Properties

Label 8379.2.a.bu.1.3
Level $8379$
Weight $2$
Character 8379.1
Self dual yes
Analytic conductor $66.907$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8379,2,Mod(1,8379)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8379.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8379, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8379 = 3^{2} \cdot 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8379.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,2,-8,0,0,-6,0,10,6,0,2,0,0,2,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.9066518536\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.5744.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 5x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 931)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.751024\) of defining polynomial
Character \(\chi\) \(=\) 8379.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.751024 q^{2} -1.43596 q^{4} -4.26543 q^{5} -2.58049 q^{8} -3.20344 q^{10} -4.09899 q^{11} -2.18699 q^{13} +0.933914 q^{16} -0.590042 q^{17} -1.00000 q^{19} +6.12500 q^{20} -3.07844 q^{22} +4.36988 q^{23} +13.1939 q^{25} -1.64248 q^{26} +7.36442 q^{29} +4.51850 q^{31} +5.86237 q^{32} -0.443136 q^{34} +8.95446 q^{37} -0.751024 q^{38} +11.0069 q^{40} +2.17744 q^{41} -8.69594 q^{43} +5.88600 q^{44} +3.28188 q^{46} +11.8333 q^{47} +9.90893 q^{50} +3.14043 q^{52} -4.40996 q^{53} +17.4840 q^{55} +5.53086 q^{58} -10.7178 q^{59} -2.43051 q^{61} +3.39350 q^{62} +2.53496 q^{64} +9.32844 q^{65} -5.65348 q^{67} +0.847279 q^{68} -8.32434 q^{71} -10.6795 q^{73} +6.72502 q^{74} +1.43596 q^{76} +8.56377 q^{79} -3.98355 q^{80} +1.63531 q^{82} +4.25826 q^{83} +2.51678 q^{85} -6.53086 q^{86} +10.5774 q^{88} -3.79110 q^{89} -6.27498 q^{92} +8.88709 q^{94} +4.26543 q^{95} +2.11026 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{4} - 8 q^{5} - 6 q^{8} + 10 q^{10} + 6 q^{11} + 2 q^{13} + 2 q^{16} - 8 q^{17} - 4 q^{19} - 14 q^{22} + 8 q^{23} + 20 q^{25} - 16 q^{26} - 2 q^{29} - 2 q^{32} - 22 q^{34} + 10 q^{37} + 22 q^{40}+ \cdots + 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.751024 0.531054 0.265527 0.964103i \(-0.414454\pi\)
0.265527 + 0.964103i \(0.414454\pi\)
\(3\) 0 0
\(4\) −1.43596 −0.717981
\(5\) −4.26543 −1.90756 −0.953779 0.300509i \(-0.902844\pi\)
−0.953779 + 0.300509i \(0.902844\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −2.58049 −0.912341
\(9\) 0 0
\(10\) −3.20344 −1.01302
\(11\) −4.09899 −1.23589 −0.617946 0.786220i \(-0.712035\pi\)
−0.617946 + 0.786220i \(0.712035\pi\)
\(12\) 0 0
\(13\) −2.18699 −0.606561 −0.303281 0.952901i \(-0.598082\pi\)
−0.303281 + 0.952901i \(0.598082\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0.933914 0.233479
\(17\) −0.590042 −0.143106 −0.0715531 0.997437i \(-0.522796\pi\)
−0.0715531 + 0.997437i \(0.522796\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 6.12500 1.36959
\(21\) 0 0
\(22\) −3.07844 −0.656326
\(23\) 4.36988 0.911182 0.455591 0.890189i \(-0.349428\pi\)
0.455591 + 0.890189i \(0.349428\pi\)
\(24\) 0 0
\(25\) 13.1939 2.63878
\(26\) −1.64248 −0.322117
\(27\) 0 0
\(28\) 0 0
\(29\) 7.36442 1.36754 0.683769 0.729698i \(-0.260339\pi\)
0.683769 + 0.729698i \(0.260339\pi\)
\(30\) 0 0
\(31\) 4.51850 0.811547 0.405773 0.913974i \(-0.367002\pi\)
0.405773 + 0.913974i \(0.367002\pi\)
\(32\) 5.86237 1.03633
\(33\) 0 0
\(34\) −0.443136 −0.0759972
\(35\) 0 0
\(36\) 0 0
\(37\) 8.95446 1.47210 0.736052 0.676924i \(-0.236688\pi\)
0.736052 + 0.676924i \(0.236688\pi\)
\(38\) −0.751024 −0.121832
\(39\) 0 0
\(40\) 11.0069 1.74034
\(41\) 2.17744 0.340058 0.170029 0.985439i \(-0.445614\pi\)
0.170029 + 0.985439i \(0.445614\pi\)
\(42\) 0 0
\(43\) −8.69594 −1.32612 −0.663059 0.748567i \(-0.730742\pi\)
−0.663059 + 0.748567i \(0.730742\pi\)
\(44\) 5.88600 0.887348
\(45\) 0 0
\(46\) 3.28188 0.483887
\(47\) 11.8333 1.72606 0.863032 0.505150i \(-0.168563\pi\)
0.863032 + 0.505150i \(0.168563\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 9.90893 1.40133
\(51\) 0 0
\(52\) 3.14043 0.435500
\(53\) −4.40996 −0.605754 −0.302877 0.953030i \(-0.597947\pi\)
−0.302877 + 0.953030i \(0.597947\pi\)
\(54\) 0 0
\(55\) 17.4840 2.35754
\(56\) 0 0
\(57\) 0 0
\(58\) 5.53086 0.726237
\(59\) −10.7178 −1.39534 −0.697672 0.716417i \(-0.745781\pi\)
−0.697672 + 0.716417i \(0.745781\pi\)
\(60\) 0 0
\(61\) −2.43051 −0.311195 −0.155597 0.987821i \(-0.549730\pi\)
−0.155597 + 0.987821i \(0.549730\pi\)
\(62\) 3.39350 0.430975
\(63\) 0 0
\(64\) 2.53496 0.316869
\(65\) 9.32844 1.15705
\(66\) 0 0
\(67\) −5.65348 −0.690682 −0.345341 0.938477i \(-0.612237\pi\)
−0.345341 + 0.938477i \(0.612237\pi\)
\(68\) 0.847279 0.102748
\(69\) 0 0
\(70\) 0 0
\(71\) −8.32434 −0.987918 −0.493959 0.869485i \(-0.664451\pi\)
−0.493959 + 0.869485i \(0.664451\pi\)
\(72\) 0 0
\(73\) −10.6795 −1.24994 −0.624970 0.780649i \(-0.714889\pi\)
−0.624970 + 0.780649i \(0.714889\pi\)
\(74\) 6.72502 0.781768
\(75\) 0 0
\(76\) 1.43596 0.164716
\(77\) 0 0
\(78\) 0 0
\(79\) 8.56377 0.963499 0.481750 0.876309i \(-0.340002\pi\)
0.481750 + 0.876309i \(0.340002\pi\)
\(80\) −3.98355 −0.445374
\(81\) 0 0
\(82\) 1.63531 0.180589
\(83\) 4.25826 0.467404 0.233702 0.972308i \(-0.424916\pi\)
0.233702 + 0.972308i \(0.424916\pi\)
\(84\) 0 0
\(85\) 2.51678 0.272983
\(86\) −6.53086 −0.704241
\(87\) 0 0
\(88\) 10.5774 1.12756
\(89\) −3.79110 −0.401856 −0.200928 0.979606i \(-0.564396\pi\)
−0.200928 + 0.979606i \(0.564396\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −6.27498 −0.654212
\(93\) 0 0
\(94\) 8.88709 0.916633
\(95\) 4.26543 0.437624
\(96\) 0 0
\(97\) 2.11026 0.214265 0.107132 0.994245i \(-0.465833\pi\)
0.107132 + 0.994245i \(0.465833\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −18.9459 −1.89459
\(101\) −15.0606 −1.49859 −0.749294 0.662237i \(-0.769607\pi\)
−0.749294 + 0.662237i \(0.769607\pi\)
\(102\) 0 0
\(103\) 4.89383 0.482204 0.241102 0.970500i \(-0.422491\pi\)
0.241102 + 0.970500i \(0.422491\pi\)
\(104\) 5.64350 0.553391
\(105\) 0 0
\(106\) −3.31198 −0.321688
\(107\) −0.888650 −0.0859090 −0.0429545 0.999077i \(-0.513677\pi\)
−0.0429545 + 0.999077i \(0.513677\pi\)
\(108\) 0 0
\(109\) −1.11135 −0.106448 −0.0532240 0.998583i \(-0.516950\pi\)
−0.0532240 + 0.998583i \(0.516950\pi\)
\(110\) 13.1309 1.25198
\(111\) 0 0
\(112\) 0 0
\(113\) 12.9161 1.21504 0.607522 0.794303i \(-0.292164\pi\)
0.607522 + 0.794303i \(0.292164\pi\)
\(114\) 0 0
\(115\) −18.6394 −1.73813
\(116\) −10.5750 −0.981867
\(117\) 0 0
\(118\) −8.04936 −0.741004
\(119\) 0 0
\(120\) 0 0
\(121\) 5.80174 0.527431
\(122\) −1.82537 −0.165261
\(123\) 0 0
\(124\) −6.48840 −0.582676
\(125\) −34.9505 −3.12606
\(126\) 0 0
\(127\) −3.11373 −0.276299 −0.138149 0.990411i \(-0.544115\pi\)
−0.138149 + 0.990411i \(0.544115\pi\)
\(128\) −9.82094 −0.868056
\(129\) 0 0
\(130\) 7.00588 0.614457
\(131\) −3.70721 −0.323900 −0.161950 0.986799i \(-0.551778\pi\)
−0.161950 + 0.986799i \(0.551778\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −4.24590 −0.366790
\(135\) 0 0
\(136\) 1.52260 0.130562
\(137\) −1.16098 −0.0991894 −0.0495947 0.998769i \(-0.515793\pi\)
−0.0495947 + 0.998769i \(0.515793\pi\)
\(138\) 0 0
\(139\) −4.24633 −0.360169 −0.180084 0.983651i \(-0.557637\pi\)
−0.180084 + 0.983651i \(0.557637\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −6.25178 −0.524638
\(143\) 8.96444 0.749644
\(144\) 0 0
\(145\) −31.4124 −2.60866
\(146\) −8.02055 −0.663785
\(147\) 0 0
\(148\) −12.8583 −1.05694
\(149\) 23.9932 1.96560 0.982799 0.184677i \(-0.0591239\pi\)
0.982799 + 0.184677i \(0.0591239\pi\)
\(150\) 0 0
\(151\) 8.50069 0.691776 0.345888 0.938276i \(-0.387578\pi\)
0.345888 + 0.938276i \(0.387578\pi\)
\(152\) 2.58049 0.209305
\(153\) 0 0
\(154\) 0 0
\(155\) −19.2734 −1.54807
\(156\) 0 0
\(157\) 4.43877 0.354252 0.177126 0.984188i \(-0.443320\pi\)
0.177126 + 0.984188i \(0.443320\pi\)
\(158\) 6.43160 0.511670
\(159\) 0 0
\(160\) −25.0055 −1.97686
\(161\) 0 0
\(162\) 0 0
\(163\) −0.146906 −0.0115066 −0.00575329 0.999983i \(-0.501831\pi\)
−0.00575329 + 0.999983i \(0.501831\pi\)
\(164\) −3.12672 −0.244156
\(165\) 0 0
\(166\) 3.19805 0.248217
\(167\) −0.885641 −0.0685329 −0.0342665 0.999413i \(-0.510909\pi\)
−0.0342665 + 0.999413i \(0.510909\pi\)
\(168\) 0 0
\(169\) −8.21709 −0.632084
\(170\) 1.89017 0.144969
\(171\) 0 0
\(172\) 12.4870 0.952128
\(173\) −24.2638 −1.84474 −0.922371 0.386305i \(-0.873751\pi\)
−0.922371 + 0.386305i \(0.873751\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −3.82811 −0.288555
\(177\) 0 0
\(178\) −2.84721 −0.213408
\(179\) 12.9466 0.967677 0.483838 0.875157i \(-0.339242\pi\)
0.483838 + 0.875157i \(0.339242\pi\)
\(180\) 0 0
\(181\) 18.6034 1.38278 0.691391 0.722481i \(-0.256998\pi\)
0.691391 + 0.722481i \(0.256998\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −11.2764 −0.831309
\(185\) −38.1946 −2.80813
\(186\) 0 0
\(187\) 2.41858 0.176864
\(188\) −16.9922 −1.23928
\(189\) 0 0
\(190\) 3.20344 0.232402
\(191\) 23.2888 1.68512 0.842559 0.538605i \(-0.181048\pi\)
0.842559 + 0.538605i \(0.181048\pi\)
\(192\) 0 0
\(193\) 3.18843 0.229509 0.114754 0.993394i \(-0.463392\pi\)
0.114754 + 0.993394i \(0.463392\pi\)
\(194\) 1.58486 0.113786
\(195\) 0 0
\(196\) 0 0
\(197\) 8.25178 0.587915 0.293958 0.955818i \(-0.405028\pi\)
0.293958 + 0.955818i \(0.405028\pi\)
\(198\) 0 0
\(199\) −19.6024 −1.38958 −0.694789 0.719214i \(-0.744502\pi\)
−0.694789 + 0.719214i \(0.744502\pi\)
\(200\) −34.0467 −2.40747
\(201\) 0 0
\(202\) −11.3109 −0.795832
\(203\) 0 0
\(204\) 0 0
\(205\) −9.28770 −0.648681
\(206\) 3.67539 0.256076
\(207\) 0 0
\(208\) −2.04246 −0.141619
\(209\) 4.09899 0.283533
\(210\) 0 0
\(211\) 9.49078 0.653372 0.326686 0.945133i \(-0.394068\pi\)
0.326686 + 0.945133i \(0.394068\pi\)
\(212\) 6.33254 0.434920
\(213\) 0 0
\(214\) −0.667398 −0.0456224
\(215\) 37.0919 2.52965
\(216\) 0 0
\(217\) 0 0
\(218\) −0.834651 −0.0565297
\(219\) 0 0
\(220\) −25.1063 −1.69267
\(221\) 1.29041 0.0868027
\(222\) 0 0
\(223\) −18.8829 −1.26449 −0.632247 0.774767i \(-0.717867\pi\)
−0.632247 + 0.774767i \(0.717867\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 9.70030 0.645255
\(227\) 20.5405 1.36332 0.681660 0.731669i \(-0.261258\pi\)
0.681660 + 0.731669i \(0.261258\pi\)
\(228\) 0 0
\(229\) −6.98499 −0.461581 −0.230791 0.973003i \(-0.574131\pi\)
−0.230791 + 0.973003i \(0.574131\pi\)
\(230\) −13.9986 −0.923043
\(231\) 0 0
\(232\) −19.0038 −1.24766
\(233\) −19.5265 −1.27922 −0.639612 0.768698i \(-0.720905\pi\)
−0.639612 + 0.768698i \(0.720905\pi\)
\(234\) 0 0
\(235\) −50.4741 −3.29257
\(236\) 15.3904 1.00183
\(237\) 0 0
\(238\) 0 0
\(239\) 17.8056 1.15175 0.575873 0.817539i \(-0.304662\pi\)
0.575873 + 0.817539i \(0.304662\pi\)
\(240\) 0 0
\(241\) −15.2268 −0.980844 −0.490422 0.871485i \(-0.663157\pi\)
−0.490422 + 0.871485i \(0.663157\pi\)
\(242\) 4.35725 0.280095
\(243\) 0 0
\(244\) 3.49012 0.223432
\(245\) 0 0
\(246\) 0 0
\(247\) 2.18699 0.139155
\(248\) −11.6600 −0.740408
\(249\) 0 0
\(250\) −26.2486 −1.66011
\(251\) 6.70311 0.423097 0.211548 0.977368i \(-0.432149\pi\)
0.211548 + 0.977368i \(0.432149\pi\)
\(252\) 0 0
\(253\) −17.9121 −1.12612
\(254\) −2.33848 −0.146730
\(255\) 0 0
\(256\) −12.4457 −0.777854
\(257\) 8.25135 0.514705 0.257353 0.966318i \(-0.417150\pi\)
0.257353 + 0.966318i \(0.417150\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −13.3953 −0.830741
\(261\) 0 0
\(262\) −2.78420 −0.172009
\(263\) 0.700305 0.0431827 0.0215913 0.999767i \(-0.493127\pi\)
0.0215913 + 0.999767i \(0.493127\pi\)
\(264\) 0 0
\(265\) 18.8104 1.15551
\(266\) 0 0
\(267\) 0 0
\(268\) 8.11819 0.495897
\(269\) 13.9652 0.851473 0.425736 0.904847i \(-0.360015\pi\)
0.425736 + 0.904847i \(0.360015\pi\)
\(270\) 0 0
\(271\) 8.32570 0.505750 0.252875 0.967499i \(-0.418624\pi\)
0.252875 + 0.967499i \(0.418624\pi\)
\(272\) −0.551049 −0.0334122
\(273\) 0 0
\(274\) −0.871925 −0.0526749
\(275\) −54.0817 −3.26125
\(276\) 0 0
\(277\) −15.1501 −0.910280 −0.455140 0.890420i \(-0.650411\pi\)
−0.455140 + 0.890420i \(0.650411\pi\)
\(278\) −3.18909 −0.191269
\(279\) 0 0
\(280\) 0 0
\(281\) 10.2038 0.608708 0.304354 0.952559i \(-0.401559\pi\)
0.304354 + 0.952559i \(0.401559\pi\)
\(282\) 0 0
\(283\) 6.29116 0.373971 0.186985 0.982363i \(-0.440128\pi\)
0.186985 + 0.982363i \(0.440128\pi\)
\(284\) 11.9534 0.709306
\(285\) 0 0
\(286\) 6.73251 0.398102
\(287\) 0 0
\(288\) 0 0
\(289\) −16.6519 −0.979521
\(290\) −23.5915 −1.38534
\(291\) 0 0
\(292\) 15.3353 0.897433
\(293\) −1.48286 −0.0866294 −0.0433147 0.999061i \(-0.513792\pi\)
−0.0433147 + 0.999061i \(0.513792\pi\)
\(294\) 0 0
\(295\) 45.7162 2.66170
\(296\) −23.1069 −1.34306
\(297\) 0 0
\(298\) 18.0195 1.04384
\(299\) −9.55686 −0.552688
\(300\) 0 0
\(301\) 0 0
\(302\) 6.38422 0.367371
\(303\) 0 0
\(304\) −0.933914 −0.0535637
\(305\) 10.3672 0.593622
\(306\) 0 0
\(307\) −29.9624 −1.71004 −0.855022 0.518592i \(-0.826456\pi\)
−0.855022 + 0.518592i \(0.826456\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −14.4748 −0.822111
\(311\) −4.38115 −0.248432 −0.124216 0.992255i \(-0.539642\pi\)
−0.124216 + 0.992255i \(0.539642\pi\)
\(312\) 0 0
\(313\) 20.4536 1.15611 0.578053 0.815999i \(-0.303813\pi\)
0.578053 + 0.815999i \(0.303813\pi\)
\(314\) 3.33362 0.188127
\(315\) 0 0
\(316\) −12.2972 −0.691774
\(317\) 8.81648 0.495183 0.247591 0.968865i \(-0.420361\pi\)
0.247591 + 0.968865i \(0.420361\pi\)
\(318\) 0 0
\(319\) −30.1867 −1.69013
\(320\) −10.8127 −0.604447
\(321\) 0 0
\(322\) 0 0
\(323\) 0.590042 0.0328308
\(324\) 0 0
\(325\) −28.8549 −1.60058
\(326\) −0.110330 −0.00611062
\(327\) 0 0
\(328\) −5.61885 −0.310249
\(329\) 0 0
\(330\) 0 0
\(331\) 12.0580 0.662767 0.331383 0.943496i \(-0.392485\pi\)
0.331383 + 0.943496i \(0.392485\pi\)
\(332\) −6.11470 −0.335588
\(333\) 0 0
\(334\) −0.665138 −0.0363947
\(335\) 24.1145 1.31752
\(336\) 0 0
\(337\) 27.5871 1.50277 0.751383 0.659866i \(-0.229387\pi\)
0.751383 + 0.659866i \(0.229387\pi\)
\(338\) −6.17123 −0.335671
\(339\) 0 0
\(340\) −3.61401 −0.195997
\(341\) −18.5213 −1.00299
\(342\) 0 0
\(343\) 0 0
\(344\) 22.4398 1.20987
\(345\) 0 0
\(346\) −18.2227 −0.979658
\(347\) −0.991536 −0.0532284 −0.0266142 0.999646i \(-0.508473\pi\)
−0.0266142 + 0.999646i \(0.508473\pi\)
\(348\) 0 0
\(349\) 31.6583 1.69463 0.847316 0.531090i \(-0.178217\pi\)
0.847316 + 0.531090i \(0.178217\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −24.0298 −1.28079
\(353\) −8.90381 −0.473902 −0.236951 0.971522i \(-0.576148\pi\)
−0.236951 + 0.971522i \(0.576148\pi\)
\(354\) 0 0
\(355\) 35.5069 1.88451
\(356\) 5.44389 0.288525
\(357\) 0 0
\(358\) 9.72323 0.513889
\(359\) 21.6998 1.14527 0.572635 0.819811i \(-0.305921\pi\)
0.572635 + 0.819811i \(0.305921\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 13.9716 0.734332
\(363\) 0 0
\(364\) 0 0
\(365\) 45.5526 2.38433
\(366\) 0 0
\(367\) 12.7772 0.666964 0.333482 0.942757i \(-0.391776\pi\)
0.333482 + 0.942757i \(0.391776\pi\)
\(368\) 4.08109 0.212742
\(369\) 0 0
\(370\) −28.6851 −1.49127
\(371\) 0 0
\(372\) 0 0
\(373\) −13.2182 −0.684415 −0.342207 0.939624i \(-0.611175\pi\)
−0.342207 + 0.939624i \(0.611175\pi\)
\(374\) 1.81641 0.0939244
\(375\) 0 0
\(376\) −30.5357 −1.57476
\(377\) −16.1059 −0.829496
\(378\) 0 0
\(379\) −1.72767 −0.0887443 −0.0443722 0.999015i \(-0.514129\pi\)
−0.0443722 + 0.999015i \(0.514129\pi\)
\(380\) −6.12500 −0.314206
\(381\) 0 0
\(382\) 17.4904 0.894889
\(383\) 4.85563 0.248111 0.124056 0.992275i \(-0.460410\pi\)
0.124056 + 0.992275i \(0.460410\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 2.39459 0.121881
\(387\) 0 0
\(388\) −3.03026 −0.153838
\(389\) −10.6299 −0.538955 −0.269477 0.963007i \(-0.586851\pi\)
−0.269477 + 0.963007i \(0.586851\pi\)
\(390\) 0 0
\(391\) −2.57841 −0.130396
\(392\) 0 0
\(393\) 0 0
\(394\) 6.19729 0.312215
\(395\) −36.5281 −1.83793
\(396\) 0 0
\(397\) 12.7514 0.639974 0.319987 0.947422i \(-0.396322\pi\)
0.319987 + 0.947422i \(0.396322\pi\)
\(398\) −14.7219 −0.737941
\(399\) 0 0
\(400\) 12.3220 0.616098
\(401\) −19.2514 −0.961367 −0.480683 0.876894i \(-0.659611\pi\)
−0.480683 + 0.876894i \(0.659611\pi\)
\(402\) 0 0
\(403\) −9.88190 −0.492253
\(404\) 21.6265 1.07596
\(405\) 0 0
\(406\) 0 0
\(407\) −36.7043 −1.81936
\(408\) 0 0
\(409\) 3.13980 0.155253 0.0776266 0.996983i \(-0.475266\pi\)
0.0776266 + 0.996983i \(0.475266\pi\)
\(410\) −6.97529 −0.344485
\(411\) 0 0
\(412\) −7.02736 −0.346213
\(413\) 0 0
\(414\) 0 0
\(415\) −18.1633 −0.891601
\(416\) −12.8209 −0.628598
\(417\) 0 0
\(418\) 3.07844 0.150572
\(419\) −12.4881 −0.610085 −0.305043 0.952339i \(-0.598671\pi\)
−0.305043 + 0.952339i \(0.598671\pi\)
\(420\) 0 0
\(421\) −14.5141 −0.707376 −0.353688 0.935364i \(-0.615072\pi\)
−0.353688 + 0.935364i \(0.615072\pi\)
\(422\) 7.12780 0.346976
\(423\) 0 0
\(424\) 11.3799 0.552655
\(425\) −7.78495 −0.377626
\(426\) 0 0
\(427\) 0 0
\(428\) 1.27607 0.0616811
\(429\) 0 0
\(430\) 27.8569 1.34338
\(431\) −23.6671 −1.14001 −0.570003 0.821643i \(-0.693058\pi\)
−0.570003 + 0.821643i \(0.693058\pi\)
\(432\) 0 0
\(433\) 4.61912 0.221981 0.110990 0.993821i \(-0.464598\pi\)
0.110990 + 0.993821i \(0.464598\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 1.59586 0.0764277
\(437\) −4.36988 −0.209040
\(438\) 0 0
\(439\) 18.9603 0.904925 0.452462 0.891783i \(-0.350546\pi\)
0.452462 + 0.891783i \(0.350546\pi\)
\(440\) −45.1172 −2.15088
\(441\) 0 0
\(442\) 0.969132 0.0460969
\(443\) 22.4689 1.06753 0.533764 0.845633i \(-0.320777\pi\)
0.533764 + 0.845633i \(0.320777\pi\)
\(444\) 0 0
\(445\) 16.1707 0.766564
\(446\) −14.1815 −0.671515
\(447\) 0 0
\(448\) 0 0
\(449\) −15.7360 −0.742629 −0.371314 0.928507i \(-0.621093\pi\)
−0.371314 + 0.928507i \(0.621093\pi\)
\(450\) 0 0
\(451\) −8.92529 −0.420276
\(452\) −18.5470 −0.872379
\(453\) 0 0
\(454\) 15.4264 0.723997
\(455\) 0 0
\(456\) 0 0
\(457\) 22.8566 1.06919 0.534594 0.845109i \(-0.320464\pi\)
0.534594 + 0.845109i \(0.320464\pi\)
\(458\) −5.24590 −0.245125
\(459\) 0 0
\(460\) 26.7655 1.24795
\(461\) −26.0021 −1.21104 −0.605519 0.795831i \(-0.707035\pi\)
−0.605519 + 0.795831i \(0.707035\pi\)
\(462\) 0 0
\(463\) 20.3481 0.945654 0.472827 0.881155i \(-0.343233\pi\)
0.472827 + 0.881155i \(0.343233\pi\)
\(464\) 6.87774 0.319291
\(465\) 0 0
\(466\) −14.6649 −0.679337
\(467\) −15.1302 −0.700141 −0.350071 0.936723i \(-0.613842\pi\)
−0.350071 + 0.936723i \(0.613842\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −37.9073 −1.74853
\(471\) 0 0
\(472\) 27.6573 1.27303
\(473\) 35.6446 1.63894
\(474\) 0 0
\(475\) −13.1939 −0.605377
\(476\) 0 0
\(477\) 0 0
\(478\) 13.3724 0.611640
\(479\) −27.9265 −1.27599 −0.637997 0.770039i \(-0.720237\pi\)
−0.637997 + 0.770039i \(0.720237\pi\)
\(480\) 0 0
\(481\) −19.5833 −0.892921
\(482\) −11.4357 −0.520881
\(483\) 0 0
\(484\) −8.33109 −0.378686
\(485\) −9.00118 −0.408722
\(486\) 0 0
\(487\) 0.660652 0.0299370 0.0149685 0.999888i \(-0.495235\pi\)
0.0149685 + 0.999888i \(0.495235\pi\)
\(488\) 6.27190 0.283916
\(489\) 0 0
\(490\) 0 0
\(491\) 5.09463 0.229917 0.114959 0.993370i \(-0.463326\pi\)
0.114959 + 0.993370i \(0.463326\pi\)
\(492\) 0 0
\(493\) −4.34532 −0.195703
\(494\) 1.64248 0.0738987
\(495\) 0 0
\(496\) 4.21989 0.189479
\(497\) 0 0
\(498\) 0 0
\(499\) −12.7990 −0.572963 −0.286482 0.958086i \(-0.592486\pi\)
−0.286482 + 0.958086i \(0.592486\pi\)
\(500\) 50.1876 2.24446
\(501\) 0 0
\(502\) 5.03420 0.224687
\(503\) −32.1398 −1.43304 −0.716522 0.697565i \(-0.754267\pi\)
−0.716522 + 0.697565i \(0.754267\pi\)
\(504\) 0 0
\(505\) 64.2401 2.85865
\(506\) −13.4524 −0.598033
\(507\) 0 0
\(508\) 4.47120 0.198377
\(509\) −36.4645 −1.61626 −0.808130 0.589004i \(-0.799520\pi\)
−0.808130 + 0.589004i \(0.799520\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 10.2949 0.454973
\(513\) 0 0
\(514\) 6.19697 0.273336
\(515\) −20.8743 −0.919832
\(516\) 0 0
\(517\) −48.5046 −2.13323
\(518\) 0 0
\(519\) 0 0
\(520\) −24.0720 −1.05562
\(521\) −35.5212 −1.55621 −0.778107 0.628132i \(-0.783820\pi\)
−0.778107 + 0.628132i \(0.783820\pi\)
\(522\) 0 0
\(523\) 14.1623 0.619273 0.309636 0.950855i \(-0.399793\pi\)
0.309636 + 0.950855i \(0.399793\pi\)
\(524\) 5.32341 0.232554
\(525\) 0 0
\(526\) 0.525946 0.0229323
\(527\) −2.66611 −0.116137
\(528\) 0 0
\(529\) −3.90417 −0.169747
\(530\) 14.1270 0.613639
\(531\) 0 0
\(532\) 0 0
\(533\) −4.76202 −0.206266
\(534\) 0 0
\(535\) 3.79047 0.163876
\(536\) 14.5888 0.630138
\(537\) 0 0
\(538\) 10.4882 0.452178
\(539\) 0 0
\(540\) 0 0
\(541\) −16.7454 −0.719940 −0.359970 0.932964i \(-0.617213\pi\)
−0.359970 + 0.932964i \(0.617213\pi\)
\(542\) 6.25280 0.268581
\(543\) 0 0
\(544\) −3.45905 −0.148305
\(545\) 4.74039 0.203056
\(546\) 0 0
\(547\) −41.3888 −1.76966 −0.884829 0.465917i \(-0.845725\pi\)
−0.884829 + 0.465917i \(0.845725\pi\)
\(548\) 1.66713 0.0712161
\(549\) 0 0
\(550\) −40.6166 −1.73190
\(551\) −7.36442 −0.313735
\(552\) 0 0
\(553\) 0 0
\(554\) −11.3781 −0.483408
\(555\) 0 0
\(556\) 6.09757 0.258594
\(557\) −37.6750 −1.59634 −0.798172 0.602430i \(-0.794199\pi\)
−0.798172 + 0.602430i \(0.794199\pi\)
\(558\) 0 0
\(559\) 19.0179 0.804372
\(560\) 0 0
\(561\) 0 0
\(562\) 7.66330 0.323257
\(563\) 3.45814 0.145743 0.0728717 0.997341i \(-0.476784\pi\)
0.0728717 + 0.997341i \(0.476784\pi\)
\(564\) 0 0
\(565\) −55.0927 −2.31777
\(566\) 4.72482 0.198599
\(567\) 0 0
\(568\) 21.4809 0.901318
\(569\) −7.69204 −0.322467 −0.161234 0.986916i \(-0.551547\pi\)
−0.161234 + 0.986916i \(0.551547\pi\)
\(570\) 0 0
\(571\) −0.417131 −0.0174564 −0.00872819 0.999962i \(-0.502778\pi\)
−0.00872819 + 0.999962i \(0.502778\pi\)
\(572\) −12.8726 −0.538231
\(573\) 0 0
\(574\) 0 0
\(575\) 57.6557 2.40441
\(576\) 0 0
\(577\) 23.2905 0.969596 0.484798 0.874626i \(-0.338893\pi\)
0.484798 + 0.874626i \(0.338893\pi\)
\(578\) −12.5059 −0.520179
\(579\) 0 0
\(580\) 45.1071 1.87297
\(581\) 0 0
\(582\) 0 0
\(583\) 18.0764 0.748647
\(584\) 27.5583 1.14037
\(585\) 0 0
\(586\) −1.11366 −0.0460049
\(587\) 30.5061 1.25912 0.629562 0.776951i \(-0.283234\pi\)
0.629562 + 0.776951i \(0.283234\pi\)
\(588\) 0 0
\(589\) −4.51850 −0.186182
\(590\) 34.3340 1.41351
\(591\) 0 0
\(592\) 8.36270 0.343705
\(593\) 32.6861 1.34226 0.671129 0.741341i \(-0.265810\pi\)
0.671129 + 0.741341i \(0.265810\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −34.4533 −1.41126
\(597\) 0 0
\(598\) −7.17744 −0.293507
\(599\) 20.3738 0.832451 0.416225 0.909262i \(-0.363353\pi\)
0.416225 + 0.909262i \(0.363353\pi\)
\(600\) 0 0
\(601\) 12.3891 0.505363 0.252682 0.967549i \(-0.418687\pi\)
0.252682 + 0.967549i \(0.418687\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −12.2067 −0.496683
\(605\) −24.7469 −1.00611
\(606\) 0 0
\(607\) −33.3480 −1.35355 −0.676776 0.736189i \(-0.736624\pi\)
−0.676776 + 0.736189i \(0.736624\pi\)
\(608\) −5.86237 −0.237751
\(609\) 0 0
\(610\) 7.78599 0.315245
\(611\) −25.8793 −1.04696
\(612\) 0 0
\(613\) −38.7985 −1.56706 −0.783528 0.621356i \(-0.786582\pi\)
−0.783528 + 0.621356i \(0.786582\pi\)
\(614\) −22.5025 −0.908126
\(615\) 0 0
\(616\) 0 0
\(617\) −1.98936 −0.0800887 −0.0400443 0.999198i \(-0.512750\pi\)
−0.0400443 + 0.999198i \(0.512750\pi\)
\(618\) 0 0
\(619\) 13.0014 0.522572 0.261286 0.965261i \(-0.415853\pi\)
0.261286 + 0.965261i \(0.415853\pi\)
\(620\) 27.6758 1.11149
\(621\) 0 0
\(622\) −3.29035 −0.131931
\(623\) 0 0
\(624\) 0 0
\(625\) 83.1093 3.32437
\(626\) 15.3611 0.613955
\(627\) 0 0
\(628\) −6.37391 −0.254347
\(629\) −5.28351 −0.210667
\(630\) 0 0
\(631\) −14.9918 −0.596814 −0.298407 0.954439i \(-0.596455\pi\)
−0.298407 + 0.954439i \(0.596455\pi\)
\(632\) −22.0987 −0.879040
\(633\) 0 0
\(634\) 6.62139 0.262969
\(635\) 13.2814 0.527056
\(636\) 0 0
\(637\) 0 0
\(638\) −22.6710 −0.897552
\(639\) 0 0
\(640\) 41.8905 1.65587
\(641\) −24.0547 −0.950105 −0.475053 0.879957i \(-0.657571\pi\)
−0.475053 + 0.879957i \(0.657571\pi\)
\(642\) 0 0
\(643\) −24.3676 −0.960964 −0.480482 0.877005i \(-0.659538\pi\)
−0.480482 + 0.877005i \(0.659538\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0.443136 0.0174350
\(647\) −38.2402 −1.50338 −0.751688 0.659519i \(-0.770760\pi\)
−0.751688 + 0.659519i \(0.770760\pi\)
\(648\) 0 0
\(649\) 43.9324 1.72450
\(650\) −21.6707 −0.849995
\(651\) 0 0
\(652\) 0.210952 0.00826151
\(653\) −21.1624 −0.828147 −0.414074 0.910243i \(-0.635894\pi\)
−0.414074 + 0.910243i \(0.635894\pi\)
\(654\) 0 0
\(655\) 15.8128 0.617858
\(656\) 2.03354 0.0793963
\(657\) 0 0
\(658\) 0 0
\(659\) −24.6069 −0.958548 −0.479274 0.877665i \(-0.659100\pi\)
−0.479274 + 0.877665i \(0.659100\pi\)
\(660\) 0 0
\(661\) 38.1953 1.48562 0.742812 0.669500i \(-0.233492\pi\)
0.742812 + 0.669500i \(0.233492\pi\)
\(662\) 9.05584 0.351965
\(663\) 0 0
\(664\) −10.9884 −0.426432
\(665\) 0 0
\(666\) 0 0
\(667\) 32.1816 1.24608
\(668\) 1.27175 0.0492054
\(669\) 0 0
\(670\) 18.1106 0.699673
\(671\) 9.96264 0.384603
\(672\) 0 0
\(673\) −28.0333 −1.08060 −0.540302 0.841471i \(-0.681690\pi\)
−0.540302 + 0.841471i \(0.681690\pi\)
\(674\) 20.7186 0.798050
\(675\) 0 0
\(676\) 11.7994 0.453824
\(677\) −5.23635 −0.201249 −0.100625 0.994924i \(-0.532084\pi\)
−0.100625 + 0.994924i \(0.532084\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −6.49454 −0.249054
\(681\) 0 0
\(682\) −13.9099 −0.532639
\(683\) 1.25171 0.0478955 0.0239478 0.999713i \(-0.492376\pi\)
0.0239478 + 0.999713i \(0.492376\pi\)
\(684\) 0 0
\(685\) 4.95209 0.189210
\(686\) 0 0
\(687\) 0 0
\(688\) −8.12126 −0.309620
\(689\) 9.64452 0.367427
\(690\) 0 0
\(691\) −50.8050 −1.93271 −0.966357 0.257204i \(-0.917199\pi\)
−0.966357 + 0.257204i \(0.917199\pi\)
\(692\) 34.8419 1.32449
\(693\) 0 0
\(694\) −0.744668 −0.0282672
\(695\) 18.1124 0.687043
\(696\) 0 0
\(697\) −1.28478 −0.0486645
\(698\) 23.7762 0.899941
\(699\) 0 0
\(700\) 0 0
\(701\) −0.998799 −0.0377241 −0.0188621 0.999822i \(-0.506004\pi\)
−0.0188621 + 0.999822i \(0.506004\pi\)
\(702\) 0 0
\(703\) −8.95446 −0.337724
\(704\) −10.3908 −0.391617
\(705\) 0 0
\(706\) −6.68698 −0.251668
\(707\) 0 0
\(708\) 0 0
\(709\) −13.9625 −0.524371 −0.262185 0.965017i \(-0.584443\pi\)
−0.262185 + 0.965017i \(0.584443\pi\)
\(710\) 26.6665 1.00078
\(711\) 0 0
\(712\) 9.78291 0.366630
\(713\) 19.7453 0.739467
\(714\) 0 0
\(715\) −38.2372 −1.42999
\(716\) −18.5909 −0.694774
\(717\) 0 0
\(718\) 16.2970 0.608200
\(719\) −18.5694 −0.692521 −0.346260 0.938138i \(-0.612549\pi\)
−0.346260 + 0.938138i \(0.612549\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0.751024 0.0279502
\(723\) 0 0
\(724\) −26.7138 −0.992811
\(725\) 97.1654 3.60863
\(726\) 0 0
\(727\) −32.1991 −1.19420 −0.597099 0.802168i \(-0.703680\pi\)
−0.597099 + 0.802168i \(0.703680\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 34.2111 1.26621
\(731\) 5.13097 0.189776
\(732\) 0 0
\(733\) 9.55623 0.352968 0.176484 0.984304i \(-0.443528\pi\)
0.176484 + 0.984304i \(0.443528\pi\)
\(734\) 9.59598 0.354194
\(735\) 0 0
\(736\) 25.6179 0.944287
\(737\) 23.1736 0.853609
\(738\) 0 0
\(739\) −20.2850 −0.746194 −0.373097 0.927792i \(-0.621704\pi\)
−0.373097 + 0.927792i \(0.621704\pi\)
\(740\) 54.8461 2.01618
\(741\) 0 0
\(742\) 0 0
\(743\) −0.965374 −0.0354161 −0.0177081 0.999843i \(-0.505637\pi\)
−0.0177081 + 0.999843i \(0.505637\pi\)
\(744\) 0 0
\(745\) −102.341 −3.74949
\(746\) −9.92722 −0.363461
\(747\) 0 0
\(748\) −3.47299 −0.126985
\(749\) 0 0
\(750\) 0 0
\(751\) −0.657779 −0.0240027 −0.0120013 0.999928i \(-0.503820\pi\)
−0.0120013 + 0.999928i \(0.503820\pi\)
\(752\) 11.0513 0.402999
\(753\) 0 0
\(754\) −12.0959 −0.440507
\(755\) −36.2591 −1.31960
\(756\) 0 0
\(757\) −1.47679 −0.0536749 −0.0268375 0.999640i \(-0.508544\pi\)
−0.0268375 + 0.999640i \(0.508544\pi\)
\(758\) −1.29752 −0.0471281
\(759\) 0 0
\(760\) −11.0069 −0.399262
\(761\) −18.4847 −0.670070 −0.335035 0.942206i \(-0.608748\pi\)
−0.335035 + 0.942206i \(0.608748\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −33.4418 −1.20988
\(765\) 0 0
\(766\) 3.64669 0.131760
\(767\) 23.4398 0.846362
\(768\) 0 0
\(769\) −4.34052 −0.156523 −0.0782617 0.996933i \(-0.524937\pi\)
−0.0782617 + 0.996933i \(0.524937\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −4.57847 −0.164783
\(773\) −33.5513 −1.20676 −0.603379 0.797455i \(-0.706179\pi\)
−0.603379 + 0.797455i \(0.706179\pi\)
\(774\) 0 0
\(775\) 59.6166 2.14149
\(776\) −5.44551 −0.195483
\(777\) 0 0
\(778\) −7.98328 −0.286214
\(779\) −2.17744 −0.0780147
\(780\) 0 0
\(781\) 34.1214 1.22096
\(782\) −1.93645 −0.0692473
\(783\) 0 0
\(784\) 0 0
\(785\) −18.9333 −0.675757
\(786\) 0 0
\(787\) −42.0571 −1.49917 −0.749587 0.661906i \(-0.769748\pi\)
−0.749587 + 0.661906i \(0.769748\pi\)
\(788\) −11.8493 −0.422112
\(789\) 0 0
\(790\) −27.4335 −0.976041
\(791\) 0 0
\(792\) 0 0
\(793\) 5.31549 0.188759
\(794\) 9.57660 0.339861
\(795\) 0 0
\(796\) 28.1483 0.997691
\(797\) −2.71101 −0.0960289 −0.0480145 0.998847i \(-0.515289\pi\)
−0.0480145 + 0.998847i \(0.515289\pi\)
\(798\) 0 0
\(799\) −6.98214 −0.247010
\(800\) 77.3475 2.73465
\(801\) 0 0
\(802\) −14.4582 −0.510538
\(803\) 43.7751 1.54479
\(804\) 0 0
\(805\) 0 0
\(806\) −7.42155 −0.261413
\(807\) 0 0
\(808\) 38.8638 1.36722
\(809\) −13.3158 −0.468159 −0.234079 0.972217i \(-0.575208\pi\)
−0.234079 + 0.972217i \(0.575208\pi\)
\(810\) 0 0
\(811\) −15.1310 −0.531320 −0.265660 0.964067i \(-0.585590\pi\)
−0.265660 + 0.964067i \(0.585590\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −27.5658 −0.966181
\(815\) 0.626618 0.0219495
\(816\) 0 0
\(817\) 8.69594 0.304232
\(818\) 2.35807 0.0824478
\(819\) 0 0
\(820\) 13.3368 0.465741
\(821\) 24.3734 0.850639 0.425319 0.905043i \(-0.360162\pi\)
0.425319 + 0.905043i \(0.360162\pi\)
\(822\) 0 0
\(823\) 11.7877 0.410892 0.205446 0.978668i \(-0.434135\pi\)
0.205446 + 0.978668i \(0.434135\pi\)
\(824\) −12.6285 −0.439934
\(825\) 0 0
\(826\) 0 0
\(827\) −17.5429 −0.610028 −0.305014 0.952348i \(-0.598661\pi\)
−0.305014 + 0.952348i \(0.598661\pi\)
\(828\) 0 0
\(829\) 50.9728 1.77036 0.885180 0.465249i \(-0.154035\pi\)
0.885180 + 0.465249i \(0.154035\pi\)
\(830\) −13.6411 −0.473488
\(831\) 0 0
\(832\) −5.54391 −0.192201
\(833\) 0 0
\(834\) 0 0
\(835\) 3.77764 0.130731
\(836\) −5.88600 −0.203572
\(837\) 0 0
\(838\) −9.37889 −0.323988
\(839\) 5.84311 0.201727 0.100863 0.994900i \(-0.467840\pi\)
0.100863 + 0.994900i \(0.467840\pi\)
\(840\) 0 0
\(841\) 25.2347 0.870163
\(842\) −10.9005 −0.375655
\(843\) 0 0
\(844\) −13.6284 −0.469109
\(845\) 35.0494 1.20574
\(846\) 0 0
\(847\) 0 0
\(848\) −4.11852 −0.141431
\(849\) 0 0
\(850\) −5.84669 −0.200540
\(851\) 39.1299 1.34136
\(852\) 0 0
\(853\) −37.0096 −1.26719 −0.633593 0.773667i \(-0.718421\pi\)
−0.633593 + 0.773667i \(0.718421\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 2.29315 0.0783784
\(857\) −40.1269 −1.37071 −0.685355 0.728209i \(-0.740353\pi\)
−0.685355 + 0.728209i \(0.740353\pi\)
\(858\) 0 0
\(859\) −14.4388 −0.492644 −0.246322 0.969188i \(-0.579222\pi\)
−0.246322 + 0.969188i \(0.579222\pi\)
\(860\) −53.2626 −1.81624
\(861\) 0 0
\(862\) −17.7746 −0.605405
\(863\) −30.6183 −1.04226 −0.521130 0.853477i \(-0.674489\pi\)
−0.521130 + 0.853477i \(0.674489\pi\)
\(864\) 0 0
\(865\) 103.496 3.51895
\(866\) 3.46907 0.117884
\(867\) 0 0
\(868\) 0 0
\(869\) −35.1028 −1.19078
\(870\) 0 0
\(871\) 12.3641 0.418941
\(872\) 2.86783 0.0971169
\(873\) 0 0
\(874\) −3.28188 −0.111011
\(875\) 0 0
\(876\) 0 0
\(877\) −16.0685 −0.542596 −0.271298 0.962495i \(-0.587453\pi\)
−0.271298 + 0.962495i \(0.587453\pi\)
\(878\) 14.2396 0.480564
\(879\) 0 0
\(880\) 16.3285 0.550435
\(881\) 40.2468 1.35595 0.677975 0.735085i \(-0.262858\pi\)
0.677975 + 0.735085i \(0.262858\pi\)
\(882\) 0 0
\(883\) −0.564426 −0.0189944 −0.00949722 0.999955i \(-0.503023\pi\)
−0.00949722 + 0.999955i \(0.503023\pi\)
\(884\) −1.85299 −0.0623227
\(885\) 0 0
\(886\) 16.8747 0.566915
\(887\) 35.5836 1.19478 0.597390 0.801951i \(-0.296204\pi\)
0.597390 + 0.801951i \(0.296204\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 12.1446 0.407087
\(891\) 0 0
\(892\) 27.1152 0.907883
\(893\) −11.8333 −0.395986
\(894\) 0 0
\(895\) −55.2229 −1.84590
\(896\) 0 0
\(897\) 0 0
\(898\) −11.8181 −0.394376
\(899\) 33.2762 1.10982
\(900\) 0 0
\(901\) 2.60206 0.0866872
\(902\) −6.70311 −0.223189
\(903\) 0 0
\(904\) −33.3299 −1.10854
\(905\) −79.3516 −2.63774
\(906\) 0 0
\(907\) 30.3682 1.00836 0.504179 0.863599i \(-0.331795\pi\)
0.504179 + 0.863599i \(0.331795\pi\)
\(908\) −29.4954 −0.978839
\(909\) 0 0
\(910\) 0 0
\(911\) −17.9947 −0.596191 −0.298096 0.954536i \(-0.596351\pi\)
−0.298096 + 0.954536i \(0.596351\pi\)
\(912\) 0 0
\(913\) −17.4546 −0.577662
\(914\) 17.1659 0.567797
\(915\) 0 0
\(916\) 10.0302 0.331407
\(917\) 0 0
\(918\) 0 0
\(919\) 41.9568 1.38403 0.692014 0.721884i \(-0.256724\pi\)
0.692014 + 0.721884i \(0.256724\pi\)
\(920\) 48.0988 1.58577
\(921\) 0 0
\(922\) −19.5282 −0.643127
\(923\) 18.2052 0.599232
\(924\) 0 0
\(925\) 118.144 3.88456
\(926\) 15.2819 0.502194
\(927\) 0 0
\(928\) 43.1730 1.41722
\(929\) 19.1145 0.627127 0.313563 0.949567i \(-0.398477\pi\)
0.313563 + 0.949567i \(0.398477\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 28.0393 0.918458
\(933\) 0 0
\(934\) −11.3631 −0.371813
\(935\) −10.3163 −0.337378
\(936\) 0 0
\(937\) 44.3779 1.44976 0.724881 0.688874i \(-0.241895\pi\)
0.724881 + 0.688874i \(0.241895\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 72.4789 2.36400
\(941\) 37.6172 1.22628 0.613142 0.789973i \(-0.289905\pi\)
0.613142 + 0.789973i \(0.289905\pi\)
\(942\) 0 0
\(943\) 9.51513 0.309855
\(944\) −10.0096 −0.325783
\(945\) 0 0
\(946\) 26.7699 0.870366
\(947\) −29.1696 −0.947883 −0.473942 0.880556i \(-0.657169\pi\)
−0.473942 + 0.880556i \(0.657169\pi\)
\(948\) 0 0
\(949\) 23.3559 0.758164
\(950\) −9.90893 −0.321488
\(951\) 0 0
\(952\) 0 0
\(953\) −25.0234 −0.810586 −0.405293 0.914187i \(-0.632830\pi\)
−0.405293 + 0.914187i \(0.632830\pi\)
\(954\) 0 0
\(955\) −99.3367 −3.21446
\(956\) −25.5681 −0.826933
\(957\) 0 0
\(958\) −20.9735 −0.677622
\(959\) 0 0
\(960\) 0 0
\(961\) −10.5831 −0.341392
\(962\) −14.7075 −0.474190
\(963\) 0 0
\(964\) 21.8651 0.704228
\(965\) −13.6000 −0.437801
\(966\) 0 0
\(967\) −28.8469 −0.927655 −0.463828 0.885926i \(-0.653524\pi\)
−0.463828 + 0.885926i \(0.653524\pi\)
\(968\) −14.9713 −0.481197
\(969\) 0 0
\(970\) −6.76010 −0.217054
\(971\) −3.19928 −0.102670 −0.0513348 0.998681i \(-0.516348\pi\)
−0.0513348 + 0.998681i \(0.516348\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0.496166 0.0158982
\(975\) 0 0
\(976\) −2.26989 −0.0726573
\(977\) 54.4969 1.74351 0.871755 0.489943i \(-0.162982\pi\)
0.871755 + 0.489943i \(0.162982\pi\)
\(978\) 0 0
\(979\) 15.5397 0.496651
\(980\) 0 0
\(981\) 0 0
\(982\) 3.82619 0.122099
\(983\) 5.45760 0.174070 0.0870352 0.996205i \(-0.472261\pi\)
0.0870352 + 0.996205i \(0.472261\pi\)
\(984\) 0 0
\(985\) −35.1974 −1.12148
\(986\) −3.26344 −0.103929
\(987\) 0 0
\(988\) −3.14043 −0.0999104
\(989\) −38.0002 −1.20834
\(990\) 0 0
\(991\) 34.2911 1.08929 0.544646 0.838666i \(-0.316664\pi\)
0.544646 + 0.838666i \(0.316664\pi\)
\(992\) 26.4891 0.841031
\(993\) 0 0
\(994\) 0 0
\(995\) 83.6127 2.65070
\(996\) 0 0
\(997\) 23.2138 0.735188 0.367594 0.929986i \(-0.380182\pi\)
0.367594 + 0.929986i \(0.380182\pi\)
\(998\) −9.61238 −0.304275
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8379.2.a.bu.1.3 4
3.2 odd 2 931.2.a.m.1.2 yes 4
7.6 odd 2 8379.2.a.bv.1.3 4
21.2 odd 6 931.2.f.n.704.3 8
21.5 even 6 931.2.f.o.704.3 8
21.11 odd 6 931.2.f.n.324.3 8
21.17 even 6 931.2.f.o.324.3 8
21.20 even 2 931.2.a.l.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
931.2.a.l.1.2 4 21.20 even 2
931.2.a.m.1.2 yes 4 3.2 odd 2
931.2.f.n.324.3 8 21.11 odd 6
931.2.f.n.704.3 8 21.2 odd 6
931.2.f.o.324.3 8 21.17 even 6
931.2.f.o.704.3 8 21.5 even 6
8379.2.a.bu.1.3 4 1.1 even 1 trivial
8379.2.a.bv.1.3 4 7.6 odd 2