −24.0720 −1.05562
\(521\) 35.5212 1.55621 0.778107 0.628132i \(-0.216180\pi\)
0.778107 + 0.628132i \(0.216180\pi\)
\(522\) 0 0
\(523\) −14.1623 −0.619273 −0.309636 0.950855i \(-0.600207\pi\)
−0.309636 + 0.950855i \(0.600207\pi\)
\(524\) −5.32341 −0.232554
\(525\) 0 0
\(526\) 0.525946 0.0229323
\(527\) −2.66611 −0.116137
\(528\) 0 0
\(529\) −3.90417 −0.169747
\(530\) −14.1270 −0.613639
\(531\) 0 0
\(532\) 0 0
\(533\) −4.76202 −0.206266
\(534\) 0 0
\(535\) −3.79047 −0.163876
\(536\) 14.5888 0.630138
\(537\) 0 0
\(538\) −10.4882 −0.452178
\(539\) 0 0
\(540\) 0 0
\(541\) −16.7454 −0.719940 −0.359970 0.932964i \(-0.617213\pi\)
−0.359970 + 0.932964i \(0.617213\pi\)
\(542\) −6.25280 −0.268581
\(543\) 0 0
\(544\) 3.45905 0.148305
\(545\) −4.74039 −0.203056
\(546\) 0 0
\(547\) −41.3888 −1.76966 −0.884829 0.465917i \(-0.845725\pi\)
−0.884829 + 0.465917i \(0.845725\pi\)
\(548\) 1.66713 0.0712161
\(549\) 0 0
\(550\) −40.6166 −1.73190
\(551\) 7.36442 0.313735
\(552\) 0 0
\(553\) 0 0
\(554\) −11.3781 −0.483408
\(555\) 0 0
\(556\) −6.09757 −0.258594
\(557\) −37.6750 −1.59634 −0.798172 0.602430i \(-0.794199\pi\)
−0.798172 + 0.602430i \(0.794199\pi\)
\(558\) 0 0
\(559\) −19.0179 −0.804372
\(560\) 0 0
\(561\) 0 0
\(562\) 7.66330 0.323257
\(563\) −3.45814 −0.145743 −0.0728717 0.997341i \(-0.523216\pi\)
−0.0728717 + 0.997341i \(0.523216\pi\)
\(564\) 0 0
\(565\) 55.0927 2.31777
\(566\) −4.72482 −0.198599
\(567\) 0 0
\(568\) 21.4809 0.901318
\(569\) −7.69204 −0.322467 −0.161234 0.986916i \(-0.551547\pi\)
−0.161234 + 0.986916i \(0.551547\pi\)
\(570\) 0 0
\(571\) −0.417131 −0.0174564 −0.00872819 0.999962i \(-0.502778\pi\)
−0.00872819 + 0.999962i \(0.502778\pi\)
\(572\) 12.8726 0.538231
\(573\) 0 0
\(574\) 0 0
\(575\) 57.6557 2.40441
\(576\) 0 0
\(577\) −23.2905 −0.969596 −0.484798 0.874626i \(-0.661107\pi\)
−0.484798 + 0.874626i \(0.661107\pi\)
\(578\) −12.5059 −0.520179
\(579\) 0 0
\(580\) −45.1071 −1.87297
\(581\) 0 0
\(582\) 0 0
\(583\) 18.0764 0.748647
\(584\) −27.5583 −1.14037
\(585\) 0 0
\(586\) 1.11366 0.0460049
\(587\) −30.5061 −1.25912 −0.629562 0.776951i \(-0.716766\pi\)
−0.629562 + 0.776951i \(0.716766\pi\)
\(588\) 0 0
\(589\) −4.51850 −0.186182
\(590\) 34.3340 1.41351
\(591\) 0 0
\(592\) 8.36270 0.343705
\(593\) −32.6861 −1.34226 −0.671129 0.741341i \(-0.734190\pi\)
−0.671129 + 0.741341i \(0.734190\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −34.4533 −1.41126
\(597\) 0 0
\(598\) 7.17744 0.293507
\(599\) 20.3738 0.832451 0.416225 0.909262i \(-0.363353\pi\)
0.416225 + 0.909262i \(0.363353\pi\)
\(600\) 0 0
\(601\) −12.3891 −0.505363 −0.252682 0.967549i \(-0.581313\pi\)
−0.252682 + 0.967549i \(0.581313\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −12.2067 −0.496683
\(605\) 24.7469 1.00611
\(606\) 0 0
\(607\) 33.3480 1.35355 0.676776 0.736189i \(-0.263376\pi\)
0.676776 + 0.736189i \(0.263376\pi\)
\(608\) 5.86237 0.237751
\(609\) 0 0
\(610\) 7.78599 0.315245
\(611\) −25.8793 −1.04696
\(612\) 0 0
\(613\) −38.7985 −1.56706 −0.783528 0.621356i \(-0.786582\pi\)
−0.783528 + 0.621356i \(0.786582\pi\)
\(614\) 22.5025 0.908126
\(615\) 0 0
\(616\) 0 0
\(617\) −1.98936 −0.0800887 −0.0400443 0.999198i \(-0.512750\pi\)
−0.0400443 + 0.999198i \(0.512750\pi\)
\(618\) 0 0
\(619\) −13.0014 −0.522572 −0.261286 0.965261i \(-0.584147\pi\)
−0.261286 + 0.965261i \(0.584147\pi\)
\(620\) 27.6758 1.11149
\(621\) 0 0
\(622\) 3.29035 0.131931
\(623\) 0 0
\(624\) 0 0
\(625\) 83.1093 3.32437
\(626\) −15.3611 −0.613955
\(627\) 0 0
\(628\) 6.37391 0.254347
\(629\) 5.28351 0.210667
\(630\) 0 0
\(631\) −14.9918 −0.596814 −0.298407 0.954439i \(-0.596455\pi\)
−0.298407 + 0.954439i \(0.596455\pi\)
\(632\) −22.0987 −0.879040
\(633\) 0 0
\(634\) 6.62139 0.262969
\(635\) −13.2814 −0.527056
\(636\) 0 0
\(637\) 0 0
\(638\) −22.6710 −0.897552
\(639\) 0 0
\(640\) −41.8905 −1.65587
\(641\) −24.0547 −0.950105 −0.475053 0.879957i \(-0.657571\pi\)
−0.475053 + 0.879957i \(0.657571\pi\)
\(642\) 0 0
\(643\) 24.3676 0.960964 0.480482 0.877005i \(-0.340462\pi\)
0.480482 + 0.877005i \(0.340462\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0.443136 0.0174350
\(647\) 38.2402 1.50338 0.751688 0.659519i \(-0.229240\pi\)
0.751688 + 0.659519i \(0.229240\pi\)
\(648\) 0 0
\(649\) −43.9324 −1.72450
\(650\) 21.6707 0.849995
\(651\) 0 0
\(652\) 0.210952 0.00826151
\(653\) −21.1624 −0.828147 −0.414074 0.910243i \(-0.635894\pi\)
−0.414074 + 0.910243i \(0.635894\pi\)
\(654\) 0 0
\(655\) 15.8128 0.617858
\(656\) −2.03354 −0.0793963
\(657\) 0 0
\(658\) 0 0
\(659\) −24.6069 −0.958548 −0.479274 0.877665i \(-0.659100\pi\)
−0.479274 + 0.877665i \(0.659100\pi\)
\(660\) 0 0
\(661\) −38.1953 −1.48562 −0.742812 0.669500i \(-0.766508\pi\)
−0.742812 + 0.669500i \(0.766508\pi\)
\(662\) 9.05584 0.351965
\(663\) 0 0
\(664\) 10.9884 0.426432
\(665\) 0 0
\(666\) 0 0
\(667\) 32.1816 1.24608
\(668\) −1.27175 −0.0492054
\(669\) 0 0
\(670\) −18.1106 −0.699673
\(671\) −9.96264 −0.384603
\(672\) 0 0
\(673\) −28.0333 −1.08060 −0.540302 0.841471i \(-0.681690\pi\)
−0.540302 + 0.841471i \(0.681690\pi\)
\(674\) 20.7186 0.798050
\(675\) 0 0
\(676\) 11.7994 0.453824
\(677\) 5.23635 0.201249 0.100625 0.994924i \(-0.467916\pi\)
0.100625 + 0.994924i \(0.467916\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −6.49454 −0.249054
\(681\) 0 0
\(682\) 13.9099 0.532639
\(683\) 1.25171 0.0478955 0.0239478 0.999713i \(-0.492376\pi\)
0.0239478 + 0.999713i \(0.492376\pi\)
\(684\) 0 0
\(685\) −4.95209 −0.189210
\(686\) 0 0
\(687\) 0 0
\(688\) −8.12126 −0.309620
\(689\) −9.64452 −0.367427
\(690\) 0 0
\(691\) 50.8050 1.93271 0.966357 0.257204i \(-0.0828012\pi\)
0.966357 + 0.257204i \(0.0828012\pi\)
\(692\) −34.8419 −1.32449
\(693\) 0 0
\(694\) −0.744668 −0.0282672
\(695\) 18.1124 0.687043
\(696\) 0 0
\(697\) −1.28478 −0.0486645
\(698\) −23.7762 −0.899941
\(699\) 0 0
\(700\) 0 0
\(701\) −0.998799 −0.0377241 −0.0188621 0.999822i \(-0.506004\pi\)
−0.0188621 + 0.999822i \(0.506004\pi\)
\(702\) 0 0
\(703\) 8.95446 0.337724
\(704\) −10.3908 −0.391617
\(705\) 0 0
\(706\) 6.68698 0.251668
\(707\) 0 0
\(708\) 0 0
\(709\) −13.9625 −0.524371 −0.262185 0.965017i \(-0.584443\pi\)
−0.262185 + 0.965017i \(0.584443\pi\)
\(710\) −26.6665 −1.00078
\(711\) 0 0
\(712\) −9.78291 −0.366630
\(713\) −19.7453 −0.739467
\(714\) 0 0
\(715\) −38.2372 −1.42999
\(716\) −18.5909 −0.694774
\(717\) 0 0
\(718\) 16.2970 0.608200
\(719\) 18.5694 0.692521 0.346260 0.938138i \(-0.387451\pi\)
0.346260 + 0.938138i \(0.387451\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0.751024 0.0279502
\(723\) 0 0
\(724\) 26.7138 0.992811
\(725\) 97.1654 3.60863
\(726\) 0 0
\(727\) 32.1991 1.19420 0.597099 0.802168i \(-0.296320\pi\)
0.597099 + 0.802168i \(0.296320\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 34.2111 1.26621
\(731\) −5.13097 −0.189776
\(732\) 0 0
\(733\) −9.55623 −0.352968 −0.176484 0.984304i \(-0.556472\pi\)
−0.176484 + 0.984304i \(0.556472\pi\)
\(734\) −9.59598 −0.354194
\(735\) 0 0
\(736\) 25.6179 0.944287
\(737\) 23.1736 0.853609
\(738\) 0 0
\(739\) −20.2850 −0.746194 −0.373097 0.927792i \(-0.621704\pi\)
−0.373097 + 0.927792i \(0.621704\pi\)
\(740\) −54.8461 −2.01618
\(741\) 0 0
\(742\) 0 0
\(743\) −0.965374 −0.0354161 −0.0177081 0.999843i \(-0.505637\pi\)
−0.0177081 + 0.999843i \(0.505637\pi\)
\(744\) 0 0
\(745\) 102.341 3.74949
\(746\) −9.92722 −0.363461
\(747\) 0 0
\(748\) 3.47299 0.126985
\(749\) 0 0
\(750\) 0 0
\(751\) −0.657779 −0.0240027 −0.0120013 0.999928i \(-0.503820\pi\)
−0.0120013 + 0.999928i \(0.503820\pi\)
\(752\) −11.0513 −0.402999
\(753\) 0 0
\(754\) 12.0959 0.440507
\(755\) 36.2591 1.31960
\(756\) 0 0
\(757\) −1.47679 −0.0536749 −0.0268375 0.999640i \(-0.508544\pi\)
−0.0268375 + 0.999640i \(0.508544\pi\)
\(758\) −1.29752 −0.0471281
\(759\) 0 0
\(760\) −11.0069 −0.399262
\(761\) 18.4847 0.670070 0.335035 0.942206i \(-0.391252\pi\)
0.335035 + 0.942206i \(0.391252\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −33.4418 −1.20988
\(765\) 0 0
\(766\) −3.64669 −0.131760
\(767\) 23.4398 0.846362
\(768\) 0 0
\(769\) 4.34052 0.156523 0.0782617 0.996933i \(-0.475063\pi\)
0.0782617 + 0.996933i \(0.475063\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −4.57847 −0.164783
\(773\) 33.5513 1.20676 0.603379 0.797455i \(-0.293821\pi\)
0.603379 + 0.797455i \(0.293821\pi\)
\(774\) 0 0
\(775\) −59.6166 −2.14149
\(776\) 5.44551 0.195483
\(777\) 0 0
\(778\) −7.98328 −0.286214
\(779\) −2.17744 −0.0780147
\(780\) 0 0
\(781\) 34.1214 1.22096
\(782\) 1.93645 0.0692473
\(783\) 0 0
\(784\) 0 0
\(785\) −18.9333 −0.675757
\(786\) 0 0
\(787\) 42.0571 1.49917 0.749587 0.661906i \(-0.230252\pi\)
0.749587 + 0.661906i \(0.230252\pi\)
\(788\) −11.8493 −0.422112
\(789\) 0 0
\(790\) 27.4335 0.976041
\(791\) 0 0
\(792\) 0 0
\(793\) 5.31549 0.188759
\(794\) −9.57660 −0.339861
\(795\) 0 0
\(796\) −28.1483 −0.997691
\(797\) 2.71101 0.0960289 0.0480145 0.998847i \(-0.484711\pi\)
0.0480145 + 0.998847i \(0.484711\pi\)
\(798\) 0 0
\(799\) −6.98214 −0.247010
\(800\) 77.3475 2.73465
\(801\) 0 0
\(802\) −14.4582 −0.510538
\(803\) −43.7751 −1.54479
\(804\) 0 0
\(805\) 0 0
\(806\) −7.42155 −0.261413
\(807\) 0 0
\(808\) −38.8638 −1.36722
\(809\) −13.3158 −0.468159 −0.234079 0.972217i \(-0.575208\pi\)
−0.234079 + 0.972217i \(0.575208\pi\)
\(810\) 0 0
\(811\) 15.1310 0.531320 0.265660 0.964067i \(-0.414410\pi\)
0.265660 + 0.964067i \(0.414410\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −27.5658 −0.966181
\(815\) −0.626618 −0.0219495
\(816\) 0 0
\(817\) −8.69594 −0.304232
\(818\) −2.35807 −0.0824478
\(819\) 0 0
\(820\) 13.3368 0.465741
\(821\) 24.3734 0.850639 0.425319 0.905043i \(-0.360162\pi\)
0.425319 + 0.905043i \(0.360162\pi\)
\(822\) 0 0
\(823\) 11.7877 0.410892 0.205446 0.978668i \(-0.434135\pi\)
0.205446 + 0.978668i \(0.434135\pi\)
\(824\) 12.6285 0.439934
\(825\) 0 0
\(826\) 0 0
\(827\) −17.5429 −0.610028 −0.305014 0.952348i \(-0.598661\pi\)
−0.305014 + 0.952348i \(0.598661\pi\)
\(828\) 0 0
\(829\) −50.9728 −1.77036 −0.885180 0.465249i \(-0.845965\pi\)
−0.885180 + 0.465249i \(0.845965\pi\)
\(830\) −13.6411 −0.473488
\(831\) 0 0
\(832\) 5.54391 0.192201
\(833\) 0 0
\(834\) 0 0
\(835\) 3.77764 0.130731
\(836\) 5.88600 0.203572
\(837\) 0 0
\(838\) 9.37889 0.323988
\(839\) −5.84311 −0.201727 −0.100863 0.994900i \(-0.532160\pi\)
−0.100863 + 0.994900i \(0.532160\pi\)
\(840\) 0 0
\(841\) 25.2347 0.870163
\(842\) −10.9005 −0.375655
\(843\) 0 0
\(844\) −13.6284 −0.469109
\(845\) −35.0494 −1.20574
\(846\) 0 0
\(847\) 0 0
\(848\) −4.11852 −0.141431
\(849\) 0 0
\(850\) 5.84669 0.200540
\(851\) 39.1299 1.34136
\(852\) 0 0
\(853\) 37.0096 1.26719 0.633593 0.773667i \(-0.281579\pi\)
0.633593 + 0.773667i \(0.281579\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 2.29315 0.0783784
\(857\) 40.1269 1.37071 0.685355 0.728209i \(-0.259647\pi\)
0.685355 + 0.728209i \(0.259647\pi\)
\(858\) 0 0
\(859\) 14.4388 0.492644 0.246322 0.969188i \(-0.420778\pi\)
0.246322 + 0.969188i \(0.420778\pi\)
\(860\) 53.2626 1.81624
\(861\) 0 0
\(862\) −17.7746 −0.605405
\(863\) −30.6183 −1.04226 −0.521130 0.853477i \(-0.674489\pi\)
−0.521130 + 0.853477i \(0.674489\pi\)
\(864\) 0 0
\(865\) 103.496 3.51895
\(866\) −3.46907 −0.117884
\(867\) 0 0
\(868\) 0 0
\(869\) −35.1028 −1.19078
\(870\) 0 0
\(871\) −12.3641 −0.418941
\(872\) 2.86783 0.0971169
\(873\) 0 0
\(874\) 3.28188 0.111011
\(875\) 0 0
\(876\) 0 0
\(877\) −16.0685 −0.542596 −0.271298 0.962495i \(-0.587453\pi\)
−0.271298 + 0.962495i \(0.587453\pi\)
\(878\) −14.2396 −0.480564
\(879\) 0 0
\(880\) −16.3285 −0.550435
\(881\) −40.2468 −1.35595 −0.677975 0.735085i \(-0.737142\pi\)
−0.677975 + 0.735085i \(0.737142\pi\)
\(882\) 0 0
\(883\) −0.564426 −0.0189944 −0.00949722 0.999955i \(-0.503023\pi\)
−0.00949722 + 0.999955i \(0.503023\pi\)
\(884\) −1.85299 −0.0623227
\(885\) 0 0
\(886\) 16.8747 0.566915
\(887\) −35.5836 −1.19478 −0.597390 0.801951i \(-0.703796\pi\)
−0.597390 + 0.801951i \(0.703796\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 12.1446 0.407087
\(891\) 0 0
\(892\) −27.1152 −0.907883
\(893\) −11.8333 −0.395986
\(894\) 0 0
\(895\) 55.2229 1.84590
\(896\) 0 0
\(897\) 0 0
\(898\) −11.8181 −0.394376
\(899\) −33.2762 −1.10982
\(900\) 0 0
\(901\) −2.60206 −0.0866872
\(902\) 6.70311 0.223189
\(903\) 0 0
\(904\) −33.3299 −1.10854
\(905\) −79.3516 −2.63774
\(906\) 0 0
\(907\) 30.3682 1.00836 0.504179 0.863599i \(-0.331795\pi\)
0.504179 + 0.863599i \(0.331795\pi\)
\(908\) 29.4954 0.978839
\(909\) 0 0
\(910\) 0 0
\(911\) −17.9947 −0.596191 −0.298096 0.954536i \(-0.596351\pi\)
−0.298096 + 0.954536i \(0.596351\pi\)
\(912\) 0 0
\(913\) 17.4546 0.577662
\(914\) 17.1659 0.567797
\(915\) 0 0
\(916\) −10.0302 −0.331407
\(917\) 0 0
\(918\) 0 0
\(919\) 41.9568 1.38403 0.692014 0.721884i \(-0.256724\pi\)
0.692014 + 0.721884i \(0.256724\pi\)
\(920\) −48.0988 −1.58577
\(921\) 0 0
\(922\) 19.5282 0.643127
\(923\) −18.2052 −0.599232
\(924\) 0 0
\(925\) 118.144 3.88456
\(926\) 15.2819 0.502194
\(927\) 0 0
\(928\) 43.1730 1.41722
\(929\) −19.1145 −0.627127 −0.313563 0.949567i \(-0.601523\pi\)
−0.313563 + 0.949567i \(0.601523\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 28.0393 0.918458
\(933\) 0 0
\(934\) 11.3631 0.371813
\(935\) −10.3163 −0.337378
\(936\) 0 0
\(937\) −44.3779 −1.44976 −0.724881 0.688874i \(-0.758105\pi\)
−0.724881 + 0.688874i \(0.758105\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 72.4789 2.36400
\(941\) −37.6172 −1.22628 −0.613142 0.789973i \(-0.710095\pi\)
−0.613142 + 0.789973i \(0.710095\pi\)
\(942\) 0 0
\(943\) −9.51513 −0.309855
\(944\) 10.0096 0.325783
\(945\) 0 0
\(946\) 26.7699 0.870366
\(947\) −29.1696 −0.947883 −0.473942 0.880556i \(-0.657169\pi\)
−0.473942 + 0.880556i \(0.657169\pi\)
\(948\) 0 0
\(949\) 23.3559 0.758164
\(950\) 9.90893 0.321488
\(951\) 0 0
\(952\) 0 0
\(953\) −25.0234 −0.810586 −0.405293 0.914187i \(-0.632830\pi\)
−0.405293 + 0.914187i \(0.632830\pi\)
\(954\) 0 0
\(955\) 99.3367 3.21446
\(956\) −25.5681 −0.826933
\(957\) 0 0
\(958\) 20.9735 0.677622
\(959\) 0 0
\(960\) 0 0
\(961\) −10.5831 −0.341392
\(962\) 14.7075 0.474190
\(963\) 0 0
\(964\) −21.8651 −0.704228
\(965\) 13.6000 0.437801
\(966\) 0 0
\(967\) −28.8469 −0.927655 −0.463828 0.885926i \(-0.653524\pi\)
−0.463828 + 0.885926i \(0.653524\pi\)
\(968\) −14.9713 −0.481197
\(969\) 0 0
\(970\) −6.76010 −0.217054
\(971\) 3.19928 0.102670 0.0513348 0.998681i \(-0.483652\pi\)
0.0513348 + 0.998681i \(0.483652\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0.496166 0.0158982
\(975\) 0 0
\(976\) 2.26989 0.0726573
\(977\) 54.4969 1.74351 0.871755 0.489943i \(-0.162982\pi\)
0.871755 + 0.489943i \(0.162982\pi\)
\(978\) 0 0
\(979\) −15.5397 −0.496651
\(980\) 0 0
\(981\) 0 0
\(982\) 3.82619 0.122099
\(983\) −5.45760 −0.174070 −0.0870352 0.996205i \(-0.527739\pi\)
−0.0870352 + 0.996205i \(0.527739\pi\)
\(984\) 0 0
\(985\) 35.1974 1.12148
\(986\) 3.26344 0.103929
\(987\) 0 0
\(988\) −3.14043 −0.0999104
\(989\) −38.0002 −1.20834
\(990\) 0 0
\(991\) 34.2911 1.08929 0.544646 0.838666i \(-0.316664\pi\)
0.544646 + 0.838666i \(0.316664\pi\)
\(992\) −26.4891 −0.841031
\(993\) 0 0
\(994\) 0 0
\(995\) 83.6127 2.65070
\(996\) 0 0
\(997\) −23.2138 −0.735188 −0.367594 0.929986i \(-0.619818\pi\)
−0.367594 + 0.929986i \(0.619818\pi\)
\(998\) −9.61238 −0.304275
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8379.2.a.bv.1.3 4
3.2 odd 2 931.2.a.l.1.2 4
7.6 odd 2 8379.2.a.bu.1.3 4
21.2 odd 6 931.2.f.o.704.3 8
21.5 even 6 931.2.f.n.704.3 8
21.11 odd 6 931.2.f.o.324.3 8
21.17 even 6 931.2.f.n.324.3 8
21.20 even 2 931.2.a.m.1.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
931.2.a.l.1.2 4 3.2 odd 2
931.2.a.m.1.2 yes 4 21.20 even 2
931.2.f.n.324.3 8 21.17 even 6
931.2.f.n.704.3 8 21.5 even 6
931.2.f.o.324.3 8 21.11 odd 6
931.2.f.o.704.3 8 21.2 odd 6
8379.2.a.bu.1.3 4 7.6 odd 2
8379.2.a.bv.1.3 4 1.1 even 1 trivial