Properties

Label 8379.2.a.bq.1.2
Level $8379$
Weight $2$
Character 8379.1
Self dual yes
Analytic conductor $66.907$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8379,2,Mod(1,8379)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8379.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8379, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8379 = 3^{2} \cdot 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8379.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-1,0,9,0,0,0,9,0,-10,-4,0,-2,0,0,13,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.9066518536\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.404.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 5x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 399)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.65544\) of defining polynomial
Character \(\chi\) \(=\) 8379.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.39593 q^{2} -0.0513742 q^{4} +3.05137 q^{5} +2.86358 q^{8} -4.25951 q^{10} -5.31088 q^{11} +3.31088 q^{13} -3.89461 q^{16} +0.948626 q^{17} +1.00000 q^{19} -0.156762 q^{20} +7.41363 q^{22} -1.31088 q^{23} +4.31088 q^{25} -4.62177 q^{26} +7.84324 q^{29} +4.79186 q^{31} -0.290544 q^{32} -1.32422 q^{34} -8.62177 q^{37} -1.39593 q^{38} +8.73785 q^{40} +11.3109 q^{41} +3.20814 q^{43} +0.272843 q^{44} +1.82991 q^{46} -5.84324 q^{47} -6.01770 q^{50} -0.170094 q^{52} +2.77853 q^{53} -16.2055 q^{55} -10.9486 q^{58} -8.20550 q^{59} -12.6218 q^{61} -6.68912 q^{62} +8.19480 q^{64} +10.1027 q^{65} -4.51902 q^{67} -0.0487349 q^{68} +13.5704 q^{71} +4.10275 q^{73} +12.0354 q^{74} -0.0513742 q^{76} -8.20550 q^{79} -11.8839 q^{80} -15.7892 q^{82} -6.36226 q^{83} +2.89461 q^{85} -4.47834 q^{86} -15.2081 q^{88} +15.5164 q^{89} +0.0673457 q^{92} +8.15676 q^{94} +3.05137 q^{95} -11.5837 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - q^{2} + 9 q^{4} + 9 q^{8} - 10 q^{10} - 4 q^{11} - 2 q^{13} + 13 q^{16} + 12 q^{17} + 3 q^{19} - 16 q^{20} - 8 q^{22} + 8 q^{23} + q^{25} + 10 q^{26} + 8 q^{29} + 8 q^{31} + 27 q^{32} + 6 q^{34}+ \cdots - 22 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.39593 −0.987073 −0.493536 0.869725i \(-0.664296\pi\)
−0.493536 + 0.869725i \(0.664296\pi\)
\(3\) 0 0
\(4\) −0.0513742 −0.0256871
\(5\) 3.05137 1.36462 0.682308 0.731065i \(-0.260976\pi\)
0.682308 + 0.731065i \(0.260976\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 2.86358 1.01243
\(9\) 0 0
\(10\) −4.25951 −1.34698
\(11\) −5.31088 −1.60129 −0.800646 0.599138i \(-0.795510\pi\)
−0.800646 + 0.599138i \(0.795510\pi\)
\(12\) 0 0
\(13\) 3.31088 0.918274 0.459137 0.888365i \(-0.348159\pi\)
0.459137 + 0.888365i \(0.348159\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −3.89461 −0.973653
\(17\) 0.948626 0.230076 0.115038 0.993361i \(-0.463301\pi\)
0.115038 + 0.993361i \(0.463301\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) −0.156762 −0.0350531
\(21\) 0 0
\(22\) 7.41363 1.58059
\(23\) −1.31088 −0.273338 −0.136669 0.990617i \(-0.543640\pi\)
−0.136669 + 0.990617i \(0.543640\pi\)
\(24\) 0 0
\(25\) 4.31088 0.862177
\(26\) −4.62177 −0.906404
\(27\) 0 0
\(28\) 0 0
\(29\) 7.84324 1.45645 0.728226 0.685337i \(-0.240345\pi\)
0.728226 + 0.685337i \(0.240345\pi\)
\(30\) 0 0
\(31\) 4.79186 0.860644 0.430322 0.902675i \(-0.358400\pi\)
0.430322 + 0.902675i \(0.358400\pi\)
\(32\) −0.290544 −0.0513614
\(33\) 0 0
\(34\) −1.32422 −0.227101
\(35\) 0 0
\(36\) 0 0
\(37\) −8.62177 −1.41741 −0.708705 0.705505i \(-0.750720\pi\)
−0.708705 + 0.705505i \(0.750720\pi\)
\(38\) −1.39593 −0.226450
\(39\) 0 0
\(40\) 8.73785 1.38158
\(41\) 11.3109 1.76646 0.883232 0.468937i \(-0.155363\pi\)
0.883232 + 0.468937i \(0.155363\pi\)
\(42\) 0 0
\(43\) 3.20814 0.489236 0.244618 0.969620i \(-0.421337\pi\)
0.244618 + 0.969620i \(0.421337\pi\)
\(44\) 0.272843 0.0411326
\(45\) 0 0
\(46\) 1.82991 0.269805
\(47\) −5.84324 −0.852324 −0.426162 0.904647i \(-0.640135\pi\)
−0.426162 + 0.904647i \(0.640135\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −6.01770 −0.851031
\(51\) 0 0
\(52\) −0.170094 −0.0235878
\(53\) 2.77853 0.381661 0.190830 0.981623i \(-0.438882\pi\)
0.190830 + 0.981623i \(0.438882\pi\)
\(54\) 0 0
\(55\) −16.2055 −2.18515
\(56\) 0 0
\(57\) 0 0
\(58\) −10.9486 −1.43762
\(59\) −8.20550 −1.06826 −0.534132 0.845401i \(-0.679362\pi\)
−0.534132 + 0.845401i \(0.679362\pi\)
\(60\) 0 0
\(61\) −12.6218 −1.61605 −0.808026 0.589147i \(-0.799464\pi\)
−0.808026 + 0.589147i \(0.799464\pi\)
\(62\) −6.68912 −0.849518
\(63\) 0 0
\(64\) 8.19480 1.02435
\(65\) 10.1027 1.25309
\(66\) 0 0
\(67\) −4.51902 −0.552086 −0.276043 0.961145i \(-0.589023\pi\)
−0.276043 + 0.961145i \(0.589023\pi\)
\(68\) −0.0487349 −0.00590998
\(69\) 0 0
\(70\) 0 0
\(71\) 13.5704 1.61051 0.805255 0.592929i \(-0.202028\pi\)
0.805255 + 0.592929i \(0.202028\pi\)
\(72\) 0 0
\(73\) 4.10275 0.480190 0.240095 0.970749i \(-0.422821\pi\)
0.240095 + 0.970749i \(0.422821\pi\)
\(74\) 12.0354 1.39909
\(75\) 0 0
\(76\) −0.0513742 −0.00589303
\(77\) 0 0
\(78\) 0 0
\(79\) −8.20550 −0.923191 −0.461595 0.887091i \(-0.652723\pi\)
−0.461595 + 0.887091i \(0.652723\pi\)
\(80\) −11.8839 −1.32866
\(81\) 0 0
\(82\) −15.7892 −1.74363
\(83\) −6.36226 −0.698349 −0.349174 0.937058i \(-0.613538\pi\)
−0.349174 + 0.937058i \(0.613538\pi\)
\(84\) 0 0
\(85\) 2.89461 0.313965
\(86\) −4.47834 −0.482912
\(87\) 0 0
\(88\) −15.2081 −1.62119
\(89\) 15.5164 1.64473 0.822367 0.568958i \(-0.192653\pi\)
0.822367 + 0.568958i \(0.192653\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0.0673457 0.00702128
\(93\) 0 0
\(94\) 8.15676 0.841306
\(95\) 3.05137 0.313064
\(96\) 0 0
\(97\) −11.5837 −1.17615 −0.588075 0.808807i \(-0.700114\pi\)
−0.588075 + 0.808807i \(0.700114\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −0.221468 −0.0221468
\(101\) 9.67314 0.962514 0.481257 0.876580i \(-0.340180\pi\)
0.481257 + 0.876580i \(0.340180\pi\)
\(102\) 0 0
\(103\) 2.62177 0.258331 0.129165 0.991623i \(-0.458770\pi\)
0.129165 + 0.991623i \(0.458770\pi\)
\(104\) 9.48098 0.929686
\(105\) 0 0
\(106\) −3.87864 −0.376727
\(107\) 10.9486 1.05844 0.529222 0.848484i \(-0.322484\pi\)
0.529222 + 0.848484i \(0.322484\pi\)
\(108\) 0 0
\(109\) 18.7245 1.79348 0.896742 0.442554i \(-0.145928\pi\)
0.896742 + 0.442554i \(0.145928\pi\)
\(110\) 22.6218 2.15690
\(111\) 0 0
\(112\) 0 0
\(113\) 3.84324 0.361541 0.180771 0.983525i \(-0.442141\pi\)
0.180771 + 0.983525i \(0.442141\pi\)
\(114\) 0 0
\(115\) −4.00000 −0.373002
\(116\) −0.402940 −0.0374121
\(117\) 0 0
\(118\) 11.4543 1.05446
\(119\) 0 0
\(120\) 0 0
\(121\) 17.2055 1.56414
\(122\) 17.6191 1.59516
\(123\) 0 0
\(124\) −0.246178 −0.0221075
\(125\) −2.10275 −0.188076
\(126\) 0 0
\(127\) 7.48098 0.663830 0.331915 0.943309i \(-0.392305\pi\)
0.331915 + 0.943309i \(0.392305\pi\)
\(128\) −10.8583 −0.959747
\(129\) 0 0
\(130\) −14.1027 −1.23689
\(131\) 5.32422 0.465179 0.232589 0.972575i \(-0.425280\pi\)
0.232589 + 0.972575i \(0.425280\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 6.30825 0.544949
\(135\) 0 0
\(136\) 2.71646 0.232935
\(137\) −0.416273 −0.0355646 −0.0177823 0.999842i \(-0.505661\pi\)
−0.0177823 + 0.999842i \(0.505661\pi\)
\(138\) 0 0
\(139\) −10.1027 −0.856904 −0.428452 0.903565i \(-0.640941\pi\)
−0.428452 + 0.903565i \(0.640941\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −18.9433 −1.58969
\(143\) −17.5837 −1.47043
\(144\) 0 0
\(145\) 23.9327 1.98750
\(146\) −5.72716 −0.473983
\(147\) 0 0
\(148\) 0.442937 0.0364092
\(149\) 13.6865 1.12124 0.560620 0.828073i \(-0.310563\pi\)
0.560620 + 0.828073i \(0.310563\pi\)
\(150\) 0 0
\(151\) −15.1408 −1.23214 −0.616070 0.787691i \(-0.711276\pi\)
−0.616070 + 0.787691i \(0.711276\pi\)
\(152\) 2.86358 0.232267
\(153\) 0 0
\(154\) 0 0
\(155\) 14.6218 1.17445
\(156\) 0 0
\(157\) −6.20550 −0.495253 −0.247626 0.968856i \(-0.579651\pi\)
−0.247626 + 0.968856i \(0.579651\pi\)
\(158\) 11.4543 0.911256
\(159\) 0 0
\(160\) −0.886559 −0.0700886
\(161\) 0 0
\(162\) 0 0
\(163\) 7.41363 0.580681 0.290340 0.956923i \(-0.406232\pi\)
0.290340 + 0.956923i \(0.406232\pi\)
\(164\) −0.581088 −0.0453754
\(165\) 0 0
\(166\) 8.88128 0.689321
\(167\) 24.9300 1.92914 0.964571 0.263823i \(-0.0849833\pi\)
0.964571 + 0.263823i \(0.0849833\pi\)
\(168\) 0 0
\(169\) −2.03804 −0.156772
\(170\) −4.04068 −0.309906
\(171\) 0 0
\(172\) −0.164816 −0.0125671
\(173\) 19.5164 1.48380 0.741902 0.670509i \(-0.233924\pi\)
0.741902 + 0.670509i \(0.233924\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 20.6838 1.55910
\(177\) 0 0
\(178\) −21.6598 −1.62347
\(179\) −7.15412 −0.534724 −0.267362 0.963596i \(-0.586152\pi\)
−0.267362 + 0.963596i \(0.586152\pi\)
\(180\) 0 0
\(181\) −15.5837 −1.15833 −0.579165 0.815211i \(-0.696621\pi\)
−0.579165 + 0.815211i \(0.696621\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −3.75382 −0.276735
\(185\) −26.3082 −1.93422
\(186\) 0 0
\(187\) −5.03804 −0.368418
\(188\) 0.300192 0.0218937
\(189\) 0 0
\(190\) −4.25951 −0.309017
\(191\) −13.5164 −0.978011 −0.489006 0.872281i \(-0.662640\pi\)
−0.489006 + 0.872281i \(0.662640\pi\)
\(192\) 0 0
\(193\) 7.03804 0.506609 0.253305 0.967387i \(-0.418482\pi\)
0.253305 + 0.967387i \(0.418482\pi\)
\(194\) 16.1701 1.16095
\(195\) 0 0
\(196\) 0 0
\(197\) −19.7892 −1.40992 −0.704962 0.709245i \(-0.749036\pi\)
−0.704962 + 0.709245i \(0.749036\pi\)
\(198\) 0 0
\(199\) 11.6865 0.828432 0.414216 0.910179i \(-0.364056\pi\)
0.414216 + 0.910179i \(0.364056\pi\)
\(200\) 12.3446 0.872892
\(201\) 0 0
\(202\) −13.5030 −0.950071
\(203\) 0 0
\(204\) 0 0
\(205\) 34.5137 2.41054
\(206\) −3.65981 −0.254991
\(207\) 0 0
\(208\) −12.8946 −0.894080
\(209\) −5.31088 −0.367362
\(210\) 0 0
\(211\) 18.8273 1.29612 0.648061 0.761588i \(-0.275580\pi\)
0.648061 + 0.761588i \(0.275580\pi\)
\(212\) −0.142745 −0.00980376
\(213\) 0 0
\(214\) −15.2835 −1.04476
\(215\) 9.78922 0.667620
\(216\) 0 0
\(217\) 0 0
\(218\) −26.1382 −1.77030
\(219\) 0 0
\(220\) 0.832545 0.0561302
\(221\) 3.14079 0.211272
\(222\) 0 0
\(223\) 5.82991 0.390399 0.195200 0.980764i \(-0.437465\pi\)
0.195200 + 0.980764i \(0.437465\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −5.36490 −0.356868
\(227\) −5.06471 −0.336156 −0.168078 0.985774i \(-0.553756\pi\)
−0.168078 + 0.985774i \(0.553756\pi\)
\(228\) 0 0
\(229\) 21.6865 1.43308 0.716541 0.697545i \(-0.245724\pi\)
0.716541 + 0.697545i \(0.245724\pi\)
\(230\) 5.58373 0.368180
\(231\) 0 0
\(232\) 22.4597 1.47455
\(233\) 12.3082 0.806340 0.403170 0.915125i \(-0.367908\pi\)
0.403170 + 0.915125i \(0.367908\pi\)
\(234\) 0 0
\(235\) −17.8299 −1.16309
\(236\) 0.421551 0.0274406
\(237\) 0 0
\(238\) 0 0
\(239\) −14.0354 −0.907875 −0.453937 0.891034i \(-0.649981\pi\)
−0.453937 + 0.891034i \(0.649981\pi\)
\(240\) 0 0
\(241\) −3.58373 −0.230848 −0.115424 0.993316i \(-0.536823\pi\)
−0.115424 + 0.993316i \(0.536823\pi\)
\(242\) −24.0177 −1.54392
\(243\) 0 0
\(244\) 0.648434 0.0415117
\(245\) 0 0
\(246\) 0 0
\(247\) 3.31088 0.210667
\(248\) 13.7219 0.871340
\(249\) 0 0
\(250\) 2.93529 0.185644
\(251\) −15.0868 −0.952269 −0.476134 0.879372i \(-0.657962\pi\)
−0.476134 + 0.879372i \(0.657962\pi\)
\(252\) 0 0
\(253\) 6.96196 0.437695
\(254\) −10.4429 −0.655248
\(255\) 0 0
\(256\) −1.23216 −0.0770101
\(257\) −18.4517 −1.15098 −0.575492 0.817807i \(-0.695189\pi\)
−0.575492 + 0.817807i \(0.695189\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −0.519021 −0.0321883
\(261\) 0 0
\(262\) −7.43224 −0.459166
\(263\) 16.7919 1.03543 0.517715 0.855553i \(-0.326783\pi\)
0.517715 + 0.855553i \(0.326783\pi\)
\(264\) 0 0
\(265\) 8.47834 0.520820
\(266\) 0 0
\(267\) 0 0
\(268\) 0.232161 0.0141815
\(269\) 18.4517 1.12502 0.562509 0.826791i \(-0.309836\pi\)
0.562509 + 0.826791i \(0.309836\pi\)
\(270\) 0 0
\(271\) −6.62177 −0.402244 −0.201122 0.979566i \(-0.564459\pi\)
−0.201122 + 0.979566i \(0.564459\pi\)
\(272\) −3.69453 −0.224014
\(273\) 0 0
\(274\) 0.581088 0.0351048
\(275\) −22.8946 −1.38060
\(276\) 0 0
\(277\) −8.89461 −0.534425 −0.267213 0.963638i \(-0.586103\pi\)
−0.267213 + 0.963638i \(0.586103\pi\)
\(278\) 14.1027 0.845827
\(279\) 0 0
\(280\) 0 0
\(281\) −17.7405 −1.05831 −0.529154 0.848526i \(-0.677491\pi\)
−0.529154 + 0.848526i \(0.677491\pi\)
\(282\) 0 0
\(283\) −0.859209 −0.0510747 −0.0255373 0.999674i \(-0.508130\pi\)
−0.0255373 + 0.999674i \(0.508130\pi\)
\(284\) −0.697169 −0.0413694
\(285\) 0 0
\(286\) 24.5457 1.45142
\(287\) 0 0
\(288\) 0 0
\(289\) −16.1001 −0.947065
\(290\) −33.4084 −1.96181
\(291\) 0 0
\(292\) −0.210776 −0.0123347
\(293\) 23.3109 1.36184 0.680918 0.732359i \(-0.261581\pi\)
0.680918 + 0.732359i \(0.261581\pi\)
\(294\) 0 0
\(295\) −25.0380 −1.45777
\(296\) −24.6891 −1.43503
\(297\) 0 0
\(298\) −19.1054 −1.10675
\(299\) −4.34019 −0.251000
\(300\) 0 0
\(301\) 0 0
\(302\) 21.1355 1.21621
\(303\) 0 0
\(304\) −3.89461 −0.223371
\(305\) −38.5137 −2.20529
\(306\) 0 0
\(307\) −11.4136 −0.651410 −0.325705 0.945471i \(-0.605602\pi\)
−0.325705 + 0.945471i \(0.605602\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −20.4110 −1.15927
\(311\) 19.9460 1.13103 0.565517 0.824737i \(-0.308677\pi\)
0.565517 + 0.824737i \(0.308677\pi\)
\(312\) 0 0
\(313\) 13.1675 0.744269 0.372134 0.928179i \(-0.378626\pi\)
0.372134 + 0.928179i \(0.378626\pi\)
\(314\) 8.66245 0.488850
\(315\) 0 0
\(316\) 0.421551 0.0237141
\(317\) 26.4650 1.48642 0.743211 0.669057i \(-0.233302\pi\)
0.743211 + 0.669057i \(0.233302\pi\)
\(318\) 0 0
\(319\) −41.6545 −2.33221
\(320\) 25.0054 1.39785
\(321\) 0 0
\(322\) 0 0
\(323\) 0.948626 0.0527829
\(324\) 0 0
\(325\) 14.2728 0.791715
\(326\) −10.3489 −0.573174
\(327\) 0 0
\(328\) 32.3896 1.78842
\(329\) 0 0
\(330\) 0 0
\(331\) −0.519021 −0.0285280 −0.0142640 0.999898i \(-0.504541\pi\)
−0.0142640 + 0.999898i \(0.504541\pi\)
\(332\) 0.326856 0.0179386
\(333\) 0 0
\(334\) −34.8006 −1.90420
\(335\) −13.7892 −0.753386
\(336\) 0 0
\(337\) 9.48098 0.516462 0.258231 0.966083i \(-0.416860\pi\)
0.258231 + 0.966083i \(0.416860\pi\)
\(338\) 2.84497 0.154746
\(339\) 0 0
\(340\) −0.148709 −0.00806485
\(341\) −25.4490 −1.37814
\(342\) 0 0
\(343\) 0 0
\(344\) 9.18675 0.495316
\(345\) 0 0
\(346\) −27.2435 −1.46462
\(347\) 31.4136 1.68637 0.843186 0.537622i \(-0.180677\pi\)
0.843186 + 0.537622i \(0.180677\pi\)
\(348\) 0 0
\(349\) 32.8273 1.75720 0.878602 0.477555i \(-0.158477\pi\)
0.878602 + 0.477555i \(0.158477\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 1.54305 0.0822446
\(353\) −7.25687 −0.386244 −0.193122 0.981175i \(-0.561861\pi\)
−0.193122 + 0.981175i \(0.561861\pi\)
\(354\) 0 0
\(355\) 41.4084 2.19773
\(356\) −0.797142 −0.0422485
\(357\) 0 0
\(358\) 9.98667 0.527812
\(359\) −22.5544 −1.19038 −0.595188 0.803586i \(-0.702923\pi\)
−0.595188 + 0.803586i \(0.702923\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 21.7538 1.14336
\(363\) 0 0
\(364\) 0 0
\(365\) 12.5190 0.655276
\(366\) 0 0
\(367\) −6.93529 −0.362019 −0.181010 0.983481i \(-0.557937\pi\)
−0.181010 + 0.983481i \(0.557937\pi\)
\(368\) 5.10539 0.266137
\(369\) 0 0
\(370\) 36.7245 1.90922
\(371\) 0 0
\(372\) 0 0
\(373\) −21.1675 −1.09601 −0.548005 0.836475i \(-0.684612\pi\)
−0.548005 + 0.836475i \(0.684612\pi\)
\(374\) 7.03276 0.363656
\(375\) 0 0
\(376\) −16.7326 −0.862916
\(377\) 25.9681 1.33742
\(378\) 0 0
\(379\) 7.34629 0.377353 0.188677 0.982039i \(-0.439580\pi\)
0.188677 + 0.982039i \(0.439580\pi\)
\(380\) −0.156762 −0.00804172
\(381\) 0 0
\(382\) 18.8679 0.965368
\(383\) −23.3463 −1.19294 −0.596470 0.802636i \(-0.703430\pi\)
−0.596470 + 0.802636i \(0.703430\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −9.82463 −0.500060
\(387\) 0 0
\(388\) 0.595105 0.0302119
\(389\) −0.102748 −0.00520955 −0.00260478 0.999997i \(-0.500829\pi\)
−0.00260478 + 0.999997i \(0.500829\pi\)
\(390\) 0 0
\(391\) −1.24354 −0.0628885
\(392\) 0 0
\(393\) 0 0
\(394\) 27.6244 1.39170
\(395\) −25.0380 −1.25980
\(396\) 0 0
\(397\) −23.4490 −1.17687 −0.588437 0.808543i \(-0.700256\pi\)
−0.588437 + 0.808543i \(0.700256\pi\)
\(398\) −16.3135 −0.817723
\(399\) 0 0
\(400\) −16.7892 −0.839461
\(401\) 10.9840 0.548516 0.274258 0.961656i \(-0.411568\pi\)
0.274258 + 0.961656i \(0.411568\pi\)
\(402\) 0 0
\(403\) 15.8653 0.790307
\(404\) −0.496950 −0.0247242
\(405\) 0 0
\(406\) 0 0
\(407\) 45.7892 2.26969
\(408\) 0 0
\(409\) 6.27284 0.310172 0.155086 0.987901i \(-0.450435\pi\)
0.155086 + 0.987901i \(0.450435\pi\)
\(410\) −48.1788 −2.37938
\(411\) 0 0
\(412\) −0.134691 −0.00663577
\(413\) 0 0
\(414\) 0 0
\(415\) −19.4136 −0.952978
\(416\) −0.961958 −0.0471639
\(417\) 0 0
\(418\) 7.41363 0.362613
\(419\) −7.19480 −0.351489 −0.175745 0.984436i \(-0.556233\pi\)
−0.175745 + 0.984436i \(0.556233\pi\)
\(420\) 0 0
\(421\) −20.8539 −1.01636 −0.508179 0.861251i \(-0.669681\pi\)
−0.508179 + 0.861251i \(0.669681\pi\)
\(422\) −26.2816 −1.27937
\(423\) 0 0
\(424\) 7.95654 0.386404
\(425\) 4.08942 0.198366
\(426\) 0 0
\(427\) 0 0
\(428\) −0.562477 −0.0271884
\(429\) 0 0
\(430\) −13.6651 −0.658989
\(431\) 24.3977 1.17519 0.587597 0.809154i \(-0.300074\pi\)
0.587597 + 0.809154i \(0.300074\pi\)
\(432\) 0 0
\(433\) −18.0000 −0.865025 −0.432512 0.901628i \(-0.642373\pi\)
−0.432512 + 0.901628i \(0.642373\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −0.961958 −0.0460694
\(437\) −1.31088 −0.0627081
\(438\) 0 0
\(439\) 23.9593 1.14352 0.571758 0.820422i \(-0.306262\pi\)
0.571758 + 0.820422i \(0.306262\pi\)
\(440\) −46.4057 −2.21231
\(441\) 0 0
\(442\) −4.38433 −0.208541
\(443\) 28.6572 1.36154 0.680772 0.732496i \(-0.261645\pi\)
0.680772 + 0.732496i \(0.261645\pi\)
\(444\) 0 0
\(445\) 47.3463 2.24443
\(446\) −8.13815 −0.385353
\(447\) 0 0
\(448\) 0 0
\(449\) −16.6758 −0.786979 −0.393489 0.919329i \(-0.628732\pi\)
−0.393489 + 0.919329i \(0.628732\pi\)
\(450\) 0 0
\(451\) −60.0708 −2.82862
\(452\) −0.197443 −0.00928696
\(453\) 0 0
\(454\) 7.06999 0.331811
\(455\) 0 0
\(456\) 0 0
\(457\) −27.3109 −1.27755 −0.638775 0.769394i \(-0.720558\pi\)
−0.638775 + 0.769394i \(0.720558\pi\)
\(458\) −30.2728 −1.41456
\(459\) 0 0
\(460\) 0.205497 0.00958135
\(461\) 10.7112 0.498870 0.249435 0.968392i \(-0.419755\pi\)
0.249435 + 0.968392i \(0.419755\pi\)
\(462\) 0 0
\(463\) −28.2055 −1.31082 −0.655410 0.755273i \(-0.727504\pi\)
−0.655410 + 0.755273i \(0.727504\pi\)
\(464\) −30.5464 −1.41808
\(465\) 0 0
\(466\) −17.1815 −0.795916
\(467\) −12.2595 −0.567302 −0.283651 0.958928i \(-0.591546\pi\)
−0.283651 + 0.958928i \(0.591546\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 24.8893 1.14806
\(471\) 0 0
\(472\) −23.4971 −1.08154
\(473\) −17.0380 −0.783410
\(474\) 0 0
\(475\) 4.31088 0.197797
\(476\) 0 0
\(477\) 0 0
\(478\) 19.5925 0.896139
\(479\) −31.4003 −1.43472 −0.717358 0.696705i \(-0.754649\pi\)
−0.717358 + 0.696705i \(0.754649\pi\)
\(480\) 0 0
\(481\) −28.5457 −1.30157
\(482\) 5.00264 0.227864
\(483\) 0 0
\(484\) −0.883919 −0.0401782
\(485\) −35.3463 −1.60499
\(486\) 0 0
\(487\) 22.2816 1.00967 0.504837 0.863214i \(-0.331552\pi\)
0.504837 + 0.863214i \(0.331552\pi\)
\(488\) −36.1434 −1.63614
\(489\) 0 0
\(490\) 0 0
\(491\) 31.4136 1.41768 0.708839 0.705371i \(-0.249219\pi\)
0.708839 + 0.705371i \(0.249219\pi\)
\(492\) 0 0
\(493\) 7.44030 0.335094
\(494\) −4.62177 −0.207943
\(495\) 0 0
\(496\) −18.6625 −0.837969
\(497\) 0 0
\(498\) 0 0
\(499\) 16.7512 0.749886 0.374943 0.927048i \(-0.377662\pi\)
0.374943 + 0.927048i \(0.377662\pi\)
\(500\) 0.108027 0.00483112
\(501\) 0 0
\(502\) 21.0601 0.939959
\(503\) 25.7352 1.14748 0.573738 0.819039i \(-0.305493\pi\)
0.573738 + 0.819039i \(0.305493\pi\)
\(504\) 0 0
\(505\) 29.5164 1.31346
\(506\) −9.71842 −0.432036
\(507\) 0 0
\(508\) −0.384330 −0.0170519
\(509\) −5.54832 −0.245925 −0.122963 0.992411i \(-0.539240\pi\)
−0.122963 + 0.992411i \(0.539240\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 23.4366 1.03576
\(513\) 0 0
\(514\) 25.7573 1.13610
\(515\) 8.00000 0.352522
\(516\) 0 0
\(517\) 31.0328 1.36482
\(518\) 0 0
\(519\) 0 0
\(520\) 28.9300 1.26867
\(521\) 11.3375 0.496707 0.248354 0.968669i \(-0.420111\pi\)
0.248354 + 0.968669i \(0.420111\pi\)
\(522\) 0 0
\(523\) 28.8627 1.26208 0.631038 0.775752i \(-0.282629\pi\)
0.631038 + 0.775752i \(0.282629\pi\)
\(524\) −0.273528 −0.0119491
\(525\) 0 0
\(526\) −23.4403 −1.02205
\(527\) 4.54569 0.198013
\(528\) 0 0
\(529\) −21.2816 −0.925286
\(530\) −11.8352 −0.514088
\(531\) 0 0
\(532\) 0 0
\(533\) 37.4490 1.62210
\(534\) 0 0
\(535\) 33.4084 1.44437
\(536\) −12.9406 −0.558948
\(537\) 0 0
\(538\) −25.7573 −1.11048
\(539\) 0 0
\(540\) 0 0
\(541\) 41.5784 1.78760 0.893799 0.448469i \(-0.148030\pi\)
0.893799 + 0.448469i \(0.148030\pi\)
\(542\) 9.24354 0.397044
\(543\) 0 0
\(544\) −0.275618 −0.0118170
\(545\) 57.1355 2.44742
\(546\) 0 0
\(547\) 3.16745 0.135431 0.0677153 0.997705i \(-0.478429\pi\)
0.0677153 + 0.997705i \(0.478429\pi\)
\(548\) 0.0213857 0.000913551 0
\(549\) 0 0
\(550\) 31.9593 1.36275
\(551\) 7.84324 0.334133
\(552\) 0 0
\(553\) 0 0
\(554\) 12.4163 0.527517
\(555\) 0 0
\(556\) 0.519021 0.0220114
\(557\) 26.3843 1.11794 0.558970 0.829188i \(-0.311197\pi\)
0.558970 + 0.829188i \(0.311197\pi\)
\(558\) 0 0
\(559\) 10.6218 0.449253
\(560\) 0 0
\(561\) 0 0
\(562\) 24.7645 1.04463
\(563\) −12.5190 −0.527614 −0.263807 0.964576i \(-0.584978\pi\)
−0.263807 + 0.964576i \(0.584978\pi\)
\(564\) 0 0
\(565\) 11.7272 0.493365
\(566\) 1.19940 0.0504145
\(567\) 0 0
\(568\) 38.8599 1.63052
\(569\) 39.7085 1.66467 0.832334 0.554274i \(-0.187004\pi\)
0.832334 + 0.554274i \(0.187004\pi\)
\(570\) 0 0
\(571\) 20.5457 0.859810 0.429905 0.902874i \(-0.358547\pi\)
0.429905 + 0.902874i \(0.358547\pi\)
\(572\) 0.903351 0.0377710
\(573\) 0 0
\(574\) 0 0
\(575\) −5.65107 −0.235666
\(576\) 0 0
\(577\) −30.4110 −1.26603 −0.633013 0.774141i \(-0.718182\pi\)
−0.633013 + 0.774141i \(0.718182\pi\)
\(578\) 22.4747 0.934822
\(579\) 0 0
\(580\) −1.22952 −0.0510531
\(581\) 0 0
\(582\) 0 0
\(583\) −14.7565 −0.611150
\(584\) 11.7485 0.486158
\(585\) 0 0
\(586\) −32.5404 −1.34423
\(587\) −18.2542 −0.753433 −0.376716 0.926329i \(-0.622947\pi\)
−0.376716 + 0.926329i \(0.622947\pi\)
\(588\) 0 0
\(589\) 4.79186 0.197445
\(590\) 34.9514 1.43893
\(591\) 0 0
\(592\) 33.5784 1.38007
\(593\) 26.7112 1.09690 0.548448 0.836184i \(-0.315219\pi\)
0.548448 + 0.836184i \(0.315219\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −0.703132 −0.0288014
\(597\) 0 0
\(598\) 6.05861 0.247755
\(599\) −14.8139 −0.605281 −0.302640 0.953105i \(-0.597868\pi\)
−0.302640 + 0.953105i \(0.597868\pi\)
\(600\) 0 0
\(601\) −5.79450 −0.236363 −0.118181 0.992992i \(-0.537706\pi\)
−0.118181 + 0.992992i \(0.537706\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0.777847 0.0316501
\(605\) 52.5004 2.13445
\(606\) 0 0
\(607\) −34.6218 −1.40525 −0.702627 0.711558i \(-0.747990\pi\)
−0.702627 + 0.711558i \(0.747990\pi\)
\(608\) −0.290544 −0.0117831
\(609\) 0 0
\(610\) 53.7626 2.17678
\(611\) −19.3463 −0.782667
\(612\) 0 0
\(613\) 47.5164 1.91917 0.959584 0.281421i \(-0.0908059\pi\)
0.959584 + 0.281421i \(0.0908059\pi\)
\(614\) 15.9327 0.642990
\(615\) 0 0
\(616\) 0 0
\(617\) 18.2055 0.732926 0.366463 0.930433i \(-0.380569\pi\)
0.366463 + 0.930433i \(0.380569\pi\)
\(618\) 0 0
\(619\) −2.10275 −0.0845166 −0.0422583 0.999107i \(-0.513455\pi\)
−0.0422583 + 0.999107i \(0.513455\pi\)
\(620\) −0.751182 −0.0301682
\(621\) 0 0
\(622\) −27.8432 −1.11641
\(623\) 0 0
\(624\) 0 0
\(625\) −27.9707 −1.11883
\(626\) −18.3809 −0.734647
\(627\) 0 0
\(628\) 0.318803 0.0127216
\(629\) −8.17883 −0.326111
\(630\) 0 0
\(631\) −11.0026 −0.438008 −0.219004 0.975724i \(-0.570281\pi\)
−0.219004 + 0.975724i \(0.570281\pi\)
\(632\) −23.4971 −0.934664
\(633\) 0 0
\(634\) −36.9433 −1.46721
\(635\) 22.8273 0.905872
\(636\) 0 0
\(637\) 0 0
\(638\) 58.1469 2.30206
\(639\) 0 0
\(640\) −33.1327 −1.30969
\(641\) 21.9460 0.866814 0.433407 0.901198i \(-0.357311\pi\)
0.433407 + 0.901198i \(0.357311\pi\)
\(642\) 0 0
\(643\) −14.1027 −0.556158 −0.278079 0.960558i \(-0.589698\pi\)
−0.278079 + 0.960558i \(0.589698\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −1.32422 −0.0521006
\(647\) 13.3242 0.523829 0.261915 0.965091i \(-0.415646\pi\)
0.261915 + 0.965091i \(0.415646\pi\)
\(648\) 0 0
\(649\) 43.5784 1.71060
\(650\) −19.9239 −0.781480
\(651\) 0 0
\(652\) −0.380870 −0.0149160
\(653\) 8.96196 0.350709 0.175354 0.984505i \(-0.443893\pi\)
0.175354 + 0.984505i \(0.443893\pi\)
\(654\) 0 0
\(655\) 16.2462 0.634791
\(656\) −44.0515 −1.71992
\(657\) 0 0
\(658\) 0 0
\(659\) −27.1541 −1.05777 −0.528887 0.848692i \(-0.677391\pi\)
−0.528887 + 0.848692i \(0.677391\pi\)
\(660\) 0 0
\(661\) 1.23480 0.0480282 0.0240141 0.999712i \(-0.492355\pi\)
0.0240141 + 0.999712i \(0.492355\pi\)
\(662\) 0.724518 0.0281592
\(663\) 0 0
\(664\) −18.2188 −0.707028
\(665\) 0 0
\(666\) 0 0
\(667\) −10.2816 −0.398104
\(668\) −1.28076 −0.0495541
\(669\) 0 0
\(670\) 19.2488 0.743647
\(671\) 67.0328 2.58777
\(672\) 0 0
\(673\) 47.4490 1.82903 0.914513 0.404557i \(-0.132574\pi\)
0.914513 + 0.404557i \(0.132574\pi\)
\(674\) −13.2348 −0.509785
\(675\) 0 0
\(676\) 0.104703 0.00402703
\(677\) 1.41363 0.0543303 0.0271652 0.999631i \(-0.491352\pi\)
0.0271652 + 0.999631i \(0.491352\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 8.28895 0.317867
\(681\) 0 0
\(682\) 35.5251 1.36033
\(683\) 7.80784 0.298759 0.149379 0.988780i \(-0.452272\pi\)
0.149379 + 0.988780i \(0.452272\pi\)
\(684\) 0 0
\(685\) −1.27020 −0.0485320
\(686\) 0 0
\(687\) 0 0
\(688\) −12.4944 −0.476346
\(689\) 9.19940 0.350469
\(690\) 0 0
\(691\) 37.7892 1.43757 0.718785 0.695233i \(-0.244699\pi\)
0.718785 + 0.695233i \(0.244699\pi\)
\(692\) −1.00264 −0.0381146
\(693\) 0 0
\(694\) −43.8513 −1.66457
\(695\) −30.8273 −1.16934
\(696\) 0 0
\(697\) 10.7298 0.406420
\(698\) −45.8246 −1.73449
\(699\) 0 0
\(700\) 0 0
\(701\) −44.8273 −1.69310 −0.846551 0.532307i \(-0.821325\pi\)
−0.846551 + 0.532307i \(0.821325\pi\)
\(702\) 0 0
\(703\) −8.62177 −0.325176
\(704\) −43.5217 −1.64028
\(705\) 0 0
\(706\) 10.1301 0.381251
\(707\) 0 0
\(708\) 0 0
\(709\) 50.5491 1.89841 0.949206 0.314654i \(-0.101888\pi\)
0.949206 + 0.314654i \(0.101888\pi\)
\(710\) −57.8032 −2.16932
\(711\) 0 0
\(712\) 44.4324 1.66517
\(713\) −6.28158 −0.235247
\(714\) 0 0
\(715\) −53.6545 −2.00657
\(716\) 0.367538 0.0137355
\(717\) 0 0
\(718\) 31.4844 1.17499
\(719\) 1.43224 0.0534137 0.0267068 0.999643i \(-0.491498\pi\)
0.0267068 + 0.999643i \(0.491498\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −1.39593 −0.0519512
\(723\) 0 0
\(724\) 0.800602 0.0297541
\(725\) 33.8113 1.25572
\(726\) 0 0
\(727\) −47.5784 −1.76459 −0.882293 0.470700i \(-0.844002\pi\)
−0.882293 + 0.470700i \(0.844002\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −17.4757 −0.646805
\(731\) 3.04332 0.112561
\(732\) 0 0
\(733\) 19.2702 0.711761 0.355881 0.934531i \(-0.384181\pi\)
0.355881 + 0.934531i \(0.384181\pi\)
\(734\) 9.68120 0.357340
\(735\) 0 0
\(736\) 0.380870 0.0140390
\(737\) 24.0000 0.884051
\(738\) 0 0
\(739\) 30.3756 1.11738 0.558692 0.829375i \(-0.311303\pi\)
0.558692 + 0.829375i \(0.311303\pi\)
\(740\) 1.35157 0.0496846
\(741\) 0 0
\(742\) 0 0
\(743\) 50.5271 1.85366 0.926829 0.375483i \(-0.122523\pi\)
0.926829 + 0.375483i \(0.122523\pi\)
\(744\) 0 0
\(745\) 41.7626 1.53006
\(746\) 29.5483 1.08184
\(747\) 0 0
\(748\) 0.258826 0.00946360
\(749\) 0 0
\(750\) 0 0
\(751\) 28.4377 1.03770 0.518852 0.854864i \(-0.326359\pi\)
0.518852 + 0.854864i \(0.326359\pi\)
\(752\) 22.7571 0.829868
\(753\) 0 0
\(754\) −36.2496 −1.32013
\(755\) −46.2002 −1.68140
\(756\) 0 0
\(757\) −37.1675 −1.35087 −0.675437 0.737418i \(-0.736045\pi\)
−0.675437 + 0.737418i \(0.736045\pi\)
\(758\) −10.2549 −0.372475
\(759\) 0 0
\(760\) 8.73785 0.316955
\(761\) 35.6679 1.29296 0.646480 0.762931i \(-0.276241\pi\)
0.646480 + 0.762931i \(0.276241\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0.694394 0.0251223
\(765\) 0 0
\(766\) 32.5898 1.17752
\(767\) −27.1675 −0.980960
\(768\) 0 0
\(769\) −1.79450 −0.0647114 −0.0323557 0.999476i \(-0.510301\pi\)
−0.0323557 + 0.999476i \(0.510301\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −0.361574 −0.0130133
\(773\) 10.4783 0.376880 0.188440 0.982085i \(-0.439657\pi\)
0.188440 + 0.982085i \(0.439657\pi\)
\(774\) 0 0
\(775\) 20.6572 0.742028
\(776\) −33.1709 −1.19077
\(777\) 0 0
\(778\) 0.143430 0.00514221
\(779\) 11.3109 0.405255
\(780\) 0 0
\(781\) −72.0708 −2.57890
\(782\) 1.73590 0.0620755
\(783\) 0 0
\(784\) 0 0
\(785\) −18.9353 −0.675830
\(786\) 0 0
\(787\) −28.8627 −1.02884 −0.514422 0.857537i \(-0.671993\pi\)
−0.514422 + 0.857537i \(0.671993\pi\)
\(788\) 1.01666 0.0362169
\(789\) 0 0
\(790\) 34.9514 1.24352
\(791\) 0 0
\(792\) 0 0
\(793\) −41.7892 −1.48398
\(794\) 32.7333 1.16166
\(795\) 0 0
\(796\) −0.600384 −0.0212800
\(797\) −28.7599 −1.01873 −0.509364 0.860551i \(-0.670119\pi\)
−0.509364 + 0.860551i \(0.670119\pi\)
\(798\) 0 0
\(799\) −5.54305 −0.196099
\(800\) −1.25250 −0.0442826
\(801\) 0 0
\(802\) −15.3330 −0.541425
\(803\) −21.7892 −0.768925
\(804\) 0 0
\(805\) 0 0
\(806\) −22.1469 −0.780091
\(807\) 0 0
\(808\) 27.6998 0.974476
\(809\) −42.9567 −1.51028 −0.755138 0.655566i \(-0.772430\pi\)
−0.755138 + 0.655566i \(0.772430\pi\)
\(810\) 0 0
\(811\) 0.340188 0.0119456 0.00597281 0.999982i \(-0.498099\pi\)
0.00597281 + 0.999982i \(0.498099\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −63.9186 −2.24035
\(815\) 22.6218 0.792406
\(816\) 0 0
\(817\) 3.20814 0.112238
\(818\) −8.75646 −0.306162
\(819\) 0 0
\(820\) −1.77312 −0.0619199
\(821\) 23.7626 0.829319 0.414660 0.909977i \(-0.363901\pi\)
0.414660 + 0.909977i \(0.363901\pi\)
\(822\) 0 0
\(823\) 34.2409 1.19356 0.596781 0.802404i \(-0.296446\pi\)
0.596781 + 0.802404i \(0.296446\pi\)
\(824\) 7.50764 0.261541
\(825\) 0 0
\(826\) 0 0
\(827\) −35.0461 −1.21867 −0.609336 0.792912i \(-0.708564\pi\)
−0.609336 + 0.792912i \(0.708564\pi\)
\(828\) 0 0
\(829\) 32.4163 1.12586 0.562932 0.826503i \(-0.309673\pi\)
0.562932 + 0.826503i \(0.309673\pi\)
\(830\) 27.1001 0.940659
\(831\) 0 0
\(832\) 27.1321 0.940635
\(833\) 0 0
\(834\) 0 0
\(835\) 76.0708 2.63254
\(836\) 0.272843 0.00943646
\(837\) 0 0
\(838\) 10.0435 0.346945
\(839\) −8.41099 −0.290380 −0.145190 0.989404i \(-0.546379\pi\)
−0.145190 + 0.989404i \(0.546379\pi\)
\(840\) 0 0
\(841\) 32.5164 1.12125
\(842\) 29.1107 1.00322
\(843\) 0 0
\(844\) −0.967237 −0.0332937
\(845\) −6.21883 −0.213934
\(846\) 0 0
\(847\) 0 0
\(848\) −10.8213 −0.371605
\(849\) 0 0
\(850\) −5.70855 −0.195802
\(851\) 11.3021 0.387433
\(852\) 0 0
\(853\) 29.6598 1.01553 0.507766 0.861495i \(-0.330471\pi\)
0.507766 + 0.861495i \(0.330471\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 31.3523 1.07160
\(857\) 26.1382 0.892862 0.446431 0.894818i \(-0.352695\pi\)
0.446431 + 0.894818i \(0.352695\pi\)
\(858\) 0 0
\(859\) −1.78922 −0.0610475 −0.0305238 0.999534i \(-0.509718\pi\)
−0.0305238 + 0.999534i \(0.509718\pi\)
\(860\) −0.502914 −0.0171492
\(861\) 0 0
\(862\) −34.0575 −1.16000
\(863\) 46.2949 1.57590 0.787949 0.615741i \(-0.211143\pi\)
0.787949 + 0.615741i \(0.211143\pi\)
\(864\) 0 0
\(865\) 59.5518 2.02482
\(866\) 25.1268 0.853843
\(867\) 0 0
\(868\) 0 0
\(869\) 43.5784 1.47830
\(870\) 0 0
\(871\) −14.9620 −0.506967
\(872\) 53.6191 1.81577
\(873\) 0 0
\(874\) 1.82991 0.0618975
\(875\) 0 0
\(876\) 0 0
\(877\) −19.4490 −0.656747 −0.328374 0.944548i \(-0.606501\pi\)
−0.328374 + 0.944548i \(0.606501\pi\)
\(878\) −33.4456 −1.12873
\(879\) 0 0
\(880\) 63.1141 2.12758
\(881\) 4.94863 0.166723 0.0833617 0.996519i \(-0.473434\pi\)
0.0833617 + 0.996519i \(0.473434\pi\)
\(882\) 0 0
\(883\) 33.7892 1.13710 0.568549 0.822649i \(-0.307505\pi\)
0.568549 + 0.822649i \(0.307505\pi\)
\(884\) −0.161356 −0.00542698
\(885\) 0 0
\(886\) −40.0035 −1.34394
\(887\) −23.3463 −0.783892 −0.391946 0.919988i \(-0.628198\pi\)
−0.391946 + 0.919988i \(0.628198\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −66.0922 −2.21542
\(891\) 0 0
\(892\) −0.299507 −0.0100282
\(893\) −5.84324 −0.195537
\(894\) 0 0
\(895\) −21.8299 −0.729693
\(896\) 0 0
\(897\) 0 0
\(898\) 23.2783 0.776805
\(899\) 37.5837 1.25349
\(900\) 0 0
\(901\) 2.63579 0.0878108
\(902\) 83.8548 2.79206
\(903\) 0 0
\(904\) 11.0054 0.366035
\(905\) −47.5518 −1.58067
\(906\) 0 0
\(907\) 36.4110 1.20901 0.604504 0.796602i \(-0.293371\pi\)
0.604504 + 0.796602i \(0.293371\pi\)
\(908\) 0.260195 0.00863489
\(909\) 0 0
\(910\) 0 0
\(911\) −0.192165 −0.00636670 −0.00318335 0.999995i \(-0.501013\pi\)
−0.00318335 + 0.999995i \(0.501013\pi\)
\(912\) 0 0
\(913\) 33.7892 1.11826
\(914\) 38.1241 1.26103
\(915\) 0 0
\(916\) −1.11413 −0.0368118
\(917\) 0 0
\(918\) 0 0
\(919\) −18.4871 −0.609832 −0.304916 0.952379i \(-0.598628\pi\)
−0.304916 + 0.952379i \(0.598628\pi\)
\(920\) −11.4543 −0.377638
\(921\) 0 0
\(922\) −14.9521 −0.492421
\(923\) 44.9300 1.47889
\(924\) 0 0
\(925\) −37.1675 −1.22206
\(926\) 39.3730 1.29388
\(927\) 0 0
\(928\) −2.27881 −0.0748055
\(929\) −19.7492 −0.647951 −0.323976 0.946065i \(-0.605020\pi\)
−0.323976 + 0.946065i \(0.605020\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −0.632327 −0.0207126
\(933\) 0 0
\(934\) 17.1134 0.559969
\(935\) −15.3730 −0.502749
\(936\) 0 0
\(937\) 51.6545 1.68748 0.843740 0.536752i \(-0.180349\pi\)
0.843740 + 0.536752i \(0.180349\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0.915998 0.0298766
\(941\) −52.1062 −1.69861 −0.849307 0.527899i \(-0.822980\pi\)
−0.849307 + 0.527899i \(0.822980\pi\)
\(942\) 0 0
\(943\) −14.8273 −0.482842
\(944\) 31.9572 1.04012
\(945\) 0 0
\(946\) 23.7839 0.773283
\(947\) 31.8513 1.03503 0.517514 0.855675i \(-0.326858\pi\)
0.517514 + 0.855675i \(0.326858\pi\)
\(948\) 0 0
\(949\) 13.5837 0.440946
\(950\) −6.01770 −0.195240
\(951\) 0 0
\(952\) 0 0
\(953\) −28.8813 −0.935556 −0.467778 0.883846i \(-0.654945\pi\)
−0.467778 + 0.883846i \(0.654945\pi\)
\(954\) 0 0
\(955\) −41.2435 −1.33461
\(956\) 0.721058 0.0233207
\(957\) 0 0
\(958\) 43.8327 1.41617
\(959\) 0 0
\(960\) 0 0
\(961\) −8.03804 −0.259292
\(962\) 39.8478 1.28475
\(963\) 0 0
\(964\) 0.184111 0.00592983
\(965\) 21.4757 0.691327
\(966\) 0 0
\(967\) −8.16482 −0.262563 −0.131281 0.991345i \(-0.541909\pi\)
−0.131281 + 0.991345i \(0.541909\pi\)
\(968\) 49.2693 1.58358
\(969\) 0 0
\(970\) 49.3410 1.58424
\(971\) −32.6979 −1.04932 −0.524662 0.851311i \(-0.675808\pi\)
−0.524662 + 0.851311i \(0.675808\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −31.1036 −0.996623
\(975\) 0 0
\(976\) 49.1569 1.57347
\(977\) 5.11344 0.163593 0.0817967 0.996649i \(-0.473934\pi\)
0.0817967 + 0.996649i \(0.473934\pi\)
\(978\) 0 0
\(979\) −82.4057 −2.63370
\(980\) 0 0
\(981\) 0 0
\(982\) −43.8513 −1.39935
\(983\) 22.9620 0.732373 0.366186 0.930542i \(-0.380663\pi\)
0.366186 + 0.930542i \(0.380663\pi\)
\(984\) 0 0
\(985\) −60.3843 −1.92400
\(986\) −10.3861 −0.330762
\(987\) 0 0
\(988\) −0.170094 −0.00541142
\(989\) −4.20550 −0.133727
\(990\) 0 0
\(991\) −35.1675 −1.11713 −0.558566 0.829460i \(-0.688648\pi\)
−0.558566 + 0.829460i \(0.688648\pi\)
\(992\) −1.39225 −0.0442039
\(993\) 0 0
\(994\) 0 0
\(995\) 35.6598 1.13049
\(996\) 0 0
\(997\) 24.0761 0.762497 0.381249 0.924473i \(-0.375494\pi\)
0.381249 + 0.924473i \(0.375494\pi\)
\(998\) −23.3835 −0.740192
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8379.2.a.bq.1.2 3
3.2 odd 2 2793.2.a.w.1.2 3
7.6 odd 2 1197.2.a.m.1.2 3
21.20 even 2 399.2.a.e.1.2 3
84.83 odd 2 6384.2.a.bu.1.3 3
105.104 even 2 9975.2.a.x.1.2 3
399.398 odd 2 7581.2.a.l.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
399.2.a.e.1.2 3 21.20 even 2
1197.2.a.m.1.2 3 7.6 odd 2
2793.2.a.w.1.2 3 3.2 odd 2
6384.2.a.bu.1.3 3 84.83 odd 2
7581.2.a.l.1.2 3 399.398 odd 2
8379.2.a.bq.1.2 3 1.1 even 1 trivial
9975.2.a.x.1.2 3 105.104 even 2