Properties

Label 8379.2.a.br.1.3
Level $8379$
Weight $2$
Character 8379.1
Self dual yes
Analytic conductor $66.907$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8379,2,Mod(1,8379)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8379.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8379, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8379 = 3^{2} \cdot 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8379.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,-4,0,0,3,0,-3,2,0,6,0,0,-4,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.9066518536\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.1957.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 4x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 399)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.396339\) of defining polynomial
Character \(\chi\) \(=\) 8379.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.396339 q^{2} -1.84292 q^{4} +0.842916 q^{5} -1.52310 q^{8} +0.334080 q^{10} +0.0359789 q^{11} +1.96402 q^{13} +3.08217 q^{16} -3.25351 q^{17} +1.00000 q^{19} -1.55342 q^{20} +0.0142598 q^{22} -1.28384 q^{23} -4.28949 q^{25} +0.778417 q^{26} +7.06045 q^{29} -3.61953 q^{31} +4.26777 q^{32} -1.28949 q^{34} -2.16274 q^{37} +0.396339 q^{38} -1.28384 q^{40} -0.130805 q^{41} -4.50884 q^{43} -0.0663061 q^{44} -0.508836 q^{46} +7.98554 q^{47} -1.70009 q^{50} -3.61953 q^{52} -2.98169 q^{53} +0.0303272 q^{55} +2.79833 q^{58} -12.9799 q^{59} +2.58759 q^{61} -1.43456 q^{62} -4.47286 q^{64} +1.65550 q^{65} +4.51905 q^{67} +5.99595 q^{68} +2.64985 q^{71} +6.21297 q^{73} -0.857176 q^{74} -1.84292 q^{76} +10.3728 q^{79} +2.59801 q^{80} -0.0518429 q^{82} -10.2752 q^{83} -2.74244 q^{85} -1.78703 q^{86} -0.0547993 q^{88} -8.37281 q^{89} +2.36601 q^{92} +3.16498 q^{94} +0.842916 q^{95} -2.55162 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{5} + 3 q^{8} - 3 q^{10} + 2 q^{11} + 6 q^{13} - 4 q^{16} + 2 q^{17} + 4 q^{19} - 12 q^{20} - 6 q^{22} - 5 q^{23} - 4 q^{25} + 6 q^{26} + 4 q^{29} + 17 q^{31} - 4 q^{32} + 8 q^{34} - 3 q^{37}+ \cdots + 11 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.396339 0.280254 0.140127 0.990134i \(-0.455249\pi\)
0.140127 + 0.990134i \(0.455249\pi\)
\(3\) 0 0
\(4\) −1.84292 −0.921458
\(5\) 0.842916 0.376963 0.188482 0.982077i \(-0.439643\pi\)
0.188482 + 0.982077i \(0.439643\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −1.52310 −0.538496
\(9\) 0 0
\(10\) 0.334080 0.105645
\(11\) 0.0359789 0.0108480 0.00542402 0.999985i \(-0.498273\pi\)
0.00542402 + 0.999985i \(0.498273\pi\)
\(12\) 0 0
\(13\) 1.96402 0.544721 0.272361 0.962195i \(-0.412196\pi\)
0.272361 + 0.962195i \(0.412196\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 3.08217 0.770543
\(17\) −3.25351 −0.789093 −0.394547 0.918876i \(-0.629098\pi\)
−0.394547 + 0.918876i \(0.629098\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) −1.55342 −0.347356
\(21\) 0 0
\(22\) 0.0142598 0.00304020
\(23\) −1.28384 −0.267699 −0.133850 0.991002i \(-0.542734\pi\)
−0.133850 + 0.991002i \(0.542734\pi\)
\(24\) 0 0
\(25\) −4.28949 −0.857899
\(26\) 0.778417 0.152660
\(27\) 0 0
\(28\) 0 0
\(29\) 7.06045 1.31109 0.655546 0.755155i \(-0.272438\pi\)
0.655546 + 0.755155i \(0.272438\pi\)
\(30\) 0 0
\(31\) −3.61953 −0.650086 −0.325043 0.945699i \(-0.605379\pi\)
−0.325043 + 0.945699i \(0.605379\pi\)
\(32\) 4.26777 0.754443
\(33\) 0 0
\(34\) −1.28949 −0.221146
\(35\) 0 0
\(36\) 0 0
\(37\) −2.16274 −0.355552 −0.177776 0.984071i \(-0.556890\pi\)
−0.177776 + 0.984071i \(0.556890\pi\)
\(38\) 0.396339 0.0642946
\(39\) 0 0
\(40\) −1.28384 −0.202993
\(41\) −0.130805 −0.0204282 −0.0102141 0.999948i \(-0.503251\pi\)
−0.0102141 + 0.999948i \(0.503251\pi\)
\(42\) 0 0
\(43\) −4.50884 −0.687591 −0.343796 0.939045i \(-0.611713\pi\)
−0.343796 + 0.939045i \(0.611713\pi\)
\(44\) −0.0663061 −0.00999601
\(45\) 0 0
\(46\) −0.508836 −0.0750237
\(47\) 7.98554 1.16481 0.582405 0.812899i \(-0.302112\pi\)
0.582405 + 0.812899i \(0.302112\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −1.70009 −0.240429
\(51\) 0 0
\(52\) −3.61953 −0.501938
\(53\) −2.98169 −0.409567 −0.204783 0.978807i \(-0.565649\pi\)
−0.204783 + 0.978807i \(0.565649\pi\)
\(54\) 0 0
\(55\) 0.0303272 0.00408931
\(56\) 0 0
\(57\) 0 0
\(58\) 2.79833 0.367439
\(59\) −12.9799 −1.68984 −0.844919 0.534895i \(-0.820351\pi\)
−0.844919 + 0.534895i \(0.820351\pi\)
\(60\) 0 0
\(61\) 2.58759 0.331307 0.165654 0.986184i \(-0.447027\pi\)
0.165654 + 0.986184i \(0.447027\pi\)
\(62\) −1.43456 −0.182189
\(63\) 0 0
\(64\) −4.47286 −0.559107
\(65\) 1.65550 0.205340
\(66\) 0 0
\(67\) 4.51905 0.552090 0.276045 0.961145i \(-0.410976\pi\)
0.276045 + 0.961145i \(0.410976\pi\)
\(68\) 5.99595 0.727116
\(69\) 0 0
\(70\) 0 0
\(71\) 2.64985 0.314480 0.157240 0.987560i \(-0.449740\pi\)
0.157240 + 0.987560i \(0.449740\pi\)
\(72\) 0 0
\(73\) 6.21297 0.727174 0.363587 0.931560i \(-0.381552\pi\)
0.363587 + 0.931560i \(0.381552\pi\)
\(74\) −0.857176 −0.0996446
\(75\) 0 0
\(76\) −1.84292 −0.211397
\(77\) 0 0
\(78\) 0 0
\(79\) 10.3728 1.16703 0.583516 0.812101i \(-0.301676\pi\)
0.583516 + 0.812101i \(0.301676\pi\)
\(80\) 2.59801 0.290466
\(81\) 0 0
\(82\) −0.0518429 −0.00572509
\(83\) −10.2752 −1.12785 −0.563927 0.825825i \(-0.690710\pi\)
−0.563927 + 0.825825i \(0.690710\pi\)
\(84\) 0 0
\(85\) −2.74244 −0.297459
\(86\) −1.78703 −0.192700
\(87\) 0 0
\(88\) −0.0547993 −0.00584162
\(89\) −8.37281 −0.887516 −0.443758 0.896147i \(-0.646355\pi\)
−0.443758 + 0.896147i \(0.646355\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 2.36601 0.246674
\(93\) 0 0
\(94\) 3.16498 0.326442
\(95\) 0.842916 0.0864813
\(96\) 0 0
\(97\) −2.55162 −0.259077 −0.129539 0.991574i \(-0.541350\pi\)
−0.129539 + 0.991574i \(0.541350\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 7.90517 0.790517
\(101\) −7.13017 −0.709478 −0.354739 0.934965i \(-0.615430\pi\)
−0.354739 + 0.934965i \(0.615430\pi\)
\(102\) 0 0
\(103\) 2.90922 0.286654 0.143327 0.989675i \(-0.454220\pi\)
0.143327 + 0.989675i \(0.454220\pi\)
\(104\) −2.99139 −0.293330
\(105\) 0 0
\(106\) −1.18176 −0.114783
\(107\) −8.60931 −0.832294 −0.416147 0.909297i \(-0.636620\pi\)
−0.416147 + 0.909297i \(0.636620\pi\)
\(108\) 0 0
\(109\) 0.574938 0.0550691 0.0275346 0.999621i \(-0.491234\pi\)
0.0275346 + 0.999621i \(0.491234\pi\)
\(110\) 0.0120198 0.00114605
\(111\) 0 0
\(112\) 0 0
\(113\) 15.2784 1.43727 0.718637 0.695385i \(-0.244766\pi\)
0.718637 + 0.695385i \(0.244766\pi\)
\(114\) 0 0
\(115\) −1.08217 −0.100913
\(116\) −13.0118 −1.20812
\(117\) 0 0
\(118\) −5.14443 −0.473583
\(119\) 0 0
\(120\) 0 0
\(121\) −10.9987 −0.999882
\(122\) 1.02556 0.0928501
\(123\) 0 0
\(124\) 6.67048 0.599027
\(125\) −7.83026 −0.700360
\(126\) 0 0
\(127\) 1.02235 0.0907193 0.0453597 0.998971i \(-0.485557\pi\)
0.0453597 + 0.998971i \(0.485557\pi\)
\(128\) −10.3083 −0.911135
\(129\) 0 0
\(130\) 0.656140 0.0575473
\(131\) 16.9821 1.48374 0.741868 0.670546i \(-0.233940\pi\)
0.741868 + 0.670546i \(0.233940\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 1.79107 0.154725
\(135\) 0 0
\(136\) 4.95541 0.424923
\(137\) 2.24221 0.191565 0.0957825 0.995402i \(-0.469465\pi\)
0.0957825 + 0.995402i \(0.469465\pi\)
\(138\) 0 0
\(139\) 16.8301 1.42751 0.713753 0.700397i \(-0.246994\pi\)
0.713753 + 0.700397i \(0.246994\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 1.05024 0.0881341
\(143\) 0.0706633 0.00590916
\(144\) 0 0
\(145\) 5.95137 0.494234
\(146\) 2.46244 0.203793
\(147\) 0 0
\(148\) 3.98574 0.327626
\(149\) −12.7320 −1.04305 −0.521524 0.853237i \(-0.674636\pi\)
−0.521524 + 0.853237i \(0.674636\pi\)
\(150\) 0 0
\(151\) −11.8268 −0.962455 −0.481228 0.876596i \(-0.659809\pi\)
−0.481228 + 0.876596i \(0.659809\pi\)
\(152\) −1.52310 −0.123539
\(153\) 0 0
\(154\) 0 0
\(155\) −3.05096 −0.245059
\(156\) 0 0
\(157\) 7.37686 0.588737 0.294369 0.955692i \(-0.404891\pi\)
0.294369 + 0.955692i \(0.404891\pi\)
\(158\) 4.11115 0.327065
\(159\) 0 0
\(160\) 3.59737 0.284397
\(161\) 0 0
\(162\) 0 0
\(163\) −18.0494 −1.41374 −0.706869 0.707344i \(-0.749893\pi\)
−0.706869 + 0.707344i \(0.749893\pi\)
\(164\) 0.241062 0.0188238
\(165\) 0 0
\(166\) −4.07247 −0.316085
\(167\) −22.6354 −1.75158 −0.875790 0.482693i \(-0.839659\pi\)
−0.875790 + 0.482693i \(0.839659\pi\)
\(168\) 0 0
\(169\) −9.14262 −0.703279
\(170\) −1.08693 −0.0833640
\(171\) 0 0
\(172\) 8.30940 0.633586
\(173\) −6.88282 −0.523291 −0.261646 0.965164i \(-0.584265\pi\)
−0.261646 + 0.965164i \(0.584265\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0.110893 0.00835888
\(177\) 0 0
\(178\) −3.31847 −0.248730
\(179\) −0.620878 −0.0464066 −0.0232033 0.999731i \(-0.507386\pi\)
−0.0232033 + 0.999731i \(0.507386\pi\)
\(180\) 0 0
\(181\) −9.31058 −0.692050 −0.346025 0.938225i \(-0.612469\pi\)
−0.346025 + 0.938225i \(0.612469\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 1.95541 0.144155
\(185\) −1.82300 −0.134030
\(186\) 0 0
\(187\) −0.117058 −0.00856012
\(188\) −14.7167 −1.07332
\(189\) 0 0
\(190\) 0.334080 0.0242367
\(191\) −18.3384 −1.32692 −0.663459 0.748212i \(-0.730912\pi\)
−0.663459 + 0.748212i \(0.730912\pi\)
\(192\) 0 0
\(193\) −15.2004 −1.09415 −0.547074 0.837085i \(-0.684258\pi\)
−0.547074 + 0.837085i \(0.684258\pi\)
\(194\) −1.01130 −0.0726074
\(195\) 0 0
\(196\) 0 0
\(197\) −7.77205 −0.553736 −0.276868 0.960908i \(-0.589296\pi\)
−0.276868 + 0.960908i \(0.589296\pi\)
\(198\) 0 0
\(199\) 25.7262 1.82368 0.911840 0.410546i \(-0.134662\pi\)
0.911840 + 0.410546i \(0.134662\pi\)
\(200\) 6.53331 0.461975
\(201\) 0 0
\(202\) −2.82596 −0.198834
\(203\) 0 0
\(204\) 0 0
\(205\) −0.110257 −0.00770070
\(206\) 1.15304 0.0803359
\(207\) 0 0
\(208\) 6.05345 0.419731
\(209\) 0.0359789 0.00248871
\(210\) 0 0
\(211\) 17.2470 1.18733 0.593667 0.804711i \(-0.297680\pi\)
0.593667 + 0.804711i \(0.297680\pi\)
\(212\) 5.49501 0.377399
\(213\) 0 0
\(214\) −3.41220 −0.233253
\(215\) −3.80057 −0.259197
\(216\) 0 0
\(217\) 0 0
\(218\) 0.227870 0.0154333
\(219\) 0 0
\(220\) −0.0558904 −0.00376813
\(221\) −6.38997 −0.429836
\(222\) 0 0
\(223\) 15.7257 1.05307 0.526537 0.850152i \(-0.323490\pi\)
0.526537 + 0.850152i \(0.323490\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 6.05544 0.402802
\(227\) 6.50362 0.431660 0.215830 0.976431i \(-0.430754\pi\)
0.215830 + 0.976431i \(0.430754\pi\)
\(228\) 0 0
\(229\) 7.87261 0.520237 0.260118 0.965577i \(-0.416238\pi\)
0.260118 + 0.965577i \(0.416238\pi\)
\(230\) −0.428906 −0.0282812
\(231\) 0 0
\(232\) −10.7537 −0.706018
\(233\) −22.2790 −1.45954 −0.729771 0.683691i \(-0.760374\pi\)
−0.729771 + 0.683691i \(0.760374\pi\)
\(234\) 0 0
\(235\) 6.73113 0.439091
\(236\) 23.9208 1.55711
\(237\) 0 0
\(238\) 0 0
\(239\) −26.5221 −1.71557 −0.857784 0.514009i \(-0.828160\pi\)
−0.857784 + 0.514009i \(0.828160\pi\)
\(240\) 0 0
\(241\) 11.0806 0.713762 0.356881 0.934150i \(-0.383840\pi\)
0.356881 + 0.934150i \(0.383840\pi\)
\(242\) −4.35921 −0.280221
\(243\) 0 0
\(244\) −4.76872 −0.305286
\(245\) 0 0
\(246\) 0 0
\(247\) 1.96402 0.124968
\(248\) 5.51288 0.350068
\(249\) 0 0
\(250\) −3.10343 −0.196278
\(251\) −3.32163 −0.209659 −0.104830 0.994490i \(-0.533430\pi\)
−0.104830 + 0.994490i \(0.533430\pi\)
\(252\) 0 0
\(253\) −0.0461912 −0.00290401
\(254\) 0.405199 0.0254244
\(255\) 0 0
\(256\) 4.86013 0.303758
\(257\) −30.1189 −1.87877 −0.939383 0.342869i \(-0.888601\pi\)
−0.939383 + 0.342869i \(0.888601\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −3.05096 −0.189212
\(261\) 0 0
\(262\) 6.73067 0.415822
\(263\) 25.5666 1.57651 0.788253 0.615351i \(-0.210986\pi\)
0.788253 + 0.615351i \(0.210986\pi\)
\(264\) 0 0
\(265\) −2.51332 −0.154392
\(266\) 0 0
\(267\) 0 0
\(268\) −8.32822 −0.508727
\(269\) 6.35130 0.387245 0.193623 0.981076i \(-0.437976\pi\)
0.193623 + 0.981076i \(0.437976\pi\)
\(270\) 0 0
\(271\) 7.86174 0.477566 0.238783 0.971073i \(-0.423251\pi\)
0.238783 + 0.971073i \(0.423251\pi\)
\(272\) −10.0279 −0.608030
\(273\) 0 0
\(274\) 0.888674 0.0536868
\(275\) −0.154331 −0.00930652
\(276\) 0 0
\(277\) −5.87569 −0.353036 −0.176518 0.984297i \(-0.556483\pi\)
−0.176518 + 0.984297i \(0.556483\pi\)
\(278\) 6.67040 0.400064
\(279\) 0 0
\(280\) 0 0
\(281\) −16.7309 −0.998084 −0.499042 0.866578i \(-0.666315\pi\)
−0.499042 + 0.866578i \(0.666315\pi\)
\(282\) 0 0
\(283\) −20.8957 −1.24212 −0.621060 0.783763i \(-0.713298\pi\)
−0.621060 + 0.783763i \(0.713298\pi\)
\(284\) −4.88346 −0.289780
\(285\) 0 0
\(286\) 0.0280066 0.00165606
\(287\) 0 0
\(288\) 0 0
\(289\) −6.41465 −0.377332
\(290\) 2.35876 0.138511
\(291\) 0 0
\(292\) −11.4500 −0.670060
\(293\) 12.1831 0.711744 0.355872 0.934535i \(-0.384184\pi\)
0.355872 + 0.934535i \(0.384184\pi\)
\(294\) 0 0
\(295\) −10.9409 −0.637007
\(296\) 3.29405 0.191463
\(297\) 0 0
\(298\) −5.04619 −0.292318
\(299\) −2.52149 −0.145822
\(300\) 0 0
\(301\) 0 0
\(302\) −4.68744 −0.269732
\(303\) 0 0
\(304\) 3.08217 0.176775
\(305\) 2.18112 0.124891
\(306\) 0 0
\(307\) −25.2971 −1.44378 −0.721890 0.692008i \(-0.756726\pi\)
−0.721890 + 0.692008i \(0.756726\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −1.20921 −0.0686786
\(311\) −9.88730 −0.560657 −0.280329 0.959904i \(-0.590443\pi\)
−0.280329 + 0.959904i \(0.590443\pi\)
\(312\) 0 0
\(313\) −1.37474 −0.0777050 −0.0388525 0.999245i \(-0.512370\pi\)
−0.0388525 + 0.999245i \(0.512370\pi\)
\(314\) 2.92373 0.164996
\(315\) 0 0
\(316\) −19.1162 −1.07537
\(317\) −26.6902 −1.49907 −0.749535 0.661965i \(-0.769723\pi\)
−0.749535 + 0.661965i \(0.769723\pi\)
\(318\) 0 0
\(319\) 0.254027 0.0142228
\(320\) −3.77024 −0.210763
\(321\) 0 0
\(322\) 0 0
\(323\) −3.25351 −0.181030
\(324\) 0 0
\(325\) −8.42465 −0.467316
\(326\) −7.15367 −0.396205
\(327\) 0 0
\(328\) 0.199228 0.0110005
\(329\) 0 0
\(330\) 0 0
\(331\) −36.3735 −1.99927 −0.999635 0.0270266i \(-0.991396\pi\)
−0.999635 + 0.0270266i \(0.991396\pi\)
\(332\) 18.9364 1.03927
\(333\) 0 0
\(334\) −8.97128 −0.490886
\(335\) 3.80918 0.208118
\(336\) 0 0
\(337\) 30.0191 1.63524 0.817622 0.575756i \(-0.195292\pi\)
0.817622 + 0.575756i \(0.195292\pi\)
\(338\) −3.62357 −0.197096
\(339\) 0 0
\(340\) 5.05408 0.274096
\(341\) −0.130226 −0.00705216
\(342\) 0 0
\(343\) 0 0
\(344\) 6.86739 0.370265
\(345\) 0 0
\(346\) −2.72793 −0.146654
\(347\) −28.2087 −1.51432 −0.757162 0.653227i \(-0.773415\pi\)
−0.757162 + 0.653227i \(0.773415\pi\)
\(348\) 0 0
\(349\) −4.32568 −0.231548 −0.115774 0.993276i \(-0.536935\pi\)
−0.115774 + 0.993276i \(0.536935\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0.153550 0.00818423
\(353\) 20.2454 1.07755 0.538776 0.842449i \(-0.318887\pi\)
0.538776 + 0.842449i \(0.318887\pi\)
\(354\) 0 0
\(355\) 2.23360 0.118547
\(356\) 15.4304 0.817809
\(357\) 0 0
\(358\) −0.246078 −0.0130056
\(359\) −13.1598 −0.694547 −0.347273 0.937764i \(-0.612892\pi\)
−0.347273 + 0.937764i \(0.612892\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) −3.69014 −0.193949
\(363\) 0 0
\(364\) 0 0
\(365\) 5.23701 0.274118
\(366\) 0 0
\(367\) 24.4005 1.27370 0.636848 0.770990i \(-0.280238\pi\)
0.636848 + 0.770990i \(0.280238\pi\)
\(368\) −3.95702 −0.206274
\(369\) 0 0
\(370\) −0.722527 −0.0375624
\(371\) 0 0
\(372\) 0 0
\(373\) 2.46875 0.127827 0.0639136 0.997955i \(-0.479642\pi\)
0.0639136 + 0.997955i \(0.479642\pi\)
\(374\) −0.0463945 −0.00239900
\(375\) 0 0
\(376\) −12.1627 −0.627245
\(377\) 13.8669 0.714180
\(378\) 0 0
\(379\) −18.7800 −0.964665 −0.482332 0.875988i \(-0.660210\pi\)
−0.482332 + 0.875988i \(0.660210\pi\)
\(380\) −1.55342 −0.0796889
\(381\) 0 0
\(382\) −7.26821 −0.371874
\(383\) −31.6289 −1.61616 −0.808081 0.589072i \(-0.799493\pi\)
−0.808081 + 0.589072i \(0.799493\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −6.02449 −0.306639
\(387\) 0 0
\(388\) 4.70241 0.238729
\(389\) 4.33747 0.219918 0.109959 0.993936i \(-0.464928\pi\)
0.109959 + 0.993936i \(0.464928\pi\)
\(390\) 0 0
\(391\) 4.17700 0.211240
\(392\) 0 0
\(393\) 0 0
\(394\) −3.08036 −0.155186
\(395\) 8.74341 0.439929
\(396\) 0 0
\(397\) 1.36556 0.0685353 0.0342676 0.999413i \(-0.489090\pi\)
0.0342676 + 0.999413i \(0.489090\pi\)
\(398\) 10.1963 0.511093
\(399\) 0 0
\(400\) −13.2209 −0.661047
\(401\) −22.6605 −1.13161 −0.565806 0.824539i \(-0.691435\pi\)
−0.565806 + 0.824539i \(0.691435\pi\)
\(402\) 0 0
\(403\) −7.10882 −0.354116
\(404\) 13.1403 0.653754
\(405\) 0 0
\(406\) 0 0
\(407\) −0.0778128 −0.00385704
\(408\) 0 0
\(409\) −26.7833 −1.32435 −0.662174 0.749350i \(-0.730366\pi\)
−0.662174 + 0.749350i \(0.730366\pi\)
\(410\) −0.0436992 −0.00215815
\(411\) 0 0
\(412\) −5.36145 −0.264140
\(413\) 0 0
\(414\) 0 0
\(415\) −8.66116 −0.425159
\(416\) 8.38200 0.410961
\(417\) 0 0
\(418\) 0.0142598 0.000697471 0
\(419\) −29.9706 −1.46416 −0.732081 0.681218i \(-0.761451\pi\)
−0.732081 + 0.681218i \(0.761451\pi\)
\(420\) 0 0
\(421\) −28.9616 −1.41150 −0.705750 0.708460i \(-0.749390\pi\)
−0.705750 + 0.708460i \(0.749390\pi\)
\(422\) 6.83566 0.332755
\(423\) 0 0
\(424\) 4.54140 0.220550
\(425\) 13.9559 0.676962
\(426\) 0 0
\(427\) 0 0
\(428\) 15.8662 0.766924
\(429\) 0 0
\(430\) −1.50631 −0.0726408
\(431\) −20.8757 −1.00555 −0.502774 0.864418i \(-0.667687\pi\)
−0.502774 + 0.864418i \(0.667687\pi\)
\(432\) 0 0
\(433\) −7.01266 −0.337007 −0.168503 0.985701i \(-0.553893\pi\)
−0.168503 + 0.985701i \(0.553893\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −1.05956 −0.0507439
\(437\) −1.28384 −0.0614145
\(438\) 0 0
\(439\) −1.74807 −0.0834307 −0.0417153 0.999130i \(-0.513282\pi\)
−0.0417153 + 0.999130i \(0.513282\pi\)
\(440\) −0.0461912 −0.00220208
\(441\) 0 0
\(442\) −2.53259 −0.120463
\(443\) 18.8810 0.897064 0.448532 0.893767i \(-0.351947\pi\)
0.448532 + 0.893767i \(0.351947\pi\)
\(444\) 0 0
\(445\) −7.05758 −0.334561
\(446\) 6.23271 0.295128
\(447\) 0 0
\(448\) 0 0
\(449\) −19.9572 −0.941839 −0.470920 0.882176i \(-0.656078\pi\)
−0.470920 + 0.882176i \(0.656078\pi\)
\(450\) 0 0
\(451\) −0.00470620 −0.000221606 0
\(452\) −28.1569 −1.32439
\(453\) 0 0
\(454\) 2.57763 0.120974
\(455\) 0 0
\(456\) 0 0
\(457\) −21.5575 −1.00842 −0.504208 0.863582i \(-0.668215\pi\)
−0.504208 + 0.863582i \(0.668215\pi\)
\(458\) 3.12022 0.145798
\(459\) 0 0
\(460\) 1.99435 0.0929870
\(461\) 27.9766 1.30300 0.651500 0.758649i \(-0.274140\pi\)
0.651500 + 0.758649i \(0.274140\pi\)
\(462\) 0 0
\(463\) 38.8491 1.80547 0.902736 0.430195i \(-0.141555\pi\)
0.902736 + 0.430195i \(0.141555\pi\)
\(464\) 21.7615 1.01025
\(465\) 0 0
\(466\) −8.83001 −0.409042
\(467\) 8.63931 0.399780 0.199890 0.979818i \(-0.435942\pi\)
0.199890 + 0.979818i \(0.435942\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 2.66781 0.123057
\(471\) 0 0
\(472\) 19.7696 0.909970
\(473\) −0.162223 −0.00745902
\(474\) 0 0
\(475\) −4.28949 −0.196815
\(476\) 0 0
\(477\) 0 0
\(478\) −10.5117 −0.480794
\(479\) −14.8403 −0.678069 −0.339035 0.940774i \(-0.610100\pi\)
−0.339035 + 0.940774i \(0.610100\pi\)
\(480\) 0 0
\(481\) −4.24766 −0.193677
\(482\) 4.39166 0.200034
\(483\) 0 0
\(484\) 20.2697 0.921349
\(485\) −2.15080 −0.0976626
\(486\) 0 0
\(487\) 17.9043 0.811319 0.405660 0.914024i \(-0.367042\pi\)
0.405660 + 0.914024i \(0.367042\pi\)
\(488\) −3.94115 −0.178408
\(489\) 0 0
\(490\) 0 0
\(491\) −19.1867 −0.865883 −0.432942 0.901422i \(-0.642524\pi\)
−0.432942 + 0.901422i \(0.642524\pi\)
\(492\) 0 0
\(493\) −22.9713 −1.03457
\(494\) 0.778417 0.0350226
\(495\) 0 0
\(496\) −11.1560 −0.500919
\(497\) 0 0
\(498\) 0 0
\(499\) 24.5843 1.10054 0.550272 0.834985i \(-0.314524\pi\)
0.550272 + 0.834985i \(0.314524\pi\)
\(500\) 14.4305 0.645352
\(501\) 0 0
\(502\) −1.31649 −0.0587578
\(503\) −16.7355 −0.746199 −0.373099 0.927791i \(-0.621705\pi\)
−0.373099 + 0.927791i \(0.621705\pi\)
\(504\) 0 0
\(505\) −6.01013 −0.267447
\(506\) −0.0183073 −0.000813861 0
\(507\) 0 0
\(508\) −1.88411 −0.0835940
\(509\) 23.5184 1.04243 0.521217 0.853424i \(-0.325478\pi\)
0.521217 + 0.853424i \(0.325478\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 22.5429 0.996264
\(513\) 0 0
\(514\) −11.9373 −0.526531
\(515\) 2.45223 0.108058
\(516\) 0 0
\(517\) 0.287311 0.0126359
\(518\) 0 0
\(519\) 0 0
\(520\) −2.52149 −0.110575
\(521\) −6.05480 −0.265266 −0.132633 0.991165i \(-0.542343\pi\)
−0.132633 + 0.991165i \(0.542343\pi\)
\(522\) 0 0
\(523\) 37.2755 1.62995 0.814973 0.579499i \(-0.196752\pi\)
0.814973 + 0.579499i \(0.196752\pi\)
\(524\) −31.2966 −1.36720
\(525\) 0 0
\(526\) 10.1330 0.441822
\(527\) 11.7762 0.512978
\(528\) 0 0
\(529\) −21.3518 −0.928337
\(530\) −0.996124 −0.0432689
\(531\) 0 0
\(532\) 0 0
\(533\) −0.256903 −0.0111277
\(534\) 0 0
\(535\) −7.25693 −0.313744
\(536\) −6.88294 −0.297298
\(537\) 0 0
\(538\) 2.51726 0.108527
\(539\) 0 0
\(540\) 0 0
\(541\) −4.52599 −0.194588 −0.0972938 0.995256i \(-0.531019\pi\)
−0.0972938 + 0.995256i \(0.531019\pi\)
\(542\) 3.11591 0.133840
\(543\) 0 0
\(544\) −13.8853 −0.595326
\(545\) 0.484625 0.0207590
\(546\) 0 0
\(547\) 11.7047 0.500456 0.250228 0.968187i \(-0.419494\pi\)
0.250228 + 0.968187i \(0.419494\pi\)
\(548\) −4.13221 −0.176519
\(549\) 0 0
\(550\) −0.0611674 −0.00260819
\(551\) 7.06045 0.300785
\(552\) 0 0
\(553\) 0 0
\(554\) −2.32876 −0.0989396
\(555\) 0 0
\(556\) −31.0164 −1.31539
\(557\) −15.2693 −0.646979 −0.323490 0.946232i \(-0.604856\pi\)
−0.323490 + 0.946232i \(0.604856\pi\)
\(558\) 0 0
\(559\) −8.85545 −0.374546
\(560\) 0 0
\(561\) 0 0
\(562\) −6.63111 −0.279717
\(563\) 30.5738 1.28853 0.644267 0.764801i \(-0.277163\pi\)
0.644267 + 0.764801i \(0.277163\pi\)
\(564\) 0 0
\(565\) 12.8784 0.541800
\(566\) −8.28177 −0.348109
\(567\) 0 0
\(568\) −4.03598 −0.169346
\(569\) 8.64529 0.362429 0.181215 0.983444i \(-0.441997\pi\)
0.181215 + 0.983444i \(0.441997\pi\)
\(570\) 0 0
\(571\) 1.17580 0.0492056 0.0246028 0.999697i \(-0.492168\pi\)
0.0246028 + 0.999697i \(0.492168\pi\)
\(572\) −0.130226 −0.00544504
\(573\) 0 0
\(574\) 0 0
\(575\) 5.50703 0.229659
\(576\) 0 0
\(577\) −12.3411 −0.513768 −0.256884 0.966442i \(-0.582696\pi\)
−0.256884 + 0.966442i \(0.582696\pi\)
\(578\) −2.54237 −0.105749
\(579\) 0 0
\(580\) −10.9679 −0.455416
\(581\) 0 0
\(582\) 0 0
\(583\) −0.107278 −0.00444300
\(584\) −9.46295 −0.391580
\(585\) 0 0
\(586\) 4.82863 0.199469
\(587\) −19.9966 −0.825350 −0.412675 0.910878i \(-0.635405\pi\)
−0.412675 + 0.910878i \(0.635405\pi\)
\(588\) 0 0
\(589\) −3.61953 −0.149140
\(590\) −4.33632 −0.178523
\(591\) 0 0
\(592\) −6.66592 −0.273968
\(593\) −11.1740 −0.458863 −0.229431 0.973325i \(-0.573687\pi\)
−0.229431 + 0.973325i \(0.573687\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 23.4640 0.961125
\(597\) 0 0
\(598\) −0.999364 −0.0408670
\(599\) 24.0539 0.982815 0.491407 0.870930i \(-0.336483\pi\)
0.491407 + 0.870930i \(0.336483\pi\)
\(600\) 0 0
\(601\) 32.2158 1.31411 0.657054 0.753843i \(-0.271802\pi\)
0.657054 + 0.753843i \(0.271802\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 21.7959 0.886862
\(605\) −9.27098 −0.376919
\(606\) 0 0
\(607\) −2.25724 −0.0916184 −0.0458092 0.998950i \(-0.514587\pi\)
−0.0458092 + 0.998950i \(0.514587\pi\)
\(608\) 4.26777 0.173081
\(609\) 0 0
\(610\) 0.864463 0.0350011
\(611\) 15.6838 0.634497
\(612\) 0 0
\(613\) 12.8871 0.520506 0.260253 0.965540i \(-0.416194\pi\)
0.260253 + 0.965540i \(0.416194\pi\)
\(614\) −10.0262 −0.404624
\(615\) 0 0
\(616\) 0 0
\(617\) −25.0627 −1.00899 −0.504493 0.863416i \(-0.668321\pi\)
−0.504493 + 0.863416i \(0.668321\pi\)
\(618\) 0 0
\(619\) −16.8365 −0.676718 −0.338359 0.941017i \(-0.609872\pi\)
−0.338359 + 0.941017i \(0.609872\pi\)
\(620\) 5.62265 0.225811
\(621\) 0 0
\(622\) −3.91872 −0.157126
\(623\) 0 0
\(624\) 0 0
\(625\) 14.8472 0.593889
\(626\) −0.544863 −0.0217771
\(627\) 0 0
\(628\) −13.5949 −0.542497
\(629\) 7.03649 0.280563
\(630\) 0 0
\(631\) −25.8497 −1.02906 −0.514530 0.857472i \(-0.672034\pi\)
−0.514530 + 0.857472i \(0.672034\pi\)
\(632\) −15.7988 −0.628442
\(633\) 0 0
\(634\) −10.5784 −0.420120
\(635\) 0.861759 0.0341979
\(636\) 0 0
\(637\) 0 0
\(638\) 0.100681 0.00398599
\(639\) 0 0
\(640\) −8.68904 −0.343464
\(641\) −49.3339 −1.94857 −0.974286 0.225313i \(-0.927660\pi\)
−0.974286 + 0.225313i \(0.927660\pi\)
\(642\) 0 0
\(643\) −2.55951 −0.100937 −0.0504686 0.998726i \(-0.516071\pi\)
−0.0504686 + 0.998726i \(0.516071\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −1.28949 −0.0507344
\(647\) 35.1832 1.38319 0.691597 0.722283i \(-0.256907\pi\)
0.691597 + 0.722283i \(0.256907\pi\)
\(648\) 0 0
\(649\) −0.467002 −0.0183314
\(650\) −3.33902 −0.130967
\(651\) 0 0
\(652\) 33.2635 1.30270
\(653\) 28.0240 1.09666 0.548332 0.836261i \(-0.315263\pi\)
0.548332 + 0.836261i \(0.315263\pi\)
\(654\) 0 0
\(655\) 14.3145 0.559314
\(656\) −0.403162 −0.0157408
\(657\) 0 0
\(658\) 0 0
\(659\) −30.0543 −1.17075 −0.585374 0.810763i \(-0.699052\pi\)
−0.585374 + 0.810763i \(0.699052\pi\)
\(660\) 0 0
\(661\) 8.39909 0.326687 0.163343 0.986569i \(-0.447772\pi\)
0.163343 + 0.986569i \(0.447772\pi\)
\(662\) −14.4162 −0.560303
\(663\) 0 0
\(664\) 15.6502 0.607344
\(665\) 0 0
\(666\) 0 0
\(667\) −9.06450 −0.350979
\(668\) 41.7151 1.61401
\(669\) 0 0
\(670\) 1.50972 0.0583257
\(671\) 0.0930988 0.00359404
\(672\) 0 0
\(673\) 12.5476 0.483673 0.241837 0.970317i \(-0.422250\pi\)
0.241837 + 0.970317i \(0.422250\pi\)
\(674\) 11.8977 0.458283
\(675\) 0 0
\(676\) 16.8491 0.648042
\(677\) 15.1655 0.582858 0.291429 0.956592i \(-0.405869\pi\)
0.291429 + 0.956592i \(0.405869\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 4.17700 0.160180
\(681\) 0 0
\(682\) −0.0516138 −0.00197639
\(683\) −29.7816 −1.13956 −0.569781 0.821796i \(-0.692972\pi\)
−0.569781 + 0.821796i \(0.692972\pi\)
\(684\) 0 0
\(685\) 1.88999 0.0722130
\(686\) 0 0
\(687\) 0 0
\(688\) −13.8970 −0.529818
\(689\) −5.85611 −0.223100
\(690\) 0 0
\(691\) −27.9518 −1.06334 −0.531668 0.846953i \(-0.678435\pi\)
−0.531668 + 0.846953i \(0.678435\pi\)
\(692\) 12.6845 0.482191
\(693\) 0 0
\(694\) −11.1802 −0.424395
\(695\) 14.1863 0.538118
\(696\) 0 0
\(697\) 0.425575 0.0161198
\(698\) −1.71443 −0.0648922
\(699\) 0 0
\(700\) 0 0
\(701\) 3.66534 0.138438 0.0692190 0.997601i \(-0.477949\pi\)
0.0692190 + 0.997601i \(0.477949\pi\)
\(702\) 0 0
\(703\) −2.16274 −0.0815691
\(704\) −0.160928 −0.00606522
\(705\) 0 0
\(706\) 8.02402 0.301988
\(707\) 0 0
\(708\) 0 0
\(709\) −16.9617 −0.637010 −0.318505 0.947921i \(-0.603181\pi\)
−0.318505 + 0.947921i \(0.603181\pi\)
\(710\) 0.885263 0.0332233
\(711\) 0 0
\(712\) 12.7526 0.477924
\(713\) 4.64690 0.174028
\(714\) 0 0
\(715\) 0.0595632 0.00222754
\(716\) 1.14423 0.0427617
\(717\) 0 0
\(718\) −5.21573 −0.194649
\(719\) 37.9567 1.41555 0.707773 0.706440i \(-0.249700\pi\)
0.707773 + 0.706440i \(0.249700\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0.396339 0.0147502
\(723\) 0 0
\(724\) 17.1586 0.637695
\(725\) −30.2858 −1.12478
\(726\) 0 0
\(727\) 32.1265 1.19150 0.595752 0.803168i \(-0.296854\pi\)
0.595752 + 0.803168i \(0.296854\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 2.07563 0.0768225
\(731\) 14.6696 0.542573
\(732\) 0 0
\(733\) 14.6218 0.540070 0.270035 0.962850i \(-0.412965\pi\)
0.270035 + 0.962850i \(0.412965\pi\)
\(734\) 9.67086 0.356958
\(735\) 0 0
\(736\) −5.47914 −0.201964
\(737\) 0.162590 0.00598909
\(738\) 0 0
\(739\) 28.9192 1.06381 0.531904 0.846804i \(-0.321477\pi\)
0.531904 + 0.846804i \(0.321477\pi\)
\(740\) 3.35964 0.123503
\(741\) 0 0
\(742\) 0 0
\(743\) −20.8522 −0.764992 −0.382496 0.923957i \(-0.624935\pi\)
−0.382496 + 0.923957i \(0.624935\pi\)
\(744\) 0 0
\(745\) −10.7320 −0.393191
\(746\) 0.978461 0.0358240
\(747\) 0 0
\(748\) 0.215728 0.00788779
\(749\) 0 0
\(750\) 0 0
\(751\) −32.9923 −1.20391 −0.601954 0.798531i \(-0.705611\pi\)
−0.601954 + 0.798531i \(0.705611\pi\)
\(752\) 24.6128 0.897536
\(753\) 0 0
\(754\) 5.49598 0.200152
\(755\) −9.96904 −0.362810
\(756\) 0 0
\(757\) 14.8974 0.541455 0.270728 0.962656i \(-0.412736\pi\)
0.270728 + 0.962656i \(0.412736\pi\)
\(758\) −7.44325 −0.270351
\(759\) 0 0
\(760\) −1.28384 −0.0465698
\(761\) 11.5744 0.419570 0.209785 0.977748i \(-0.432724\pi\)
0.209785 + 0.977748i \(0.432724\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 33.7961 1.22270
\(765\) 0 0
\(766\) −12.5358 −0.452935
\(767\) −25.4928 −0.920491
\(768\) 0 0
\(769\) −52.4315 −1.89073 −0.945365 0.326015i \(-0.894294\pi\)
−0.945365 + 0.326015i \(0.894294\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 28.0130 1.00821
\(773\) −43.3738 −1.56005 −0.780023 0.625751i \(-0.784793\pi\)
−0.780023 + 0.625751i \(0.784793\pi\)
\(774\) 0 0
\(775\) 15.5259 0.557708
\(776\) 3.88635 0.139512
\(777\) 0 0
\(778\) 1.71911 0.0616329
\(779\) −0.130805 −0.00468656
\(780\) 0 0
\(781\) 0.0953388 0.00341149
\(782\) 1.65550 0.0592007
\(783\) 0 0
\(784\) 0 0
\(785\) 6.21807 0.221932
\(786\) 0 0
\(787\) 21.3855 0.762312 0.381156 0.924511i \(-0.375526\pi\)
0.381156 + 0.924511i \(0.375526\pi\)
\(788\) 14.3232 0.510244
\(789\) 0 0
\(790\) 3.46535 0.123292
\(791\) 0 0
\(792\) 0 0
\(793\) 5.08209 0.180470
\(794\) 0.541222 0.0192073
\(795\) 0 0
\(796\) −47.4112 −1.68044
\(797\) 44.1477 1.56379 0.781897 0.623408i \(-0.214252\pi\)
0.781897 + 0.623408i \(0.214252\pi\)
\(798\) 0 0
\(799\) −25.9811 −0.919144
\(800\) −18.3066 −0.647236
\(801\) 0 0
\(802\) −8.98123 −0.317138
\(803\) 0.223536 0.00788841
\(804\) 0 0
\(805\) 0 0
\(806\) −2.81750 −0.0992422
\(807\) 0 0
\(808\) 10.8599 0.382051
\(809\) 23.8993 0.840253 0.420127 0.907465i \(-0.361986\pi\)
0.420127 + 0.907465i \(0.361986\pi\)
\(810\) 0 0
\(811\) −45.1710 −1.58617 −0.793083 0.609113i \(-0.791526\pi\)
−0.793083 + 0.609113i \(0.791526\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −0.0308402 −0.00108095
\(815\) −15.2141 −0.532928
\(816\) 0 0
\(817\) −4.50884 −0.157744
\(818\) −10.6152 −0.371153
\(819\) 0 0
\(820\) 0.203195 0.00709587
\(821\) 21.6062 0.754060 0.377030 0.926201i \(-0.376945\pi\)
0.377030 + 0.926201i \(0.376945\pi\)
\(822\) 0 0
\(823\) −7.31764 −0.255077 −0.127538 0.991834i \(-0.540708\pi\)
−0.127538 + 0.991834i \(0.540708\pi\)
\(824\) −4.43102 −0.154362
\(825\) 0 0
\(826\) 0 0
\(827\) −46.0507 −1.60134 −0.800669 0.599106i \(-0.795523\pi\)
−0.800669 + 0.599106i \(0.795523\pi\)
\(828\) 0 0
\(829\) 32.0446 1.11296 0.556478 0.830862i \(-0.312152\pi\)
0.556478 + 0.830862i \(0.312152\pi\)
\(830\) −3.43275 −0.119152
\(831\) 0 0
\(832\) −8.78479 −0.304558
\(833\) 0 0
\(834\) 0 0
\(835\) −19.0797 −0.660281
\(836\) −0.0663061 −0.00229324
\(837\) 0 0
\(838\) −11.8785 −0.410337
\(839\) −12.5994 −0.434980 −0.217490 0.976063i \(-0.569787\pi\)
−0.217490 + 0.976063i \(0.569787\pi\)
\(840\) 0 0
\(841\) 20.8500 0.718964
\(842\) −11.4786 −0.395578
\(843\) 0 0
\(844\) −31.7848 −1.09408
\(845\) −7.70646 −0.265110
\(846\) 0 0
\(847\) 0 0
\(848\) −9.19008 −0.315589
\(849\) 0 0
\(850\) 5.53127 0.189721
\(851\) 2.77661 0.0951810
\(852\) 0 0
\(853\) −37.1154 −1.27081 −0.635403 0.772181i \(-0.719166\pi\)
−0.635403 + 0.772181i \(0.719166\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 13.1128 0.448187
\(857\) −50.4223 −1.72239 −0.861197 0.508271i \(-0.830285\pi\)
−0.861197 + 0.508271i \(0.830285\pi\)
\(858\) 0 0
\(859\) 9.84495 0.335905 0.167953 0.985795i \(-0.446284\pi\)
0.167953 + 0.985795i \(0.446284\pi\)
\(860\) 7.00413 0.238839
\(861\) 0 0
\(862\) −8.27386 −0.281809
\(863\) −32.7221 −1.11387 −0.556937 0.830555i \(-0.688024\pi\)
−0.556937 + 0.830555i \(0.688024\pi\)
\(864\) 0 0
\(865\) −5.80164 −0.197262
\(866\) −2.77939 −0.0944474
\(867\) 0 0
\(868\) 0 0
\(869\) 0.373202 0.0126600
\(870\) 0 0
\(871\) 8.87551 0.300735
\(872\) −0.875686 −0.0296545
\(873\) 0 0
\(874\) −0.508836 −0.0172116
\(875\) 0 0
\(876\) 0 0
\(877\) 6.87671 0.232210 0.116105 0.993237i \(-0.462959\pi\)
0.116105 + 0.993237i \(0.462959\pi\)
\(878\) −0.692826 −0.0233818
\(879\) 0 0
\(880\) 0.0934735 0.00315099
\(881\) 40.9688 1.38027 0.690137 0.723679i \(-0.257550\pi\)
0.690137 + 0.723679i \(0.257550\pi\)
\(882\) 0 0
\(883\) 3.64432 0.122641 0.0613206 0.998118i \(-0.480469\pi\)
0.0613206 + 0.998118i \(0.480469\pi\)
\(884\) 11.7762 0.396076
\(885\) 0 0
\(886\) 7.48327 0.251405
\(887\) −6.28855 −0.211149 −0.105574 0.994411i \(-0.533668\pi\)
−0.105574 + 0.994411i \(0.533668\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −2.79719 −0.0937620
\(891\) 0 0
\(892\) −28.9812 −0.970363
\(893\) 7.98554 0.267226
\(894\) 0 0
\(895\) −0.523348 −0.0174936
\(896\) 0 0
\(897\) 0 0
\(898\) −7.90982 −0.263954
\(899\) −25.5555 −0.852323
\(900\) 0 0
\(901\) 9.70098 0.323186
\(902\) −0.00186525 −6.21060e−5 0
\(903\) 0 0
\(904\) −23.2705 −0.773966
\(905\) −7.84803 −0.260877
\(906\) 0 0
\(907\) −51.6667 −1.71556 −0.857782 0.514013i \(-0.828158\pi\)
−0.857782 + 0.514013i \(0.828158\pi\)
\(908\) −11.9856 −0.397757
\(909\) 0 0
\(910\) 0 0
\(911\) 48.0342 1.59144 0.795722 0.605662i \(-0.207091\pi\)
0.795722 + 0.605662i \(0.207091\pi\)
\(912\) 0 0
\(913\) −0.369691 −0.0122350
\(914\) −8.54406 −0.282612
\(915\) 0 0
\(916\) −14.5086 −0.479376
\(917\) 0 0
\(918\) 0 0
\(919\) 23.7545 0.783589 0.391794 0.920053i \(-0.371854\pi\)
0.391794 + 0.920053i \(0.371854\pi\)
\(920\) 1.64825 0.0543411
\(921\) 0 0
\(922\) 11.0882 0.365171
\(923\) 5.20437 0.171304
\(924\) 0 0
\(925\) 9.27704 0.305027
\(926\) 15.3974 0.505990
\(927\) 0 0
\(928\) 30.1324 0.989145
\(929\) 5.72639 0.187877 0.0939384 0.995578i \(-0.470054\pi\)
0.0939384 + 0.995578i \(0.470054\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 41.0582 1.34491
\(933\) 0 0
\(934\) 3.42409 0.112040
\(935\) −0.0986699 −0.00322685
\(936\) 0 0
\(937\) −24.1920 −0.790319 −0.395159 0.918613i \(-0.629311\pi\)
−0.395159 + 0.918613i \(0.629311\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −12.4049 −0.404604
\(941\) −6.15731 −0.200723 −0.100361 0.994951i \(-0.532000\pi\)
−0.100361 + 0.994951i \(0.532000\pi\)
\(942\) 0 0
\(943\) 0.167932 0.00546863
\(944\) −40.0062 −1.30209
\(945\) 0 0
\(946\) −0.0642952 −0.00209042
\(947\) 25.4531 0.827113 0.413557 0.910478i \(-0.364286\pi\)
0.413557 + 0.910478i \(0.364286\pi\)
\(948\) 0 0
\(949\) 12.2024 0.396107
\(950\) −1.70009 −0.0551582
\(951\) 0 0
\(952\) 0 0
\(953\) −11.3961 −0.369157 −0.184579 0.982818i \(-0.559092\pi\)
−0.184579 + 0.982818i \(0.559092\pi\)
\(954\) 0 0
\(955\) −15.4577 −0.500200
\(956\) 48.8779 1.58082
\(957\) 0 0
\(958\) −5.88177 −0.190031
\(959\) 0 0
\(960\) 0 0
\(961\) −17.8990 −0.577388
\(962\) −1.68351 −0.0542786
\(963\) 0 0
\(964\) −20.4205 −0.657702
\(965\) −12.8126 −0.412453
\(966\) 0 0
\(967\) 45.9401 1.47733 0.738667 0.674071i \(-0.235456\pi\)
0.738667 + 0.674071i \(0.235456\pi\)
\(968\) 16.7521 0.538432
\(969\) 0 0
\(970\) −0.852444 −0.0273703
\(971\) 0.694382 0.0222838 0.0111419 0.999938i \(-0.496453\pi\)
0.0111419 + 0.999938i \(0.496453\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 7.09615 0.227375
\(975\) 0 0
\(976\) 7.97541 0.255286
\(977\) 36.7435 1.17553 0.587765 0.809032i \(-0.300008\pi\)
0.587765 + 0.809032i \(0.300008\pi\)
\(978\) 0 0
\(979\) −0.301244 −0.00962781
\(980\) 0 0
\(981\) 0 0
\(982\) −7.60443 −0.242667
\(983\) 13.3577 0.426045 0.213022 0.977047i \(-0.431669\pi\)
0.213022 + 0.977047i \(0.431669\pi\)
\(984\) 0 0
\(985\) −6.55118 −0.208738
\(986\) −9.10440 −0.289943
\(987\) 0 0
\(988\) −3.61953 −0.115152
\(989\) 5.78863 0.184068
\(990\) 0 0
\(991\) 40.3269 1.28103 0.640514 0.767947i \(-0.278722\pi\)
0.640514 + 0.767947i \(0.278722\pi\)
\(992\) −15.4473 −0.490453
\(993\) 0 0
\(994\) 0 0
\(995\) 21.6850 0.687460
\(996\) 0 0
\(997\) −7.89474 −0.250029 −0.125014 0.992155i \(-0.539898\pi\)
−0.125014 + 0.992155i \(0.539898\pi\)
\(998\) 9.74371 0.308432
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8379.2.a.br.1.3 4
3.2 odd 2 2793.2.a.bc.1.2 4
7.2 even 3 1197.2.j.k.172.2 8
7.4 even 3 1197.2.j.k.856.2 8
7.6 odd 2 8379.2.a.bt.1.3 4
21.2 odd 6 399.2.j.d.172.3 yes 8
21.11 odd 6 399.2.j.d.58.3 8
21.20 even 2 2793.2.a.bd.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
399.2.j.d.58.3 8 21.11 odd 6
399.2.j.d.172.3 yes 8 21.2 odd 6
1197.2.j.k.172.2 8 7.2 even 3
1197.2.j.k.856.2 8 7.4 even 3
2793.2.a.bc.1.2 4 3.2 odd 2
2793.2.a.bd.1.2 4 21.20 even 2
8379.2.a.br.1.3 4 1.1 even 1 trivial
8379.2.a.bt.1.3 4 7.6 odd 2