Properties

Label 8379.2.a.bu.1.2
Level $8379$
Weight $2$
Character 8379.1
Self dual yes
Analytic conductor $66.907$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8379,2,Mod(1,8379)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8379.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8379, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8379 = 3^{2} \cdot 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8379.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,2,-8,0,0,-6,0,10,6,0,2,0,0,2,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.9066518536\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.5744.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 5x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 931)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(0.291367\) of defining polynomial
Character \(\chi\) \(=\) 8379.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.291367 q^{2} -1.91511 q^{4} -2.06574 q^{5} +1.14073 q^{8} +0.601888 q^{10} +4.94909 q^{11} -1.62374 q^{13} +3.49784 q^{16} -6.99010 q^{17} -1.00000 q^{19} +3.95611 q^{20} -1.44200 q^{22} +7.41294 q^{23} -0.732718 q^{25} +0.473104 q^{26} -3.88335 q^{29} -0.808361 q^{31} -3.30062 q^{32} +2.03668 q^{34} +4.10674 q^{37} +0.291367 q^{38} -2.35646 q^{40} -8.50709 q^{41} +7.31545 q^{43} -9.47803 q^{44} -2.15989 q^{46} -5.41950 q^{47} +0.213490 q^{50} +3.10963 q^{52} +1.99010 q^{53} -10.2235 q^{55} +1.13148 q^{58} -5.75522 q^{59} +11.3812 q^{61} +0.235529 q^{62} -6.03399 q^{64} +3.35422 q^{65} +13.9950 q^{67} +13.3868 q^{68} -6.51969 q^{71} +2.08982 q^{73} -1.19657 q^{74} +1.91511 q^{76} -2.31977 q^{79} -7.22563 q^{80} +2.47868 q^{82} +5.01753 q^{83} +14.4397 q^{85} -2.13148 q^{86} +5.64559 q^{88} +6.69441 q^{89} -14.1966 q^{92} +1.57906 q^{94} +2.06574 q^{95} -14.0663 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{4} - 8 q^{5} - 6 q^{8} + 10 q^{10} + 6 q^{11} + 2 q^{13} + 2 q^{16} - 8 q^{17} - 4 q^{19} - 14 q^{22} + 8 q^{23} + 20 q^{25} - 16 q^{26} - 2 q^{29} - 2 q^{32} - 22 q^{34} + 10 q^{37} + 22 q^{40}+ \cdots + 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.291367 −0.206028 −0.103014 0.994680i \(-0.532849\pi\)
−0.103014 + 0.994680i \(0.532849\pi\)
\(3\) 0 0
\(4\) −1.91511 −0.957553
\(5\) −2.06574 −0.923827 −0.461914 0.886925i \(-0.652837\pi\)
−0.461914 + 0.886925i \(0.652837\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 1.14073 0.403310
\(9\) 0 0
\(10\) 0.601888 0.190334
\(11\) 4.94909 1.49221 0.746104 0.665830i \(-0.231922\pi\)
0.746104 + 0.665830i \(0.231922\pi\)
\(12\) 0 0
\(13\) −1.62374 −0.450344 −0.225172 0.974319i \(-0.572294\pi\)
−0.225172 + 0.974319i \(0.572294\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 3.49784 0.874460
\(17\) −6.99010 −1.69535 −0.847674 0.530518i \(-0.821998\pi\)
−0.847674 + 0.530518i \(0.821998\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 3.95611 0.884613
\(21\) 0 0
\(22\) −1.44200 −0.307436
\(23\) 7.41294 1.54571 0.772853 0.634585i \(-0.218829\pi\)
0.772853 + 0.634585i \(0.218829\pi\)
\(24\) 0 0
\(25\) −0.732718 −0.146544
\(26\) 0.473104 0.0927833
\(27\) 0 0
\(28\) 0 0
\(29\) −3.88335 −0.721120 −0.360560 0.932736i \(-0.617414\pi\)
−0.360560 + 0.932736i \(0.617414\pi\)
\(30\) 0 0
\(31\) −0.808361 −0.145186 −0.0725929 0.997362i \(-0.523127\pi\)
−0.0725929 + 0.997362i \(0.523127\pi\)
\(32\) −3.30062 −0.583472
\(33\) 0 0
\(34\) 2.03668 0.349288
\(35\) 0 0
\(36\) 0 0
\(37\) 4.10674 0.675145 0.337572 0.941300i \(-0.390394\pi\)
0.337572 + 0.941300i \(0.390394\pi\)
\(38\) 0.291367 0.0472660
\(39\) 0 0
\(40\) −2.35646 −0.372588
\(41\) −8.50709 −1.32858 −0.664292 0.747473i \(-0.731267\pi\)
−0.664292 + 0.747473i \(0.731267\pi\)
\(42\) 0 0
\(43\) 7.31545 1.11560 0.557798 0.829977i \(-0.311646\pi\)
0.557798 + 0.829977i \(0.311646\pi\)
\(44\) −9.47803 −1.42887
\(45\) 0 0
\(46\) −2.15989 −0.318458
\(47\) −5.41950 −0.790515 −0.395258 0.918570i \(-0.629345\pi\)
−0.395258 + 0.918570i \(0.629345\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0.213490 0.0301920
\(51\) 0 0
\(52\) 3.10963 0.431228
\(53\) 1.99010 0.273361 0.136680 0.990615i \(-0.456357\pi\)
0.136680 + 0.990615i \(0.456357\pi\)
\(54\) 0 0
\(55\) −10.2235 −1.37854
\(56\) 0 0
\(57\) 0 0
\(58\) 1.13148 0.148571
\(59\) −5.75522 −0.749266 −0.374633 0.927173i \(-0.622231\pi\)
−0.374633 + 0.927173i \(0.622231\pi\)
\(60\) 0 0
\(61\) 11.3812 1.45721 0.728606 0.684933i \(-0.240169\pi\)
0.728606 + 0.684933i \(0.240169\pi\)
\(62\) 0.235529 0.0299123
\(63\) 0 0
\(64\) −6.03399 −0.754248
\(65\) 3.35422 0.416040
\(66\) 0 0
\(67\) 13.9950 1.70976 0.854882 0.518822i \(-0.173629\pi\)
0.854882 + 0.518822i \(0.173629\pi\)
\(68\) 13.3868 1.62338
\(69\) 0 0
\(70\) 0 0
\(71\) −6.51969 −0.773745 −0.386872 0.922133i \(-0.626445\pi\)
−0.386872 + 0.922133i \(0.626445\pi\)
\(72\) 0 0
\(73\) 2.08982 0.244595 0.122298 0.992493i \(-0.460974\pi\)
0.122298 + 0.992493i \(0.460974\pi\)
\(74\) −1.19657 −0.139098
\(75\) 0 0
\(76\) 1.91511 0.219678
\(77\) 0 0
\(78\) 0 0
\(79\) −2.31977 −0.260995 −0.130497 0.991449i \(-0.541657\pi\)
−0.130497 + 0.991449i \(0.541657\pi\)
\(80\) −7.22563 −0.807850
\(81\) 0 0
\(82\) 2.47868 0.273725
\(83\) 5.01753 0.550745 0.275373 0.961338i \(-0.411199\pi\)
0.275373 + 0.961338i \(0.411199\pi\)
\(84\) 0 0
\(85\) 14.4397 1.56621
\(86\) −2.13148 −0.229843
\(87\) 0 0
\(88\) 5.64559 0.601822
\(89\) 6.69441 0.709606 0.354803 0.934941i \(-0.384548\pi\)
0.354803 + 0.934941i \(0.384548\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −14.1966 −1.48009
\(93\) 0 0
\(94\) 1.57906 0.162868
\(95\) 2.06574 0.211940
\(96\) 0 0
\(97\) −14.0663 −1.42822 −0.714111 0.700033i \(-0.753169\pi\)
−0.714111 + 0.700033i \(0.753169\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 1.40323 0.140323
\(101\) 1.79414 0.178523 0.0892616 0.996008i \(-0.471549\pi\)
0.0892616 + 0.996008i \(0.471549\pi\)
\(102\) 0 0
\(103\) 16.9009 1.66529 0.832647 0.553805i \(-0.186825\pi\)
0.832647 + 0.553805i \(0.186825\pi\)
\(104\) −1.85225 −0.181628
\(105\) 0 0
\(106\) −0.579848 −0.0563199
\(107\) −9.00925 −0.870957 −0.435479 0.900199i \(-0.643421\pi\)
−0.435479 + 0.900199i \(0.643421\pi\)
\(108\) 0 0
\(109\) 7.00925 0.671365 0.335682 0.941975i \(-0.391033\pi\)
0.335682 + 0.941975i \(0.391033\pi\)
\(110\) 2.97880 0.284018
\(111\) 0 0
\(112\) 0 0
\(113\) 0.261701 0.0246188 0.0123094 0.999924i \(-0.496082\pi\)
0.0123094 + 0.999924i \(0.496082\pi\)
\(114\) 0 0
\(115\) −15.3132 −1.42796
\(116\) 7.43703 0.690511
\(117\) 0 0
\(118\) 1.67688 0.154369
\(119\) 0 0
\(120\) 0 0
\(121\) 13.4935 1.22668
\(122\) −3.31610 −0.300226
\(123\) 0 0
\(124\) 1.54810 0.139023
\(125\) 11.8423 1.05921
\(126\) 0 0
\(127\) −8.07337 −0.716395 −0.358198 0.933646i \(-0.616609\pi\)
−0.358198 + 0.933646i \(0.616609\pi\)
\(128\) 8.35934 0.738868
\(129\) 0 0
\(130\) −0.977309 −0.0857157
\(131\) 19.4327 1.69784 0.848922 0.528519i \(-0.177252\pi\)
0.848922 + 0.528519i \(0.177252\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −4.07769 −0.352259
\(135\) 0 0
\(136\) −7.97383 −0.683750
\(137\) 6.28146 0.536662 0.268331 0.963327i \(-0.413528\pi\)
0.268331 + 0.963327i \(0.413528\pi\)
\(138\) 0 0
\(139\) 18.1959 1.54336 0.771679 0.636012i \(-0.219417\pi\)
0.771679 + 0.636012i \(0.219417\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 1.89962 0.159413
\(143\) −8.03603 −0.672007
\(144\) 0 0
\(145\) 8.02200 0.666191
\(146\) −0.608906 −0.0503934
\(147\) 0 0
\(148\) −7.86485 −0.646487
\(149\) −8.75806 −0.717488 −0.358744 0.933436i \(-0.616795\pi\)
−0.358744 + 0.933436i \(0.616795\pi\)
\(150\) 0 0
\(151\) −12.0445 −0.980167 −0.490084 0.871675i \(-0.663034\pi\)
−0.490084 + 0.871675i \(0.663034\pi\)
\(152\) −1.14073 −0.0925256
\(153\) 0 0
\(154\) 0 0
\(155\) 1.66986 0.134127
\(156\) 0 0
\(157\) −4.27588 −0.341253 −0.170626 0.985336i \(-0.554579\pi\)
−0.170626 + 0.985336i \(0.554579\pi\)
\(158\) 0.675905 0.0537721
\(159\) 0 0
\(160\) 6.81822 0.539028
\(161\) 0 0
\(162\) 0 0
\(163\) −9.02678 −0.707032 −0.353516 0.935428i \(-0.615014\pi\)
−0.353516 + 0.935428i \(0.615014\pi\)
\(164\) 16.2920 1.27219
\(165\) 0 0
\(166\) −1.46194 −0.113469
\(167\) −21.2318 −1.64297 −0.821484 0.570232i \(-0.806853\pi\)
−0.821484 + 0.570232i \(0.806853\pi\)
\(168\) 0 0
\(169\) −10.3635 −0.797190
\(170\) −4.20726 −0.322682
\(171\) 0 0
\(172\) −14.0099 −1.06824
\(173\) 6.80069 0.517047 0.258524 0.966005i \(-0.416764\pi\)
0.258524 + 0.966005i \(0.416764\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 17.3111 1.30488
\(177\) 0 0
\(178\) −1.95053 −0.146198
\(179\) −19.2722 −1.44047 −0.720235 0.693730i \(-0.755966\pi\)
−0.720235 + 0.693730i \(0.755966\pi\)
\(180\) 0 0
\(181\) 20.5508 1.52753 0.763764 0.645495i \(-0.223349\pi\)
0.763764 + 0.645495i \(0.223349\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 8.45618 0.623398
\(185\) −8.48347 −0.623717
\(186\) 0 0
\(187\) −34.5946 −2.52981
\(188\) 10.3789 0.756960
\(189\) 0 0
\(190\) −0.601888 −0.0436656
\(191\) 4.48366 0.324426 0.162213 0.986756i \(-0.448137\pi\)
0.162213 + 0.986756i \(0.448137\pi\)
\(192\) 0 0
\(193\) −25.0290 −1.80163 −0.900814 0.434205i \(-0.857029\pi\)
−0.900814 + 0.434205i \(0.857029\pi\)
\(194\) 4.09847 0.294253
\(195\) 0 0
\(196\) 0 0
\(197\) 0.100378 0.00715167 0.00357583 0.999994i \(-0.498862\pi\)
0.00357583 + 0.999994i \(0.498862\pi\)
\(198\) 0 0
\(199\) −26.9299 −1.90901 −0.954506 0.298191i \(-0.903617\pi\)
−0.954506 + 0.298191i \(0.903617\pi\)
\(200\) −0.835834 −0.0591024
\(201\) 0 0
\(202\) −0.522752 −0.0367807
\(203\) 0 0
\(204\) 0 0
\(205\) 17.5734 1.22738
\(206\) −4.92436 −0.343096
\(207\) 0 0
\(208\) −5.67958 −0.393808
\(209\) −4.94909 −0.342336
\(210\) 0 0
\(211\) 14.5345 1.00060 0.500299 0.865853i \(-0.333223\pi\)
0.500299 + 0.865853i \(0.333223\pi\)
\(212\) −3.81125 −0.261757
\(213\) 0 0
\(214\) 2.62500 0.179441
\(215\) −15.1118 −1.03062
\(216\) 0 0
\(217\) 0 0
\(218\) −2.04226 −0.138320
\(219\) 0 0
\(220\) 19.5792 1.32003
\(221\) 11.3501 0.763490
\(222\) 0 0
\(223\) −2.30829 −0.154574 −0.0772872 0.997009i \(-0.524626\pi\)
−0.0772872 + 0.997009i \(0.524626\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −0.0762511 −0.00507215
\(227\) −19.8522 −1.31764 −0.658819 0.752302i \(-0.728944\pi\)
−0.658819 + 0.752302i \(0.728944\pi\)
\(228\) 0 0
\(229\) 17.4271 1.15162 0.575808 0.817585i \(-0.304687\pi\)
0.575808 + 0.817585i \(0.304687\pi\)
\(230\) 4.46176 0.294200
\(231\) 0 0
\(232\) −4.42986 −0.290835
\(233\) −8.89228 −0.582553 −0.291276 0.956639i \(-0.594080\pi\)
−0.291276 + 0.956639i \(0.594080\pi\)
\(234\) 0 0
\(235\) 11.1953 0.730300
\(236\) 11.0219 0.717461
\(237\) 0 0
\(238\) 0 0
\(239\) 10.9234 0.706575 0.353287 0.935515i \(-0.385064\pi\)
0.353287 + 0.935515i \(0.385064\pi\)
\(240\) 0 0
\(241\) 5.18397 0.333929 0.166964 0.985963i \(-0.446603\pi\)
0.166964 + 0.985963i \(0.446603\pi\)
\(242\) −3.93156 −0.252731
\(243\) 0 0
\(244\) −21.7962 −1.39536
\(245\) 0 0
\(246\) 0 0
\(247\) 1.62374 0.103316
\(248\) −0.922123 −0.0585549
\(249\) 0 0
\(250\) −3.45046 −0.218226
\(251\) −12.2672 −0.774301 −0.387151 0.922016i \(-0.626541\pi\)
−0.387151 + 0.922016i \(0.626541\pi\)
\(252\) 0 0
\(253\) 36.6873 2.30651
\(254\) 2.35231 0.147597
\(255\) 0 0
\(256\) 9.63234 0.602021
\(257\) 22.3740 1.39565 0.697825 0.716268i \(-0.254151\pi\)
0.697825 + 0.716268i \(0.254151\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −6.42369 −0.398380
\(261\) 0 0
\(262\) −5.66205 −0.349802
\(263\) −9.07625 −0.559666 −0.279833 0.960049i \(-0.590279\pi\)
−0.279833 + 0.960049i \(0.590279\pi\)
\(264\) 0 0
\(265\) −4.11102 −0.252538
\(266\) 0 0
\(267\) 0 0
\(268\) −26.8020 −1.63719
\(269\) −18.8198 −1.14747 −0.573733 0.819042i \(-0.694505\pi\)
−0.573733 + 0.819042i \(0.694505\pi\)
\(270\) 0 0
\(271\) 24.9815 1.51752 0.758758 0.651373i \(-0.225807\pi\)
0.758758 + 0.651373i \(0.225807\pi\)
\(272\) −24.4502 −1.48251
\(273\) 0 0
\(274\) −1.83021 −0.110567
\(275\) −3.62629 −0.218673
\(276\) 0 0
\(277\) 20.8741 1.25420 0.627100 0.778939i \(-0.284242\pi\)
0.627100 + 0.778939i \(0.284242\pi\)
\(278\) −5.30169 −0.317974
\(279\) 0 0
\(280\) 0 0
\(281\) −29.3117 −1.74859 −0.874296 0.485393i \(-0.838676\pi\)
−0.874296 + 0.485393i \(0.838676\pi\)
\(282\) 0 0
\(283\) 0.566275 0.0336616 0.0168308 0.999858i \(-0.494642\pi\)
0.0168308 + 0.999858i \(0.494642\pi\)
\(284\) 12.4859 0.740901
\(285\) 0 0
\(286\) 2.34143 0.138452
\(287\) 0 0
\(288\) 0 0
\(289\) 31.8615 1.87420
\(290\) −2.33734 −0.137254
\(291\) 0 0
\(292\) −4.00223 −0.234213
\(293\) −25.2701 −1.47630 −0.738148 0.674639i \(-0.764300\pi\)
−0.738148 + 0.674639i \(0.764300\pi\)
\(294\) 0 0
\(295\) 11.8888 0.692192
\(296\) 4.68470 0.272292
\(297\) 0 0
\(298\) 2.55181 0.147822
\(299\) −12.0367 −0.696099
\(300\) 0 0
\(301\) 0 0
\(302\) 3.50937 0.201941
\(303\) 0 0
\(304\) −3.49784 −0.200615
\(305\) −23.5106 −1.34621
\(306\) 0 0
\(307\) −6.37114 −0.363620 −0.181810 0.983334i \(-0.558196\pi\)
−0.181810 + 0.983334i \(0.558196\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −0.486543 −0.0276338
\(311\) −0.295689 −0.0167670 −0.00838348 0.999965i \(-0.502669\pi\)
−0.00838348 + 0.999965i \(0.502669\pi\)
\(312\) 0 0
\(313\) −20.3679 −1.15126 −0.575632 0.817709i \(-0.695244\pi\)
−0.575632 + 0.817709i \(0.695244\pi\)
\(314\) 1.24585 0.0703074
\(315\) 0 0
\(316\) 4.44261 0.249916
\(317\) 30.5160 1.71395 0.856974 0.515360i \(-0.172342\pi\)
0.856974 + 0.515360i \(0.172342\pi\)
\(318\) 0 0
\(319\) −19.2191 −1.07606
\(320\) 12.4646 0.696795
\(321\) 0 0
\(322\) 0 0
\(323\) 6.99010 0.388939
\(324\) 0 0
\(325\) 1.18974 0.0659950
\(326\) 2.63010 0.145668
\(327\) 0 0
\(328\) −9.70431 −0.535831
\(329\) 0 0
\(330\) 0 0
\(331\) −28.2814 −1.55449 −0.777244 0.629200i \(-0.783383\pi\)
−0.777244 + 0.629200i \(0.783383\pi\)
\(332\) −9.60910 −0.527368
\(333\) 0 0
\(334\) 6.18625 0.338496
\(335\) −28.9101 −1.57953
\(336\) 0 0
\(337\) 0.0981441 0.00534625 0.00267312 0.999996i \(-0.499149\pi\)
0.00267312 + 0.999996i \(0.499149\pi\)
\(338\) 3.01957 0.164243
\(339\) 0 0
\(340\) −27.6536 −1.49973
\(341\) −4.00065 −0.216647
\(342\) 0 0
\(343\) 0 0
\(344\) 8.34497 0.449931
\(345\) 0 0
\(346\) −1.98150 −0.106526
\(347\) 1.07373 0.0576410 0.0288205 0.999585i \(-0.490825\pi\)
0.0288205 + 0.999585i \(0.490825\pi\)
\(348\) 0 0
\(349\) −7.94431 −0.425249 −0.212625 0.977134i \(-0.568201\pi\)
−0.212625 + 0.977134i \(0.568201\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −16.3351 −0.870662
\(353\) −8.75810 −0.466147 −0.233073 0.972459i \(-0.574878\pi\)
−0.233073 + 0.972459i \(0.574878\pi\)
\(354\) 0 0
\(355\) 13.4680 0.714806
\(356\) −12.8205 −0.679485
\(357\) 0 0
\(358\) 5.61527 0.296776
\(359\) −8.88559 −0.468963 −0.234482 0.972121i \(-0.575339\pi\)
−0.234482 + 0.972121i \(0.575339\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) −5.98782 −0.314713
\(363\) 0 0
\(364\) 0 0
\(365\) −4.31703 −0.225964
\(366\) 0 0
\(367\) −14.0644 −0.734158 −0.367079 0.930190i \(-0.619642\pi\)
−0.367079 + 0.930190i \(0.619642\pi\)
\(368\) 25.9293 1.35166
\(369\) 0 0
\(370\) 2.47180 0.128503
\(371\) 0 0
\(372\) 0 0
\(373\) −36.8568 −1.90837 −0.954187 0.299212i \(-0.903276\pi\)
−0.954187 + 0.299212i \(0.903276\pi\)
\(374\) 10.0797 0.521211
\(375\) 0 0
\(376\) −6.18220 −0.318823
\(377\) 6.30555 0.324752
\(378\) 0 0
\(379\) −17.2907 −0.888164 −0.444082 0.895986i \(-0.646470\pi\)
−0.444082 + 0.895986i \(0.646470\pi\)
\(380\) −3.95611 −0.202944
\(381\) 0 0
\(382\) −1.30639 −0.0668407
\(383\) −23.6224 −1.20705 −0.603525 0.797344i \(-0.706238\pi\)
−0.603525 + 0.797344i \(0.706238\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 7.29263 0.371185
\(387\) 0 0
\(388\) 26.9385 1.36760
\(389\) 2.81761 0.142859 0.0714293 0.997446i \(-0.477244\pi\)
0.0714293 + 0.997446i \(0.477244\pi\)
\(390\) 0 0
\(391\) −51.8172 −2.62051
\(392\) 0 0
\(393\) 0 0
\(394\) −0.0292469 −0.00147344
\(395\) 4.79205 0.241114
\(396\) 0 0
\(397\) −24.0012 −1.20459 −0.602293 0.798275i \(-0.705746\pi\)
−0.602293 + 0.798275i \(0.705746\pi\)
\(398\) 7.84649 0.393309
\(399\) 0 0
\(400\) −2.56293 −0.128146
\(401\) −33.3740 −1.66662 −0.833309 0.552808i \(-0.813556\pi\)
−0.833309 + 0.552808i \(0.813556\pi\)
\(402\) 0 0
\(403\) 1.31257 0.0653836
\(404\) −3.43596 −0.170945
\(405\) 0 0
\(406\) 0 0
\(407\) 20.3247 1.00746
\(408\) 0 0
\(409\) 28.4148 1.40502 0.702511 0.711673i \(-0.252062\pi\)
0.702511 + 0.711673i \(0.252062\pi\)
\(410\) −5.12032 −0.252874
\(411\) 0 0
\(412\) −32.3670 −1.59461
\(413\) 0 0
\(414\) 0 0
\(415\) −10.3649 −0.508793
\(416\) 5.35934 0.262763
\(417\) 0 0
\(418\) 1.44200 0.0705306
\(419\) 5.95276 0.290812 0.145406 0.989372i \(-0.453551\pi\)
0.145406 + 0.989372i \(0.453551\pi\)
\(420\) 0 0
\(421\) −2.95244 −0.143893 −0.0719465 0.997408i \(-0.522921\pi\)
−0.0719465 + 0.997408i \(0.522921\pi\)
\(422\) −4.23488 −0.206151
\(423\) 0 0
\(424\) 2.27017 0.110249
\(425\) 5.12177 0.248442
\(426\) 0 0
\(427\) 0 0
\(428\) 17.2537 0.833987
\(429\) 0 0
\(430\) 4.40308 0.212336
\(431\) −9.97033 −0.480254 −0.240127 0.970741i \(-0.577189\pi\)
−0.240127 + 0.970741i \(0.577189\pi\)
\(432\) 0 0
\(433\) 19.1090 0.918319 0.459159 0.888354i \(-0.348151\pi\)
0.459159 + 0.888354i \(0.348151\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −13.4235 −0.642867
\(437\) −7.41294 −0.354609
\(438\) 0 0
\(439\) −7.30681 −0.348735 −0.174367 0.984681i \(-0.555788\pi\)
−0.174367 + 0.984681i \(0.555788\pi\)
\(440\) −11.6623 −0.555979
\(441\) 0 0
\(442\) −3.30704 −0.157300
\(443\) 16.4639 0.782221 0.391111 0.920344i \(-0.372091\pi\)
0.391111 + 0.920344i \(0.372091\pi\)
\(444\) 0 0
\(445\) −13.8289 −0.655553
\(446\) 0.672558 0.0318466
\(447\) 0 0
\(448\) 0 0
\(449\) 9.71849 0.458644 0.229322 0.973351i \(-0.426349\pi\)
0.229322 + 0.973351i \(0.426349\pi\)
\(450\) 0 0
\(451\) −42.1024 −1.98252
\(452\) −0.501186 −0.0235738
\(453\) 0 0
\(454\) 5.78428 0.271470
\(455\) 0 0
\(456\) 0 0
\(457\) −11.0016 −0.514632 −0.257316 0.966327i \(-0.582838\pi\)
−0.257316 + 0.966327i \(0.582838\pi\)
\(458\) −5.07769 −0.237265
\(459\) 0 0
\(460\) 29.3264 1.36735
\(461\) −28.6779 −1.33567 −0.667833 0.744311i \(-0.732778\pi\)
−0.667833 + 0.744311i \(0.732778\pi\)
\(462\) 0 0
\(463\) −33.7722 −1.56953 −0.784765 0.619794i \(-0.787216\pi\)
−0.784765 + 0.619794i \(0.787216\pi\)
\(464\) −13.5833 −0.630591
\(465\) 0 0
\(466\) 2.59092 0.120022
\(467\) −16.8477 −0.779620 −0.389810 0.920895i \(-0.627459\pi\)
−0.389810 + 0.920895i \(0.627459\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −3.26193 −0.150462
\(471\) 0 0
\(472\) −6.56516 −0.302186
\(473\) 36.2048 1.66470
\(474\) 0 0
\(475\) 0.732718 0.0336194
\(476\) 0 0
\(477\) 0 0
\(478\) −3.18271 −0.145574
\(479\) −23.0450 −1.05295 −0.526476 0.850190i \(-0.676487\pi\)
−0.526476 + 0.850190i \(0.676487\pi\)
\(480\) 0 0
\(481\) −6.66828 −0.304047
\(482\) −1.51044 −0.0687985
\(483\) 0 0
\(484\) −25.8415 −1.17461
\(485\) 29.0574 1.31943
\(486\) 0 0
\(487\) −21.9468 −0.994505 −0.497253 0.867606i \(-0.665658\pi\)
−0.497253 + 0.867606i \(0.665658\pi\)
\(488\) 12.9829 0.587708
\(489\) 0 0
\(490\) 0 0
\(491\) −10.1883 −0.459791 −0.229896 0.973215i \(-0.573838\pi\)
−0.229896 + 0.973215i \(0.573838\pi\)
\(492\) 0 0
\(493\) 27.1450 1.22255
\(494\) −0.473104 −0.0212859
\(495\) 0 0
\(496\) −2.82752 −0.126959
\(497\) 0 0
\(498\) 0 0
\(499\) 16.4300 0.735508 0.367754 0.929923i \(-0.380127\pi\)
0.367754 + 0.929923i \(0.380127\pi\)
\(500\) −22.6793 −1.01425
\(501\) 0 0
\(502\) 3.57427 0.159527
\(503\) 2.13595 0.0952373 0.0476186 0.998866i \(-0.484837\pi\)
0.0476186 + 0.998866i \(0.484837\pi\)
\(504\) 0 0
\(505\) −3.70622 −0.164925
\(506\) −10.6895 −0.475205
\(507\) 0 0
\(508\) 15.4613 0.685986
\(509\) −24.2247 −1.07374 −0.536869 0.843665i \(-0.680393\pi\)
−0.536869 + 0.843665i \(0.680393\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −19.5252 −0.862901
\(513\) 0 0
\(514\) −6.51904 −0.287542
\(515\) −34.9128 −1.53844
\(516\) 0 0
\(517\) −26.8216 −1.17961
\(518\) 0 0
\(519\) 0 0
\(520\) 3.82627 0.167793
\(521\) −7.56441 −0.331403 −0.165701 0.986176i \(-0.552989\pi\)
−0.165701 + 0.986176i \(0.552989\pi\)
\(522\) 0 0
\(523\) 11.7441 0.513532 0.256766 0.966474i \(-0.417343\pi\)
0.256766 + 0.966474i \(0.417343\pi\)
\(524\) −37.2157 −1.62577
\(525\) 0 0
\(526\) 2.64452 0.115307
\(527\) 5.65052 0.246140
\(528\) 0 0
\(529\) 31.9517 1.38921
\(530\) 1.19782 0.0520298
\(531\) 0 0
\(532\) 0 0
\(533\) 13.8133 0.598320
\(534\) 0 0
\(535\) 18.6108 0.804614
\(536\) 15.9646 0.689565
\(537\) 0 0
\(538\) 5.48348 0.236410
\(539\) 0 0
\(540\) 0 0
\(541\) −4.44391 −0.191059 −0.0955293 0.995427i \(-0.530454\pi\)
−0.0955293 + 0.995427i \(0.530454\pi\)
\(542\) −7.27877 −0.312650
\(543\) 0 0
\(544\) 23.0716 0.989189
\(545\) −14.4793 −0.620225
\(546\) 0 0
\(547\) −8.15542 −0.348700 −0.174350 0.984684i \(-0.555782\pi\)
−0.174350 + 0.984684i \(0.555782\pi\)
\(548\) −12.0297 −0.513882
\(549\) 0 0
\(550\) 1.05658 0.0450527
\(551\) 3.88335 0.165436
\(552\) 0 0
\(553\) 0 0
\(554\) −6.08201 −0.258400
\(555\) 0 0
\(556\) −34.8471 −1.47785
\(557\) −5.23473 −0.221803 −0.110901 0.993831i \(-0.535374\pi\)
−0.110901 + 0.993831i \(0.535374\pi\)
\(558\) 0 0
\(559\) −11.8784 −0.502402
\(560\) 0 0
\(561\) 0 0
\(562\) 8.54047 0.360258
\(563\) 25.3904 1.07008 0.535040 0.844827i \(-0.320297\pi\)
0.535040 + 0.844827i \(0.320297\pi\)
\(564\) 0 0
\(565\) −0.540607 −0.0227435
\(566\) −0.164994 −0.00693521
\(567\) 0 0
\(568\) −7.43722 −0.312059
\(569\) 7.18156 0.301067 0.150533 0.988605i \(-0.451901\pi\)
0.150533 + 0.988605i \(0.451901\pi\)
\(570\) 0 0
\(571\) 8.94189 0.374206 0.187103 0.982340i \(-0.440090\pi\)
0.187103 + 0.982340i \(0.440090\pi\)
\(572\) 15.3898 0.643482
\(573\) 0 0
\(574\) 0 0
\(575\) −5.43159 −0.226513
\(576\) 0 0
\(577\) −12.7644 −0.531390 −0.265695 0.964057i \(-0.585601\pi\)
−0.265695 + 0.964057i \(0.585601\pi\)
\(578\) −9.28337 −0.386137
\(579\) 0 0
\(580\) −15.3630 −0.637913
\(581\) 0 0
\(582\) 0 0
\(583\) 9.84918 0.407911
\(584\) 2.38393 0.0986477
\(585\) 0 0
\(586\) 7.36288 0.304158
\(587\) 24.2518 1.00098 0.500489 0.865743i \(-0.333153\pi\)
0.500489 + 0.865743i \(0.333153\pi\)
\(588\) 0 0
\(589\) 0.808361 0.0333079
\(590\) −3.46400 −0.142611
\(591\) 0 0
\(592\) 14.3647 0.590387
\(593\) −3.85095 −0.158140 −0.0790698 0.996869i \(-0.525195\pi\)
−0.0790698 + 0.996869i \(0.525195\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 16.7726 0.687033
\(597\) 0 0
\(598\) 3.50709 0.143416
\(599\) −37.2717 −1.52288 −0.761440 0.648235i \(-0.775507\pi\)
−0.761440 + 0.648235i \(0.775507\pi\)
\(600\) 0 0
\(601\) 2.99633 0.122223 0.0611114 0.998131i \(-0.480536\pi\)
0.0611114 + 0.998131i \(0.480536\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 23.0665 0.938562
\(605\) −27.8741 −1.13324
\(606\) 0 0
\(607\) −25.3423 −1.02861 −0.514306 0.857607i \(-0.671950\pi\)
−0.514306 + 0.857607i \(0.671950\pi\)
\(608\) 3.30062 0.133858
\(609\) 0 0
\(610\) 6.85021 0.277357
\(611\) 8.79985 0.356004
\(612\) 0 0
\(613\) 11.2393 0.453953 0.226976 0.973900i \(-0.427116\pi\)
0.226976 + 0.973900i \(0.427116\pi\)
\(614\) 1.85634 0.0749158
\(615\) 0 0
\(616\) 0 0
\(617\) 16.1879 0.651701 0.325851 0.945421i \(-0.394349\pi\)
0.325851 + 0.945421i \(0.394349\pi\)
\(618\) 0 0
\(619\) −14.6528 −0.588944 −0.294472 0.955660i \(-0.595144\pi\)
−0.294472 + 0.955660i \(0.595144\pi\)
\(620\) −3.19796 −0.128433
\(621\) 0 0
\(622\) 0.0861539 0.00345446
\(623\) 0 0
\(624\) 0 0
\(625\) −20.7995 −0.831981
\(626\) 5.93454 0.237192
\(627\) 0 0
\(628\) 8.18877 0.326767
\(629\) −28.7065 −1.14460
\(630\) 0 0
\(631\) −23.3309 −0.928790 −0.464395 0.885628i \(-0.653728\pi\)
−0.464395 + 0.885628i \(0.653728\pi\)
\(632\) −2.64624 −0.105262
\(633\) 0 0
\(634\) −8.89134 −0.353120
\(635\) 16.6775 0.661825
\(636\) 0 0
\(637\) 0 0
\(638\) 5.59980 0.221698
\(639\) 0 0
\(640\) −17.2682 −0.682587
\(641\) −15.1832 −0.599699 −0.299850 0.953986i \(-0.596937\pi\)
−0.299850 + 0.953986i \(0.596937\pi\)
\(642\) 0 0
\(643\) 31.7842 1.25345 0.626723 0.779242i \(-0.284396\pi\)
0.626723 + 0.779242i \(0.284396\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −2.03668 −0.0801322
\(647\) −13.3767 −0.525893 −0.262947 0.964810i \(-0.584694\pi\)
−0.262947 + 0.964810i \(0.584694\pi\)
\(648\) 0 0
\(649\) −28.4831 −1.11806
\(650\) −0.346651 −0.0135968
\(651\) 0 0
\(652\) 17.2872 0.677020
\(653\) 27.3705 1.07109 0.535544 0.844507i \(-0.320106\pi\)
0.535544 + 0.844507i \(0.320106\pi\)
\(654\) 0 0
\(655\) −40.1429 −1.56851
\(656\) −29.7564 −1.16179
\(657\) 0 0
\(658\) 0 0
\(659\) −47.6905 −1.85776 −0.928879 0.370383i \(-0.879226\pi\)
−0.928879 + 0.370383i \(0.879226\pi\)
\(660\) 0 0
\(661\) −16.8217 −0.654289 −0.327144 0.944974i \(-0.606086\pi\)
−0.327144 + 0.944974i \(0.606086\pi\)
\(662\) 8.24027 0.320267
\(663\) 0 0
\(664\) 5.72366 0.222121
\(665\) 0 0
\(666\) 0 0
\(667\) −28.7871 −1.11464
\(668\) 40.6612 1.57323
\(669\) 0 0
\(670\) 8.42344 0.325426
\(671\) 56.3266 2.17446
\(672\) 0 0
\(673\) 14.1611 0.545870 0.272935 0.962032i \(-0.412006\pi\)
0.272935 + 0.962032i \(0.412006\pi\)
\(674\) −0.0285959 −0.00110147
\(675\) 0 0
\(676\) 19.8471 0.763352
\(677\) 5.05314 0.194208 0.0971040 0.995274i \(-0.469042\pi\)
0.0971040 + 0.995274i \(0.469042\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 16.4719 0.631667
\(681\) 0 0
\(682\) 1.16566 0.0446353
\(683\) −20.3359 −0.778130 −0.389065 0.921210i \(-0.627202\pi\)
−0.389065 + 0.921210i \(0.627202\pi\)
\(684\) 0 0
\(685\) −12.9759 −0.495783
\(686\) 0 0
\(687\) 0 0
\(688\) 25.5883 0.975544
\(689\) −3.23140 −0.123106
\(690\) 0 0
\(691\) −23.1140 −0.879300 −0.439650 0.898169i \(-0.644897\pi\)
−0.439650 + 0.898169i \(0.644897\pi\)
\(692\) −13.0240 −0.495100
\(693\) 0 0
\(694\) −0.312850 −0.0118756
\(695\) −37.5880 −1.42580
\(696\) 0 0
\(697\) 59.4654 2.25241
\(698\) 2.31471 0.0876130
\(699\) 0 0
\(700\) 0 0
\(701\) 50.1400 1.89376 0.946882 0.321583i \(-0.104215\pi\)
0.946882 + 0.321583i \(0.104215\pi\)
\(702\) 0 0
\(703\) −4.10674 −0.154889
\(704\) −29.8628 −1.12550
\(705\) 0 0
\(706\) 2.55182 0.0960391
\(707\) 0 0
\(708\) 0 0
\(709\) −3.80739 −0.142989 −0.0714947 0.997441i \(-0.522777\pi\)
−0.0714947 + 0.997441i \(0.522777\pi\)
\(710\) −3.92412 −0.147270
\(711\) 0 0
\(712\) 7.63653 0.286191
\(713\) −5.99233 −0.224415
\(714\) 0 0
\(715\) 16.6004 0.620818
\(716\) 36.9082 1.37933
\(717\) 0 0
\(718\) 2.58897 0.0966193
\(719\) 10.7018 0.399108 0.199554 0.979887i \(-0.436051\pi\)
0.199554 + 0.979887i \(0.436051\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −0.291367 −0.0108436
\(723\) 0 0
\(724\) −39.3569 −1.46269
\(725\) 2.84540 0.105676
\(726\) 0 0
\(727\) −22.1589 −0.821829 −0.410914 0.911674i \(-0.634790\pi\)
−0.410914 + 0.911674i \(0.634790\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 1.25784 0.0465548
\(731\) −51.1357 −1.89132
\(732\) 0 0
\(733\) 37.3419 1.37925 0.689627 0.724165i \(-0.257775\pi\)
0.689627 + 0.724165i \(0.257775\pi\)
\(734\) 4.09791 0.151257
\(735\) 0 0
\(736\) −24.4673 −0.901877
\(737\) 69.2627 2.55132
\(738\) 0 0
\(739\) −16.0538 −0.590548 −0.295274 0.955413i \(-0.595411\pi\)
−0.295274 + 0.955413i \(0.595411\pi\)
\(740\) 16.2467 0.597242
\(741\) 0 0
\(742\) 0 0
\(743\) −24.6993 −0.906131 −0.453065 0.891477i \(-0.649670\pi\)
−0.453065 + 0.891477i \(0.649670\pi\)
\(744\) 0 0
\(745\) 18.0919 0.662835
\(746\) 10.7389 0.393177
\(747\) 0 0
\(748\) 66.2524 2.42243
\(749\) 0 0
\(750\) 0 0
\(751\) 26.1921 0.955762 0.477881 0.878425i \(-0.341405\pi\)
0.477881 + 0.878425i \(0.341405\pi\)
\(752\) −18.9565 −0.691274
\(753\) 0 0
\(754\) −1.83723 −0.0669079
\(755\) 24.8808 0.905505
\(756\) 0 0
\(757\) 23.2718 0.845826 0.422913 0.906170i \(-0.361008\pi\)
0.422913 + 0.906170i \(0.361008\pi\)
\(758\) 5.03794 0.182986
\(759\) 0 0
\(760\) 2.35646 0.0854776
\(761\) −34.5434 −1.25220 −0.626099 0.779744i \(-0.715349\pi\)
−0.626099 + 0.779744i \(0.715349\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −8.58668 −0.310655
\(765\) 0 0
\(766\) 6.88280 0.248686
\(767\) 9.34497 0.337427
\(768\) 0 0
\(769\) 11.1106 0.400659 0.200329 0.979729i \(-0.435799\pi\)
0.200329 + 0.979729i \(0.435799\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 47.9332 1.72515
\(773\) −8.30414 −0.298679 −0.149340 0.988786i \(-0.547715\pi\)
−0.149340 + 0.988786i \(0.547715\pi\)
\(774\) 0 0
\(775\) 0.592300 0.0212760
\(776\) −16.0459 −0.576015
\(777\) 0 0
\(778\) −0.820959 −0.0294328
\(779\) 8.50709 0.304798
\(780\) 0 0
\(781\) −32.2665 −1.15459
\(782\) 15.0978 0.539897
\(783\) 0 0
\(784\) 0 0
\(785\) 8.83286 0.315258
\(786\) 0 0
\(787\) −16.6191 −0.592407 −0.296203 0.955125i \(-0.595721\pi\)
−0.296203 + 0.955125i \(0.595721\pi\)
\(788\) −0.192235 −0.00684810
\(789\) 0 0
\(790\) −1.39624 −0.0496761
\(791\) 0 0
\(792\) 0 0
\(793\) −18.4801 −0.656247
\(794\) 6.99316 0.248178
\(795\) 0 0
\(796\) 51.5737 1.82798
\(797\) −24.5479 −0.869532 −0.434766 0.900543i \(-0.643169\pi\)
−0.434766 + 0.900543i \(0.643169\pi\)
\(798\) 0 0
\(799\) 37.8828 1.34020
\(800\) 2.41842 0.0855041
\(801\) 0 0
\(802\) 9.72407 0.343369
\(803\) 10.3427 0.364987
\(804\) 0 0
\(805\) 0 0
\(806\) −0.382438 −0.0134708
\(807\) 0 0
\(808\) 2.04663 0.0720001
\(809\) 3.99029 0.140291 0.0701455 0.997537i \(-0.477654\pi\)
0.0701455 + 0.997537i \(0.477654\pi\)
\(810\) 0 0
\(811\) 41.1357 1.44447 0.722235 0.691648i \(-0.243115\pi\)
0.722235 + 0.691648i \(0.243115\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −5.92193 −0.207564
\(815\) 18.6470 0.653175
\(816\) 0 0
\(817\) −7.31545 −0.255935
\(818\) −8.27914 −0.289473
\(819\) 0 0
\(820\) −33.6550 −1.17528
\(821\) 2.43814 0.0850917 0.0425459 0.999095i \(-0.486453\pi\)
0.0425459 + 0.999095i \(0.486453\pi\)
\(822\) 0 0
\(823\) 35.8018 1.24797 0.623985 0.781436i \(-0.285512\pi\)
0.623985 + 0.781436i \(0.285512\pi\)
\(824\) 19.2794 0.671629
\(825\) 0 0
\(826\) 0 0
\(827\) −3.66665 −0.127502 −0.0637510 0.997966i \(-0.520306\pi\)
−0.0637510 + 0.997966i \(0.520306\pi\)
\(828\) 0 0
\(829\) 48.5906 1.68762 0.843811 0.536640i \(-0.180307\pi\)
0.843811 + 0.536640i \(0.180307\pi\)
\(830\) 3.01999 0.104825
\(831\) 0 0
\(832\) 9.79762 0.339671
\(833\) 0 0
\(834\) 0 0
\(835\) 43.8594 1.51782
\(836\) 9.47803 0.327805
\(837\) 0 0
\(838\) −1.73444 −0.0599152
\(839\) 9.11600 0.314719 0.157360 0.987541i \(-0.449702\pi\)
0.157360 + 0.987541i \(0.449702\pi\)
\(840\) 0 0
\(841\) −13.9196 −0.479985
\(842\) 0.860243 0.0296459
\(843\) 0 0
\(844\) −27.8351 −0.958125
\(845\) 21.4082 0.736466
\(846\) 0 0
\(847\) 0 0
\(848\) 6.96104 0.239043
\(849\) 0 0
\(850\) −1.49231 −0.0511859
\(851\) 30.4431 1.04358
\(852\) 0 0
\(853\) −1.01631 −0.0347979 −0.0173989 0.999849i \(-0.505539\pi\)
−0.0173989 + 0.999849i \(0.505539\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −10.2771 −0.351265
\(857\) 15.8851 0.542626 0.271313 0.962491i \(-0.412542\pi\)
0.271313 + 0.962491i \(0.412542\pi\)
\(858\) 0 0
\(859\) −5.72412 −0.195304 −0.0976522 0.995221i \(-0.531133\pi\)
−0.0976522 + 0.995221i \(0.531133\pi\)
\(860\) 28.9407 0.986871
\(861\) 0 0
\(862\) 2.90503 0.0989456
\(863\) −13.8950 −0.472990 −0.236495 0.971633i \(-0.575999\pi\)
−0.236495 + 0.971633i \(0.575999\pi\)
\(864\) 0 0
\(865\) −14.0485 −0.477662
\(866\) −5.56772 −0.189199
\(867\) 0 0
\(868\) 0 0
\(869\) −11.4808 −0.389459
\(870\) 0 0
\(871\) −22.7243 −0.769982
\(872\) 7.99568 0.270768
\(873\) 0 0
\(874\) 2.15989 0.0730593
\(875\) 0 0
\(876\) 0 0
\(877\) −40.0210 −1.35141 −0.675707 0.737170i \(-0.736162\pi\)
−0.675707 + 0.737170i \(0.736162\pi\)
\(878\) 2.12896 0.0718490
\(879\) 0 0
\(880\) −35.7603 −1.20548
\(881\) −8.38440 −0.282478 −0.141239 0.989976i \(-0.545109\pi\)
−0.141239 + 0.989976i \(0.545109\pi\)
\(882\) 0 0
\(883\) −20.0109 −0.673421 −0.336711 0.941608i \(-0.609314\pi\)
−0.336711 + 0.941608i \(0.609314\pi\)
\(884\) −21.7366 −0.731082
\(885\) 0 0
\(886\) −4.79702 −0.161159
\(887\) 29.1581 0.979032 0.489516 0.871994i \(-0.337173\pi\)
0.489516 + 0.871994i \(0.337173\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 4.02929 0.135062
\(891\) 0 0
\(892\) 4.42061 0.148013
\(893\) 5.41950 0.181357
\(894\) 0 0
\(895\) 39.8113 1.33074
\(896\) 0 0
\(897\) 0 0
\(898\) −2.83165 −0.0944933
\(899\) 3.13915 0.104696
\(900\) 0 0
\(901\) −13.9110 −0.463442
\(902\) 12.2672 0.408454
\(903\) 0 0
\(904\) 0.298531 0.00992900
\(905\) −42.4526 −1.41117
\(906\) 0 0
\(907\) 50.6610 1.68217 0.841086 0.540902i \(-0.181917\pi\)
0.841086 + 0.540902i \(0.181917\pi\)
\(908\) 38.0191 1.26171
\(909\) 0 0
\(910\) 0 0
\(911\) 28.9746 0.959970 0.479985 0.877277i \(-0.340642\pi\)
0.479985 + 0.877277i \(0.340642\pi\)
\(912\) 0 0
\(913\) 24.8322 0.821826
\(914\) 3.20550 0.106028
\(915\) 0 0
\(916\) −33.3748 −1.10273
\(917\) 0 0
\(918\) 0 0
\(919\) 50.1894 1.65559 0.827797 0.561028i \(-0.189594\pi\)
0.827797 + 0.561028i \(0.189594\pi\)
\(920\) −17.4683 −0.575912
\(921\) 0 0
\(922\) 8.35581 0.275184
\(923\) 10.5863 0.348451
\(924\) 0 0
\(925\) −3.00908 −0.0989381
\(926\) 9.84011 0.323366
\(927\) 0 0
\(928\) 12.8175 0.420754
\(929\) −33.9101 −1.11255 −0.556277 0.830997i \(-0.687771\pi\)
−0.556277 + 0.830997i \(0.687771\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 17.0297 0.557825
\(933\) 0 0
\(934\) 4.90887 0.160623
\(935\) 71.4635 2.33711
\(936\) 0 0
\(937\) −17.4372 −0.569648 −0.284824 0.958580i \(-0.591935\pi\)
−0.284824 + 0.958580i \(0.591935\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −21.4401 −0.699300
\(941\) −0.598364 −0.0195061 −0.00975306 0.999952i \(-0.503105\pi\)
−0.00975306 + 0.999952i \(0.503105\pi\)
\(942\) 0 0
\(943\) −63.0626 −2.05360
\(944\) −20.1308 −0.655203
\(945\) 0 0
\(946\) −10.5489 −0.342974
\(947\) −33.3136 −1.08255 −0.541274 0.840846i \(-0.682058\pi\)
−0.541274 + 0.840846i \(0.682058\pi\)
\(948\) 0 0
\(949\) −3.39333 −0.110152
\(950\) −0.213490 −0.00692652
\(951\) 0 0
\(952\) 0 0
\(953\) −8.41792 −0.272683 −0.136342 0.990662i \(-0.543534\pi\)
−0.136342 + 0.990662i \(0.543534\pi\)
\(954\) 0 0
\(955\) −9.26207 −0.299714
\(956\) −20.9194 −0.676583
\(957\) 0 0
\(958\) 6.71454 0.216937
\(959\) 0 0
\(960\) 0 0
\(961\) −30.3466 −0.978921
\(962\) 1.94292 0.0626421
\(963\) 0 0
\(964\) −9.92785 −0.319755
\(965\) 51.7034 1.66439
\(966\) 0 0
\(967\) −17.5459 −0.564237 −0.282118 0.959380i \(-0.591037\pi\)
−0.282118 + 0.959380i \(0.591037\pi\)
\(968\) 15.3925 0.494733
\(969\) 0 0
\(970\) −8.46637 −0.271839
\(971\) 9.87266 0.316829 0.158414 0.987373i \(-0.449362\pi\)
0.158414 + 0.987373i \(0.449362\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 6.39458 0.204895
\(975\) 0 0
\(976\) 39.8096 1.27427
\(977\) 14.9641 0.478743 0.239371 0.970928i \(-0.423059\pi\)
0.239371 + 0.970928i \(0.423059\pi\)
\(978\) 0 0
\(979\) 33.1312 1.05888
\(980\) 0 0
\(981\) 0 0
\(982\) 2.96853 0.0947296
\(983\) 6.58111 0.209905 0.104952 0.994477i \(-0.466531\pi\)
0.104952 + 0.994477i \(0.466531\pi\)
\(984\) 0 0
\(985\) −0.207356 −0.00660690
\(986\) −7.90916 −0.251879
\(987\) 0 0
\(988\) −3.10963 −0.0989305
\(989\) 54.2290 1.72438
\(990\) 0 0
\(991\) 15.1300 0.480621 0.240311 0.970696i \(-0.422751\pi\)
0.240311 + 0.970696i \(0.422751\pi\)
\(992\) 2.66809 0.0847119
\(993\) 0 0
\(994\) 0 0
\(995\) 55.6303 1.76360
\(996\) 0 0
\(997\) −28.4545 −0.901164 −0.450582 0.892735i \(-0.648783\pi\)
−0.450582 + 0.892735i \(0.648783\pi\)
\(998\) −4.78716 −0.151535
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8379.2.a.bu.1.2 4
3.2 odd 2 931.2.a.m.1.3 yes 4
7.6 odd 2 8379.2.a.bv.1.2 4
21.2 odd 6 931.2.f.n.704.2 8
21.5 even 6 931.2.f.o.704.2 8
21.11 odd 6 931.2.f.n.324.2 8
21.17 even 6 931.2.f.o.324.2 8
21.20 even 2 931.2.a.l.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
931.2.a.l.1.3 4 21.20 even 2
931.2.a.m.1.3 yes 4 3.2 odd 2
931.2.f.n.324.2 8 21.11 odd 6
931.2.f.n.704.2 8 21.2 odd 6
931.2.f.o.324.2 8 21.17 even 6
931.2.f.o.704.2 8 21.5 even 6
8379.2.a.bu.1.2 4 1.1 even 1 trivial
8379.2.a.bv.1.2 4 7.6 odd 2