Properties

Label 8379.2.a.bq.1.1
Level $8379$
Weight $2$
Character 8379.1
Self dual yes
Analytic conductor $66.907$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8379,2,Mod(1,8379)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8379.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8379, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8379 = 3^{2} \cdot 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8379.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-1,0,9,0,0,0,9,0,-10,-4,0,-2,0,0,13,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.9066518536\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.404.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 5x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 399)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.86620\) of defining polynomial
Character \(\chi\) \(=\) 8379.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.34889 q^{2} +3.51730 q^{4} -0.517304 q^{5} -3.56399 q^{8} +1.21509 q^{10} +3.73240 q^{11} -5.73240 q^{13} +1.33682 q^{16} +4.51730 q^{17} +1.00000 q^{19} -1.81952 q^{20} -8.76700 q^{22} +7.73240 q^{23} -4.73240 q^{25} +13.4648 q^{26} +6.18048 q^{29} +6.69779 q^{31} +3.98793 q^{32} -10.6107 q^{34} +9.46479 q^{37} -2.34889 q^{38} +1.84366 q^{40} +2.26760 q^{41} +1.30221 q^{43} +13.1280 q^{44} -18.1626 q^{46} -4.18048 q^{47} +11.1159 q^{50} -20.1626 q^{52} -13.6453 q^{53} -1.93078 q^{55} -14.5173 q^{58} +6.06922 q^{59} +5.46479 q^{61} -15.7324 q^{62} -12.0409 q^{64} +2.96539 q^{65} +6.43018 q^{67} +15.8887 q^{68} -0.947489 q^{71} -3.03461 q^{73} -22.2318 q^{74} +3.51730 q^{76} +6.06922 q^{79} -0.691542 q^{80} -5.32636 q^{82} +6.24970 q^{83} -2.33682 q^{85} -3.05876 q^{86} -13.3022 q^{88} -7.80161 q^{89} +27.1972 q^{92} +9.81952 q^{94} -0.517304 q^{95} -15.3956 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - q^{2} + 9 q^{4} + 9 q^{8} - 10 q^{10} - 4 q^{11} - 2 q^{13} + 13 q^{16} + 12 q^{17} + 3 q^{19} - 16 q^{20} - 8 q^{22} + 8 q^{23} + q^{25} + 10 q^{26} + 8 q^{29} + 8 q^{31} + 27 q^{32} + 6 q^{34}+ \cdots - 22 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.34889 −1.66092 −0.830460 0.557079i \(-0.811922\pi\)
−0.830460 + 0.557079i \(0.811922\pi\)
\(3\) 0 0
\(4\) 3.51730 1.75865
\(5\) −0.517304 −0.231345 −0.115673 0.993287i \(-0.536902\pi\)
−0.115673 + 0.993287i \(0.536902\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −3.56399 −1.26006
\(9\) 0 0
\(10\) 1.21509 0.384246
\(11\) 3.73240 1.12536 0.562680 0.826675i \(-0.309770\pi\)
0.562680 + 0.826675i \(0.309770\pi\)
\(12\) 0 0
\(13\) −5.73240 −1.58988 −0.794940 0.606688i \(-0.792498\pi\)
−0.794940 + 0.606688i \(0.792498\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.33682 0.334205
\(17\) 4.51730 1.09561 0.547804 0.836607i \(-0.315464\pi\)
0.547804 + 0.836607i \(0.315464\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) −1.81952 −0.406856
\(21\) 0 0
\(22\) −8.76700 −1.86913
\(23\) 7.73240 1.61232 0.806158 0.591700i \(-0.201543\pi\)
0.806158 + 0.591700i \(0.201543\pi\)
\(24\) 0 0
\(25\) −4.73240 −0.946479
\(26\) 13.4648 2.64066
\(27\) 0 0
\(28\) 0 0
\(29\) 6.18048 1.14769 0.573844 0.818965i \(-0.305452\pi\)
0.573844 + 0.818965i \(0.305452\pi\)
\(30\) 0 0
\(31\) 6.69779 1.20296 0.601479 0.798888i \(-0.294578\pi\)
0.601479 + 0.798888i \(0.294578\pi\)
\(32\) 3.98793 0.704972
\(33\) 0 0
\(34\) −10.6107 −1.81971
\(35\) 0 0
\(36\) 0 0
\(37\) 9.46479 1.55600 0.778001 0.628263i \(-0.216234\pi\)
0.778001 + 0.628263i \(0.216234\pi\)
\(38\) −2.34889 −0.381041
\(39\) 0 0
\(40\) 1.84366 0.291509
\(41\) 2.26760 0.354140 0.177070 0.984198i \(-0.443338\pi\)
0.177070 + 0.984198i \(0.443338\pi\)
\(42\) 0 0
\(43\) 1.30221 0.198585 0.0992927 0.995058i \(-0.468342\pi\)
0.0992927 + 0.995058i \(0.468342\pi\)
\(44\) 13.1280 1.97912
\(45\) 0 0
\(46\) −18.1626 −2.67793
\(47\) −4.18048 −0.609786 −0.304893 0.952387i \(-0.598621\pi\)
−0.304893 + 0.952387i \(0.598621\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 11.1159 1.57203
\(51\) 0 0
\(52\) −20.1626 −2.79605
\(53\) −13.6453 −1.87432 −0.937162 0.348896i \(-0.886557\pi\)
−0.937162 + 0.348896i \(0.886557\pi\)
\(54\) 0 0
\(55\) −1.93078 −0.260347
\(56\) 0 0
\(57\) 0 0
\(58\) −14.5173 −1.90622
\(59\) 6.06922 0.790145 0.395072 0.918650i \(-0.370720\pi\)
0.395072 + 0.918650i \(0.370720\pi\)
\(60\) 0 0
\(61\) 5.46479 0.699695 0.349848 0.936807i \(-0.386233\pi\)
0.349848 + 0.936807i \(0.386233\pi\)
\(62\) −15.7324 −1.99802
\(63\) 0 0
\(64\) −12.0409 −1.50511
\(65\) 2.96539 0.367812
\(66\) 0 0
\(67\) 6.43018 0.785572 0.392786 0.919630i \(-0.371511\pi\)
0.392786 + 0.919630i \(0.371511\pi\)
\(68\) 15.8887 1.92679
\(69\) 0 0
\(70\) 0 0
\(71\) −0.947489 −0.112446 −0.0562231 0.998418i \(-0.517906\pi\)
−0.0562231 + 0.998418i \(0.517906\pi\)
\(72\) 0 0
\(73\) −3.03461 −0.355174 −0.177587 0.984105i \(-0.556829\pi\)
−0.177587 + 0.984105i \(0.556829\pi\)
\(74\) −22.2318 −2.58439
\(75\) 0 0
\(76\) 3.51730 0.403462
\(77\) 0 0
\(78\) 0 0
\(79\) 6.06922 0.682840 0.341420 0.939911i \(-0.389092\pi\)
0.341420 + 0.939911i \(0.389092\pi\)
\(80\) −0.691542 −0.0773168
\(81\) 0 0
\(82\) −5.32636 −0.588198
\(83\) 6.24970 0.685994 0.342997 0.939337i \(-0.388558\pi\)
0.342997 + 0.939337i \(0.388558\pi\)
\(84\) 0 0
\(85\) −2.33682 −0.253464
\(86\) −3.05876 −0.329834
\(87\) 0 0
\(88\) −13.3022 −1.41802
\(89\) −7.80161 −0.826969 −0.413485 0.910511i \(-0.635688\pi\)
−0.413485 + 0.910511i \(0.635688\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 27.1972 2.83550
\(93\) 0 0
\(94\) 9.81952 1.01281
\(95\) −0.517304 −0.0530743
\(96\) 0 0
\(97\) −15.3956 −1.56318 −0.781592 0.623790i \(-0.785592\pi\)
−0.781592 + 0.623790i \(0.785592\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −16.6453 −1.66453
\(101\) −11.9821 −1.19226 −0.596132 0.802887i \(-0.703296\pi\)
−0.596132 + 0.802887i \(0.703296\pi\)
\(102\) 0 0
\(103\) −15.4648 −1.52379 −0.761896 0.647700i \(-0.775731\pi\)
−0.761896 + 0.647700i \(0.775731\pi\)
\(104\) 20.4302 2.00334
\(105\) 0 0
\(106\) 32.0513 3.11310
\(107\) 14.5173 1.40344 0.701720 0.712452i \(-0.252416\pi\)
0.701720 + 0.712452i \(0.252416\pi\)
\(108\) 0 0
\(109\) −6.49940 −0.622530 −0.311265 0.950323i \(-0.600753\pi\)
−0.311265 + 0.950323i \(0.600753\pi\)
\(110\) 4.53521 0.432415
\(111\) 0 0
\(112\) 0 0
\(113\) 2.18048 0.205123 0.102561 0.994727i \(-0.467296\pi\)
0.102561 + 0.994727i \(0.467296\pi\)
\(114\) 0 0
\(115\) −4.00000 −0.373002
\(116\) 21.7386 2.01838
\(117\) 0 0
\(118\) −14.2559 −1.31237
\(119\) 0 0
\(120\) 0 0
\(121\) 2.93078 0.266435
\(122\) −12.8362 −1.16214
\(123\) 0 0
\(124\) 23.5582 2.11559
\(125\) 5.03461 0.450309
\(126\) 0 0
\(127\) 18.4302 1.63541 0.817707 0.575634i \(-0.195245\pi\)
0.817707 + 0.575634i \(0.195245\pi\)
\(128\) 20.3068 1.79489
\(129\) 0 0
\(130\) −6.96539 −0.610905
\(131\) 14.6107 1.27654 0.638270 0.769813i \(-0.279650\pi\)
0.638270 + 0.769813i \(0.279650\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −15.1038 −1.30477
\(135\) 0 0
\(136\) −16.0996 −1.38053
\(137\) 3.39558 0.290104 0.145052 0.989424i \(-0.453665\pi\)
0.145052 + 0.989424i \(0.453665\pi\)
\(138\) 0 0
\(139\) −2.96539 −0.251521 −0.125761 0.992061i \(-0.540137\pi\)
−0.125761 + 0.992061i \(0.540137\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 2.22555 0.186764
\(143\) −21.3956 −1.78919
\(144\) 0 0
\(145\) −3.19719 −0.265512
\(146\) 7.12797 0.589915
\(147\) 0 0
\(148\) 33.2906 2.73647
\(149\) 10.3610 0.848804 0.424402 0.905474i \(-0.360484\pi\)
0.424402 + 0.905474i \(0.360484\pi\)
\(150\) 0 0
\(151\) 13.8950 1.13076 0.565379 0.824831i \(-0.308730\pi\)
0.565379 + 0.824831i \(0.308730\pi\)
\(152\) −3.56399 −0.289077
\(153\) 0 0
\(154\) 0 0
\(155\) −3.46479 −0.278299
\(156\) 0 0
\(157\) 8.06922 0.643994 0.321997 0.946741i \(-0.395646\pi\)
0.321997 + 0.946741i \(0.395646\pi\)
\(158\) −14.2559 −1.13414
\(159\) 0 0
\(160\) −2.06297 −0.163092
\(161\) 0 0
\(162\) 0 0
\(163\) −8.76700 −0.686685 −0.343342 0.939210i \(-0.611559\pi\)
−0.343342 + 0.939210i \(0.611559\pi\)
\(164\) 7.97585 0.622809
\(165\) 0 0
\(166\) −14.6799 −1.13938
\(167\) −14.5686 −1.12735 −0.563677 0.825995i \(-0.690614\pi\)
−0.563677 + 0.825995i \(0.690614\pi\)
\(168\) 0 0
\(169\) 19.8604 1.52772
\(170\) 5.48894 0.420983
\(171\) 0 0
\(172\) 4.58027 0.349243
\(173\) −3.80161 −0.289031 −0.144516 0.989503i \(-0.546162\pi\)
−0.144516 + 0.989503i \(0.546162\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 4.98954 0.376101
\(177\) 0 0
\(178\) 18.3252 1.37353
\(179\) 3.55191 0.265482 0.132741 0.991151i \(-0.457622\pi\)
0.132741 + 0.991151i \(0.457622\pi\)
\(180\) 0 0
\(181\) −19.3956 −1.44166 −0.720831 0.693111i \(-0.756240\pi\)
−0.720831 + 0.693111i \(0.756240\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −27.5582 −2.03161
\(185\) −4.89618 −0.359974
\(186\) 0 0
\(187\) 16.8604 1.23295
\(188\) −14.7040 −1.07240
\(189\) 0 0
\(190\) 1.21509 0.0881521
\(191\) 9.80161 0.709220 0.354610 0.935014i \(-0.384614\pi\)
0.354610 + 0.935014i \(0.384614\pi\)
\(192\) 0 0
\(193\) −14.8604 −1.06967 −0.534836 0.844956i \(-0.679627\pi\)
−0.534836 + 0.844956i \(0.679627\pi\)
\(194\) 36.1626 2.59632
\(195\) 0 0
\(196\) 0 0
\(197\) −9.32636 −0.664476 −0.332238 0.943196i \(-0.607804\pi\)
−0.332238 + 0.943196i \(0.607804\pi\)
\(198\) 0 0
\(199\) 8.36097 0.592693 0.296347 0.955080i \(-0.404232\pi\)
0.296347 + 0.955080i \(0.404232\pi\)
\(200\) 16.8662 1.19262
\(201\) 0 0
\(202\) 28.1447 1.98025
\(203\) 0 0
\(204\) 0 0
\(205\) −1.17304 −0.0819287
\(206\) 36.3252 2.53089
\(207\) 0 0
\(208\) −7.66318 −0.531346
\(209\) 3.73240 0.258175
\(210\) 0 0
\(211\) −13.5340 −0.931720 −0.465860 0.884859i \(-0.654255\pi\)
−0.465860 + 0.884859i \(0.654255\pi\)
\(212\) −47.9946 −3.29628
\(213\) 0 0
\(214\) −34.0996 −2.33100
\(215\) −0.673639 −0.0459418
\(216\) 0 0
\(217\) 0 0
\(218\) 15.2664 1.03397
\(219\) 0 0
\(220\) −6.79115 −0.457859
\(221\) −25.8950 −1.74188
\(222\) 0 0
\(223\) −14.1626 −0.948397 −0.474198 0.880418i \(-0.657262\pi\)
−0.474198 + 0.880418i \(0.657262\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −5.12173 −0.340692
\(227\) −19.8258 −1.31588 −0.657941 0.753069i \(-0.728572\pi\)
−0.657941 + 0.753069i \(0.728572\pi\)
\(228\) 0 0
\(229\) 18.3610 1.21333 0.606663 0.794959i \(-0.292508\pi\)
0.606663 + 0.794959i \(0.292508\pi\)
\(230\) 9.39558 0.619526
\(231\) 0 0
\(232\) −22.0272 −1.44615
\(233\) −9.10382 −0.596411 −0.298206 0.954502i \(-0.596388\pi\)
−0.298206 + 0.954502i \(0.596388\pi\)
\(234\) 0 0
\(235\) 2.16258 0.141071
\(236\) 21.3473 1.38959
\(237\) 0 0
\(238\) 0 0
\(239\) 20.2318 1.30869 0.654343 0.756198i \(-0.272945\pi\)
0.654343 + 0.756198i \(0.272945\pi\)
\(240\) 0 0
\(241\) −7.39558 −0.476391 −0.238195 0.971217i \(-0.576556\pi\)
−0.238195 + 0.971217i \(0.576556\pi\)
\(242\) −6.88410 −0.442527
\(243\) 0 0
\(244\) 19.2213 1.23052
\(245\) 0 0
\(246\) 0 0
\(247\) −5.73240 −0.364744
\(248\) −23.8708 −1.51580
\(249\) 0 0
\(250\) −11.8258 −0.747927
\(251\) 22.7491 1.43591 0.717955 0.696089i \(-0.245078\pi\)
0.717955 + 0.696089i \(0.245078\pi\)
\(252\) 0 0
\(253\) 28.8604 1.81444
\(254\) −43.2906 −2.71629
\(255\) 0 0
\(256\) −23.6169 −1.47606
\(257\) 19.6274 1.22432 0.612161 0.790733i \(-0.290300\pi\)
0.612161 + 0.790733i \(0.290300\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 10.4302 0.646853
\(261\) 0 0
\(262\) −34.3189 −2.12023
\(263\) 18.6978 1.15296 0.576478 0.817113i \(-0.304427\pi\)
0.576478 + 0.817113i \(0.304427\pi\)
\(264\) 0 0
\(265\) 7.05876 0.433616
\(266\) 0 0
\(267\) 0 0
\(268\) 22.6169 1.38155
\(269\) −19.6274 −1.19670 −0.598351 0.801234i \(-0.704177\pi\)
−0.598351 + 0.801234i \(0.704177\pi\)
\(270\) 0 0
\(271\) 11.4648 0.696437 0.348218 0.937413i \(-0.386787\pi\)
0.348218 + 0.937413i \(0.386787\pi\)
\(272\) 6.03882 0.366157
\(273\) 0 0
\(274\) −7.97585 −0.481839
\(275\) −17.6632 −1.06513
\(276\) 0 0
\(277\) −3.66318 −0.220099 −0.110050 0.993926i \(-0.535101\pi\)
−0.110050 + 0.993926i \(0.535101\pi\)
\(278\) 6.96539 0.417756
\(279\) 0 0
\(280\) 0 0
\(281\) −23.2151 −1.38490 −0.692448 0.721468i \(-0.743468\pi\)
−0.692448 + 0.721468i \(0.743468\pi\)
\(282\) 0 0
\(283\) −29.8950 −1.77707 −0.888536 0.458807i \(-0.848277\pi\)
−0.888536 + 0.458807i \(0.848277\pi\)
\(284\) −3.33261 −0.197754
\(285\) 0 0
\(286\) 50.2559 2.97170
\(287\) 0 0
\(288\) 0 0
\(289\) 3.40604 0.200355
\(290\) 7.50986 0.440994
\(291\) 0 0
\(292\) −10.6736 −0.624627
\(293\) 14.2676 0.833522 0.416761 0.909016i \(-0.363165\pi\)
0.416761 + 0.909016i \(0.363165\pi\)
\(294\) 0 0
\(295\) −3.13963 −0.182796
\(296\) −33.7324 −1.96066
\(297\) 0 0
\(298\) −24.3368 −1.40979
\(299\) −44.3252 −2.56339
\(300\) 0 0
\(301\) 0 0
\(302\) −32.6378 −1.87810
\(303\) 0 0
\(304\) 1.33682 0.0766719
\(305\) −2.82696 −0.161871
\(306\) 0 0
\(307\) 4.76700 0.272067 0.136034 0.990704i \(-0.456564\pi\)
0.136034 + 0.990704i \(0.456564\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 8.13843 0.462232
\(311\) 11.1459 0.632025 0.316012 0.948755i \(-0.397656\pi\)
0.316012 + 0.948755i \(0.397656\pi\)
\(312\) 0 0
\(313\) 20.7912 1.17519 0.587593 0.809157i \(-0.300076\pi\)
0.587593 + 0.809157i \(0.300076\pi\)
\(314\) −18.9537 −1.06962
\(315\) 0 0
\(316\) 21.3473 1.20088
\(317\) 6.71569 0.377191 0.188595 0.982055i \(-0.439607\pi\)
0.188595 + 0.982055i \(0.439607\pi\)
\(318\) 0 0
\(319\) 23.0680 1.29156
\(320\) 6.22878 0.348200
\(321\) 0 0
\(322\) 0 0
\(323\) 4.51730 0.251350
\(324\) 0 0
\(325\) 27.1280 1.50479
\(326\) 20.5928 1.14053
\(327\) 0 0
\(328\) −8.08171 −0.446238
\(329\) 0 0
\(330\) 0 0
\(331\) 10.4302 0.573295 0.286647 0.958036i \(-0.407459\pi\)
0.286647 + 0.958036i \(0.407459\pi\)
\(332\) 21.9821 1.20642
\(333\) 0 0
\(334\) 34.2201 1.87244
\(335\) −3.32636 −0.181738
\(336\) 0 0
\(337\) 20.4302 1.11290 0.556452 0.830880i \(-0.312162\pi\)
0.556452 + 0.830880i \(0.312162\pi\)
\(338\) −46.6499 −2.53742
\(339\) 0 0
\(340\) −8.21931 −0.445754
\(341\) 24.9988 1.35376
\(342\) 0 0
\(343\) 0 0
\(344\) −4.64106 −0.250229
\(345\) 0 0
\(346\) 8.92959 0.480058
\(347\) 15.2330 0.817750 0.408875 0.912590i \(-0.365921\pi\)
0.408875 + 0.912590i \(0.365921\pi\)
\(348\) 0 0
\(349\) 0.465991 0.0249439 0.0124720 0.999922i \(-0.496030\pi\)
0.0124720 + 0.999922i \(0.496030\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 14.8845 0.793348
\(353\) 10.5865 0.563464 0.281732 0.959493i \(-0.409091\pi\)
0.281732 + 0.959493i \(0.409091\pi\)
\(354\) 0 0
\(355\) 0.490140 0.0260139
\(356\) −27.4406 −1.45435
\(357\) 0 0
\(358\) −8.34307 −0.440945
\(359\) 22.6620 1.19605 0.598027 0.801476i \(-0.295952\pi\)
0.598027 + 0.801476i \(0.295952\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 45.5582 2.39448
\(363\) 0 0
\(364\) 0 0
\(365\) 1.56982 0.0821679
\(366\) 0 0
\(367\) 7.82576 0.408501 0.204251 0.978919i \(-0.434524\pi\)
0.204251 + 0.978919i \(0.434524\pi\)
\(368\) 10.3368 0.538844
\(369\) 0 0
\(370\) 11.5006 0.597888
\(371\) 0 0
\(372\) 0 0
\(373\) −28.7912 −1.49075 −0.745375 0.666646i \(-0.767729\pi\)
−0.745375 + 0.666646i \(0.767729\pi\)
\(374\) −39.6032 −2.04783
\(375\) 0 0
\(376\) 14.8992 0.768367
\(377\) −35.4290 −1.82469
\(378\) 0 0
\(379\) −35.9642 −1.84736 −0.923678 0.383169i \(-0.874833\pi\)
−0.923678 + 0.383169i \(0.874833\pi\)
\(380\) −1.81952 −0.0933392
\(381\) 0 0
\(382\) −23.0230 −1.17796
\(383\) 19.9642 1.02012 0.510061 0.860138i \(-0.329623\pi\)
0.510061 + 0.860138i \(0.329623\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 34.9054 1.77664
\(387\) 0 0
\(388\) −54.1509 −2.74910
\(389\) 7.03461 0.356669 0.178334 0.983970i \(-0.442929\pi\)
0.178334 + 0.983970i \(0.442929\pi\)
\(390\) 0 0
\(391\) 34.9296 1.76647
\(392\) 0 0
\(393\) 0 0
\(394\) 21.9066 1.10364
\(395\) −3.13963 −0.157972
\(396\) 0 0
\(397\) 26.9988 1.35503 0.677516 0.735508i \(-0.263057\pi\)
0.677516 + 0.735508i \(0.263057\pi\)
\(398\) −19.6390 −0.984416
\(399\) 0 0
\(400\) −6.32636 −0.316318
\(401\) −19.7145 −0.984495 −0.492247 0.870455i \(-0.663824\pi\)
−0.492247 + 0.870455i \(0.663824\pi\)
\(402\) 0 0
\(403\) −38.3944 −1.91256
\(404\) −42.1447 −2.09678
\(405\) 0 0
\(406\) 0 0
\(407\) 35.3264 1.75106
\(408\) 0 0
\(409\) 19.1280 0.945817 0.472909 0.881111i \(-0.343204\pi\)
0.472909 + 0.881111i \(0.343204\pi\)
\(410\) 2.75535 0.136077
\(411\) 0 0
\(412\) −54.3944 −2.67982
\(413\) 0 0
\(414\) 0 0
\(415\) −3.23300 −0.158702
\(416\) −22.8604 −1.12082
\(417\) 0 0
\(418\) −8.76700 −0.428808
\(419\) 13.0409 0.637087 0.318544 0.947908i \(-0.396806\pi\)
0.318544 + 0.947908i \(0.396806\pi\)
\(420\) 0 0
\(421\) −25.1521 −1.22584 −0.612920 0.790145i \(-0.710005\pi\)
−0.612920 + 0.790145i \(0.710005\pi\)
\(422\) 31.7900 1.54751
\(423\) 0 0
\(424\) 48.6316 2.36176
\(425\) −21.3777 −1.03697
\(426\) 0 0
\(427\) 0 0
\(428\) 51.0618 2.46816
\(429\) 0 0
\(430\) 1.58231 0.0763056
\(431\) −22.4815 −1.08290 −0.541448 0.840734i \(-0.682124\pi\)
−0.541448 + 0.840734i \(0.682124\pi\)
\(432\) 0 0
\(433\) −18.0000 −0.865025 −0.432512 0.901628i \(-0.642373\pi\)
−0.432512 + 0.901628i \(0.642373\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −22.8604 −1.09481
\(437\) 7.73240 0.369891
\(438\) 0 0
\(439\) 33.4889 1.59834 0.799170 0.601105i \(-0.205273\pi\)
0.799170 + 0.601105i \(0.205273\pi\)
\(440\) 6.88129 0.328053
\(441\) 0 0
\(442\) 60.8246 2.89313
\(443\) −23.6966 −1.12586 −0.562930 0.826505i \(-0.690326\pi\)
−0.562930 + 0.826505i \(0.690326\pi\)
\(444\) 0 0
\(445\) 4.03581 0.191316
\(446\) 33.2664 1.57521
\(447\) 0 0
\(448\) 0 0
\(449\) −7.38933 −0.348724 −0.174362 0.984682i \(-0.555786\pi\)
−0.174362 + 0.984682i \(0.555786\pi\)
\(450\) 0 0
\(451\) 8.46360 0.398535
\(452\) 7.66943 0.360739
\(453\) 0 0
\(454\) 46.5686 2.18557
\(455\) 0 0
\(456\) 0 0
\(457\) −18.2676 −0.854522 −0.427261 0.904128i \(-0.640522\pi\)
−0.427261 + 0.904128i \(0.640522\pi\)
\(458\) −43.1280 −2.01524
\(459\) 0 0
\(460\) −14.0692 −0.655981
\(461\) −32.8425 −1.52963 −0.764813 0.644252i \(-0.777169\pi\)
−0.764813 + 0.644252i \(0.777169\pi\)
\(462\) 0 0
\(463\) −13.9308 −0.647418 −0.323709 0.946157i \(-0.604930\pi\)
−0.323709 + 0.946157i \(0.604930\pi\)
\(464\) 8.26219 0.383563
\(465\) 0 0
\(466\) 21.3839 0.990591
\(467\) −6.78491 −0.313968 −0.156984 0.987601i \(-0.550177\pi\)
−0.156984 + 0.987601i \(0.550177\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −5.07968 −0.234308
\(471\) 0 0
\(472\) −21.6306 −0.995629
\(473\) 4.86037 0.223480
\(474\) 0 0
\(475\) −4.73240 −0.217137
\(476\) 0 0
\(477\) 0 0
\(478\) −47.5224 −2.17362
\(479\) 3.11007 0.142103 0.0710514 0.997473i \(-0.477365\pi\)
0.0710514 + 0.997473i \(0.477365\pi\)
\(480\) 0 0
\(481\) −54.2559 −2.47386
\(482\) 17.3714 0.791247
\(483\) 0 0
\(484\) 10.3085 0.468566
\(485\) 7.96419 0.361635
\(486\) 0 0
\(487\) −35.7900 −1.62180 −0.810899 0.585186i \(-0.801021\pi\)
−0.810899 + 0.585186i \(0.801021\pi\)
\(488\) −19.4764 −0.881657
\(489\) 0 0
\(490\) 0 0
\(491\) 15.2330 0.687455 0.343728 0.939069i \(-0.388310\pi\)
0.343728 + 0.939069i \(0.388310\pi\)
\(492\) 0 0
\(493\) 27.9191 1.25741
\(494\) 13.4648 0.605810
\(495\) 0 0
\(496\) 8.95374 0.402035
\(497\) 0 0
\(498\) 0 0
\(499\) 28.1867 1.26181 0.630906 0.775860i \(-0.282683\pi\)
0.630906 + 0.775860i \(0.282683\pi\)
\(500\) 17.7082 0.791937
\(501\) 0 0
\(502\) −53.4352 −2.38493
\(503\) 6.47224 0.288583 0.144291 0.989535i \(-0.453910\pi\)
0.144291 + 0.989535i \(0.453910\pi\)
\(504\) 0 0
\(505\) 6.19839 0.275825
\(506\) −67.7900 −3.01363
\(507\) 0 0
\(508\) 64.8246 2.87612
\(509\) −43.6274 −1.93375 −0.966875 0.255252i \(-0.917842\pi\)
−0.966875 + 0.255252i \(0.917842\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 14.8600 0.656723
\(513\) 0 0
\(514\) −46.1026 −2.03350
\(515\) 8.00000 0.352522
\(516\) 0 0
\(517\) −15.6032 −0.686229
\(518\) 0 0
\(519\) 0 0
\(520\) −10.5686 −0.463465
\(521\) 38.9537 1.70659 0.853297 0.521425i \(-0.174599\pi\)
0.853297 + 0.521425i \(0.174599\pi\)
\(522\) 0 0
\(523\) −37.7658 −1.65138 −0.825692 0.564122i \(-0.809215\pi\)
−0.825692 + 0.564122i \(0.809215\pi\)
\(524\) 51.3902 2.24499
\(525\) 0 0
\(526\) −43.9191 −1.91496
\(527\) 30.2559 1.31797
\(528\) 0 0
\(529\) 36.7900 1.59956
\(530\) −16.5803 −0.720201
\(531\) 0 0
\(532\) 0 0
\(533\) −12.9988 −0.563041
\(534\) 0 0
\(535\) −7.50986 −0.324680
\(536\) −22.9171 −0.989868
\(537\) 0 0
\(538\) 46.1026 1.98763
\(539\) 0 0
\(540\) 0 0
\(541\) 20.6527 0.887930 0.443965 0.896044i \(-0.353571\pi\)
0.443965 + 0.896044i \(0.353571\pi\)
\(542\) −26.9296 −1.15672
\(543\) 0 0
\(544\) 18.0147 0.772373
\(545\) 3.36217 0.144019
\(546\) 0 0
\(547\) 10.7912 0.461396 0.230698 0.973025i \(-0.425899\pi\)
0.230698 + 0.973025i \(0.425899\pi\)
\(548\) 11.9433 0.510191
\(549\) 0 0
\(550\) 41.4889 1.76909
\(551\) 6.18048 0.263297
\(552\) 0 0
\(553\) 0 0
\(554\) 8.60442 0.365567
\(555\) 0 0
\(556\) −10.4302 −0.442338
\(557\) −38.8246 −1.64505 −0.822525 0.568729i \(-0.807435\pi\)
−0.822525 + 0.568729i \(0.807435\pi\)
\(558\) 0 0
\(559\) −7.46479 −0.315727
\(560\) 0 0
\(561\) 0 0
\(562\) 54.5298 2.30020
\(563\) −1.56982 −0.0661598 −0.0330799 0.999453i \(-0.510532\pi\)
−0.0330799 + 0.999453i \(0.510532\pi\)
\(564\) 0 0
\(565\) −1.12797 −0.0474542
\(566\) 70.2201 2.95157
\(567\) 0 0
\(568\) 3.37684 0.141689
\(569\) −16.2139 −0.679722 −0.339861 0.940476i \(-0.610380\pi\)
−0.339861 + 0.940476i \(0.610380\pi\)
\(570\) 0 0
\(571\) 46.2559 1.93575 0.967876 0.251430i \(-0.0809007\pi\)
0.967876 + 0.251430i \(0.0809007\pi\)
\(572\) −75.2547 −3.14656
\(573\) 0 0
\(574\) 0 0
\(575\) −36.5928 −1.52602
\(576\) 0 0
\(577\) −1.86157 −0.0774981 −0.0387490 0.999249i \(-0.512337\pi\)
−0.0387490 + 0.999249i \(0.512337\pi\)
\(578\) −8.00042 −0.332774
\(579\) 0 0
\(580\) −11.2455 −0.466943
\(581\) 0 0
\(582\) 0 0
\(583\) −50.9296 −2.10929
\(584\) 10.8153 0.447540
\(585\) 0 0
\(586\) −33.5131 −1.38441
\(587\) 11.9579 0.493557 0.246779 0.969072i \(-0.420628\pi\)
0.246779 + 0.969072i \(0.420628\pi\)
\(588\) 0 0
\(589\) 6.69779 0.275978
\(590\) 7.37466 0.303610
\(591\) 0 0
\(592\) 12.6527 0.520024
\(593\) −16.8425 −0.691637 −0.345819 0.938301i \(-0.612399\pi\)
−0.345819 + 0.938301i \(0.612399\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 36.4427 1.49275
\(597\) 0 0
\(598\) 104.115 4.25758
\(599\) 35.8771 1.46590 0.732949 0.680284i \(-0.238143\pi\)
0.732949 + 0.680284i \(0.238143\pi\)
\(600\) 0 0
\(601\) −20.0692 −0.818640 −0.409320 0.912391i \(-0.634234\pi\)
−0.409320 + 0.912391i \(0.634234\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 48.8729 1.98861
\(605\) −1.51611 −0.0616385
\(606\) 0 0
\(607\) −16.5352 −0.671143 −0.335572 0.942015i \(-0.608929\pi\)
−0.335572 + 0.942015i \(0.608929\pi\)
\(608\) 3.98793 0.161732
\(609\) 0 0
\(610\) 6.64023 0.268855
\(611\) 23.9642 0.969488
\(612\) 0 0
\(613\) 24.1984 0.977364 0.488682 0.872462i \(-0.337478\pi\)
0.488682 + 0.872462i \(0.337478\pi\)
\(614\) −11.1972 −0.451882
\(615\) 0 0
\(616\) 0 0
\(617\) 3.93078 0.158247 0.0791237 0.996865i \(-0.474788\pi\)
0.0791237 + 0.996865i \(0.474788\pi\)
\(618\) 0 0
\(619\) 5.03461 0.202358 0.101179 0.994868i \(-0.467739\pi\)
0.101179 + 0.994868i \(0.467739\pi\)
\(620\) −12.1867 −0.489431
\(621\) 0 0
\(622\) −26.1805 −1.04974
\(623\) 0 0
\(624\) 0 0
\(625\) 21.0576 0.842302
\(626\) −48.8362 −1.95189
\(627\) 0 0
\(628\) 28.3819 1.13256
\(629\) 42.7553 1.70477
\(630\) 0 0
\(631\) −23.3714 −0.930402 −0.465201 0.885205i \(-0.654018\pi\)
−0.465201 + 0.885205i \(0.654018\pi\)
\(632\) −21.6306 −0.860419
\(633\) 0 0
\(634\) −15.7744 −0.626483
\(635\) −9.53401 −0.378346
\(636\) 0 0
\(637\) 0 0
\(638\) −54.1843 −2.14518
\(639\) 0 0
\(640\) −10.5048 −0.415239
\(641\) 13.1459 0.519231 0.259615 0.965712i \(-0.416404\pi\)
0.259615 + 0.965712i \(0.416404\pi\)
\(642\) 0 0
\(643\) −6.96539 −0.274688 −0.137344 0.990523i \(-0.543857\pi\)
−0.137344 + 0.990523i \(0.543857\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −10.6107 −0.417471
\(647\) 22.6107 0.888917 0.444459 0.895799i \(-0.353396\pi\)
0.444459 + 0.895799i \(0.353396\pi\)
\(648\) 0 0
\(649\) 22.6527 0.889197
\(650\) −63.7207 −2.49933
\(651\) 0 0
\(652\) −30.8362 −1.20764
\(653\) 30.8604 1.20766 0.603830 0.797113i \(-0.293641\pi\)
0.603830 + 0.797113i \(0.293641\pi\)
\(654\) 0 0
\(655\) −7.55816 −0.295322
\(656\) 3.03138 0.118355
\(657\) 0 0
\(658\) 0 0
\(659\) −16.4481 −0.640727 −0.320363 0.947295i \(-0.603805\pi\)
−0.320363 + 0.947295i \(0.603805\pi\)
\(660\) 0 0
\(661\) 35.9883 1.39978 0.699892 0.714249i \(-0.253231\pi\)
0.699892 + 0.714249i \(0.253231\pi\)
\(662\) −24.4994 −0.952196
\(663\) 0 0
\(664\) −22.2738 −0.864393
\(665\) 0 0
\(666\) 0 0
\(667\) 47.7900 1.85043
\(668\) −51.2423 −1.98262
\(669\) 0 0
\(670\) 7.81327 0.301853
\(671\) 20.3968 0.787409
\(672\) 0 0
\(673\) −2.99880 −0.115595 −0.0577977 0.998328i \(-0.518408\pi\)
−0.0577977 + 0.998328i \(0.518408\pi\)
\(674\) −47.9883 −1.84844
\(675\) 0 0
\(676\) 69.8550 2.68673
\(677\) −14.7670 −0.567542 −0.283771 0.958892i \(-0.591586\pi\)
−0.283771 + 0.958892i \(0.591586\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 8.32839 0.319379
\(681\) 0 0
\(682\) −58.7195 −2.24849
\(683\) 40.4123 1.54633 0.773166 0.634203i \(-0.218672\pi\)
0.773166 + 0.634203i \(0.218672\pi\)
\(684\) 0 0
\(685\) −1.75655 −0.0671142
\(686\) 0 0
\(687\) 0 0
\(688\) 1.74082 0.0663682
\(689\) 78.2201 2.97995
\(690\) 0 0
\(691\) 27.3264 1.03954 0.519772 0.854305i \(-0.326017\pi\)
0.519772 + 0.854305i \(0.326017\pi\)
\(692\) −13.3714 −0.508305
\(693\) 0 0
\(694\) −35.7807 −1.35822
\(695\) 1.53401 0.0581883
\(696\) 0 0
\(697\) 10.2435 0.387999
\(698\) −1.09456 −0.0414298
\(699\) 0 0
\(700\) 0 0
\(701\) −12.4660 −0.470834 −0.235417 0.971894i \(-0.575646\pi\)
−0.235417 + 0.971894i \(0.575646\pi\)
\(702\) 0 0
\(703\) 9.46479 0.356971
\(704\) −44.9412 −1.69379
\(705\) 0 0
\(706\) −24.8666 −0.935867
\(707\) 0 0
\(708\) 0 0
\(709\) −19.4048 −0.728764 −0.364382 0.931250i \(-0.618720\pi\)
−0.364382 + 0.931250i \(0.618720\pi\)
\(710\) −1.15129 −0.0432070
\(711\) 0 0
\(712\) 27.8048 1.04203
\(713\) 51.7900 1.93955
\(714\) 0 0
\(715\) 11.0680 0.413920
\(716\) 12.4932 0.466891
\(717\) 0 0
\(718\) −53.2306 −1.98655
\(719\) 28.3189 1.05612 0.528059 0.849208i \(-0.322920\pi\)
0.528059 + 0.849208i \(0.322920\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −2.34889 −0.0874168
\(723\) 0 0
\(724\) −68.2201 −2.53538
\(725\) −29.2485 −1.08626
\(726\) 0 0
\(727\) −26.6527 −0.988495 −0.494247 0.869321i \(-0.664556\pi\)
−0.494247 + 0.869321i \(0.664556\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −3.68733 −0.136474
\(731\) 5.88249 0.217572
\(732\) 0 0
\(733\) 19.7565 0.729725 0.364862 0.931061i \(-0.381116\pi\)
0.364862 + 0.931061i \(0.381116\pi\)
\(734\) −18.3819 −0.678488
\(735\) 0 0
\(736\) 30.8362 1.13664
\(737\) 24.0000 0.884051
\(738\) 0 0
\(739\) 36.0934 1.32772 0.663858 0.747859i \(-0.268918\pi\)
0.663858 + 0.747859i \(0.268918\pi\)
\(740\) −17.2213 −0.633069
\(741\) 0 0
\(742\) 0 0
\(743\) 33.1700 1.21689 0.608445 0.793596i \(-0.291794\pi\)
0.608445 + 0.793596i \(0.291794\pi\)
\(744\) 0 0
\(745\) −5.35977 −0.196367
\(746\) 67.6274 2.47601
\(747\) 0 0
\(748\) 59.3030 2.16833
\(749\) 0 0
\(750\) 0 0
\(751\) 36.5477 1.33364 0.666822 0.745217i \(-0.267654\pi\)
0.666822 + 0.745217i \(0.267654\pi\)
\(752\) −5.58855 −0.203794
\(753\) 0 0
\(754\) 83.2189 3.03066
\(755\) −7.18793 −0.261595
\(756\) 0 0
\(757\) −44.7912 −1.62796 −0.813981 0.580891i \(-0.802704\pi\)
−0.813981 + 0.580891i \(0.802704\pi\)
\(758\) 84.4761 3.06831
\(759\) 0 0
\(760\) 1.84366 0.0668767
\(761\) −10.7250 −0.388779 −0.194390 0.980924i \(-0.562273\pi\)
−0.194390 + 0.980924i \(0.562273\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 34.4753 1.24727
\(765\) 0 0
\(766\) −46.8938 −1.69434
\(767\) −34.7912 −1.25624
\(768\) 0 0
\(769\) −16.0692 −0.579471 −0.289735 0.957107i \(-0.593567\pi\)
−0.289735 + 0.957107i \(0.593567\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −52.2684 −1.88118
\(773\) 9.05876 0.325821 0.162910 0.986641i \(-0.447912\pi\)
0.162910 + 0.986641i \(0.447912\pi\)
\(774\) 0 0
\(775\) −31.6966 −1.13858
\(776\) 54.8696 1.96970
\(777\) 0 0
\(778\) −16.5236 −0.592398
\(779\) 2.26760 0.0812453
\(780\) 0 0
\(781\) −3.53640 −0.126543
\(782\) −82.0459 −2.93396
\(783\) 0 0
\(784\) 0 0
\(785\) −4.17424 −0.148985
\(786\) 0 0
\(787\) 37.7658 1.34621 0.673103 0.739549i \(-0.264961\pi\)
0.673103 + 0.739549i \(0.264961\pi\)
\(788\) −32.8036 −1.16858
\(789\) 0 0
\(790\) 7.37466 0.262379
\(791\) 0 0
\(792\) 0 0
\(793\) −31.3264 −1.11243
\(794\) −63.4173 −2.25060
\(795\) 0 0
\(796\) 29.4081 1.04234
\(797\) 30.7312 1.08855 0.544277 0.838905i \(-0.316804\pi\)
0.544277 + 0.838905i \(0.316804\pi\)
\(798\) 0 0
\(799\) −18.8845 −0.668086
\(800\) −18.8724 −0.667242
\(801\) 0 0
\(802\) 46.3073 1.63517
\(803\) −11.3264 −0.399699
\(804\) 0 0
\(805\) 0 0
\(806\) 90.1843 3.17661
\(807\) 0 0
\(808\) 42.7040 1.50232
\(809\) −40.1175 −1.41046 −0.705228 0.708980i \(-0.749156\pi\)
−0.705228 + 0.708980i \(0.749156\pi\)
\(810\) 0 0
\(811\) 40.3252 1.41601 0.708004 0.706208i \(-0.249596\pi\)
0.708004 + 0.706208i \(0.249596\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −82.9779 −2.90837
\(815\) 4.53521 0.158861
\(816\) 0 0
\(817\) 1.30221 0.0455586
\(818\) −44.9296 −1.57093
\(819\) 0 0
\(820\) −4.12594 −0.144084
\(821\) −23.3598 −0.815262 −0.407631 0.913147i \(-0.633645\pi\)
−0.407631 + 0.913147i \(0.633645\pi\)
\(822\) 0 0
\(823\) −14.3010 −0.498502 −0.249251 0.968439i \(-0.580184\pi\)
−0.249251 + 0.968439i \(0.580184\pi\)
\(824\) 55.1163 1.92007
\(825\) 0 0
\(826\) 0 0
\(827\) −6.73984 −0.234367 −0.117184 0.993110i \(-0.537387\pi\)
−0.117184 + 0.993110i \(0.537387\pi\)
\(828\) 0 0
\(829\) 28.6044 0.993473 0.496736 0.867901i \(-0.334532\pi\)
0.496736 + 0.867901i \(0.334532\pi\)
\(830\) 7.59396 0.263590
\(831\) 0 0
\(832\) 69.0230 2.39294
\(833\) 0 0
\(834\) 0 0
\(835\) 7.53640 0.260808
\(836\) 13.1280 0.454040
\(837\) 0 0
\(838\) −30.6316 −1.05815
\(839\) 20.1384 0.695256 0.347628 0.937633i \(-0.386987\pi\)
0.347628 + 0.937633i \(0.386987\pi\)
\(840\) 0 0
\(841\) 9.19839 0.317186
\(842\) 59.0797 2.03602
\(843\) 0 0
\(844\) −47.6032 −1.63857
\(845\) −10.2738 −0.353431
\(846\) 0 0
\(847\) 0 0
\(848\) −18.2413 −0.626408
\(849\) 0 0
\(850\) 50.2139 1.72232
\(851\) 73.1855 2.50877
\(852\) 0 0
\(853\) −10.3252 −0.353527 −0.176763 0.984253i \(-0.556563\pi\)
−0.176763 + 0.984253i \(0.556563\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −51.7395 −1.76842
\(857\) −15.2664 −0.521490 −0.260745 0.965408i \(-0.583968\pi\)
−0.260745 + 0.965408i \(0.583968\pi\)
\(858\) 0 0
\(859\) 8.67364 0.295941 0.147970 0.988992i \(-0.452726\pi\)
0.147970 + 0.988992i \(0.452726\pi\)
\(860\) −2.36939 −0.0807957
\(861\) 0 0
\(862\) 52.8067 1.79860
\(863\) 6.55311 0.223070 0.111535 0.993760i \(-0.464423\pi\)
0.111535 + 0.993760i \(0.464423\pi\)
\(864\) 0 0
\(865\) 1.96659 0.0668661
\(866\) 42.2801 1.43674
\(867\) 0 0
\(868\) 0 0
\(869\) 22.6527 0.768441
\(870\) 0 0
\(871\) −36.8604 −1.24897
\(872\) 23.1638 0.784425
\(873\) 0 0
\(874\) −18.1626 −0.614358
\(875\) 0 0
\(876\) 0 0
\(877\) 30.9988 1.04676 0.523378 0.852101i \(-0.324672\pi\)
0.523378 + 0.852101i \(0.324672\pi\)
\(878\) −78.6620 −2.65471
\(879\) 0 0
\(880\) −2.58111 −0.0870092
\(881\) 8.51730 0.286955 0.143478 0.989654i \(-0.454171\pi\)
0.143478 + 0.989654i \(0.454171\pi\)
\(882\) 0 0
\(883\) 23.3264 0.784995 0.392497 0.919753i \(-0.371611\pi\)
0.392497 + 0.919753i \(0.371611\pi\)
\(884\) −91.0805 −3.06337
\(885\) 0 0
\(886\) 55.6608 1.86996
\(887\) 19.9642 0.670332 0.335166 0.942159i \(-0.391208\pi\)
0.335166 + 0.942159i \(0.391208\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −9.47968 −0.317760
\(891\) 0 0
\(892\) −49.8141 −1.66790
\(893\) −4.18048 −0.139895
\(894\) 0 0
\(895\) −1.83742 −0.0614181
\(896\) 0 0
\(897\) 0 0
\(898\) 17.3568 0.579202
\(899\) 41.3956 1.38062
\(900\) 0 0
\(901\) −61.6399 −2.05352
\(902\) −19.8801 −0.661935
\(903\) 0 0
\(904\) −7.77122 −0.258467
\(905\) 10.0334 0.333522
\(906\) 0 0
\(907\) 7.86157 0.261039 0.130520 0.991446i \(-0.458335\pi\)
0.130520 + 0.991446i \(0.458335\pi\)
\(908\) −69.7332 −2.31418
\(909\) 0 0
\(910\) 0 0
\(911\) 32.4123 1.07387 0.536933 0.843625i \(-0.319583\pi\)
0.536933 + 0.843625i \(0.319583\pi\)
\(912\) 0 0
\(913\) 23.3264 0.771990
\(914\) 42.9087 1.41929
\(915\) 0 0
\(916\) 64.5811 2.13382
\(917\) 0 0
\(918\) 0 0
\(919\) 53.8592 1.77665 0.888325 0.459215i \(-0.151869\pi\)
0.888325 + 0.459215i \(0.151869\pi\)
\(920\) 14.2559 0.470005
\(921\) 0 0
\(922\) 77.1435 2.54059
\(923\) 5.43138 0.178776
\(924\) 0 0
\(925\) −44.7912 −1.47272
\(926\) 32.7219 1.07531
\(927\) 0 0
\(928\) 24.6473 0.809088
\(929\) 45.7028 1.49946 0.749731 0.661743i \(-0.230183\pi\)
0.749731 + 0.661743i \(0.230183\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −32.0209 −1.04888
\(933\) 0 0
\(934\) 15.9370 0.521476
\(935\) −8.72194 −0.285238
\(936\) 0 0
\(937\) −13.0680 −0.426914 −0.213457 0.976953i \(-0.568472\pi\)
−0.213457 + 0.976953i \(0.568472\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 7.60646 0.248095
\(941\) 50.6954 1.65262 0.826311 0.563214i \(-0.190435\pi\)
0.826311 + 0.563214i \(0.190435\pi\)
\(942\) 0 0
\(943\) 17.5340 0.570986
\(944\) 8.11345 0.264070
\(945\) 0 0
\(946\) −11.4165 −0.371182
\(947\) 23.7807 0.772769 0.386384 0.922338i \(-0.373724\pi\)
0.386384 + 0.922338i \(0.373724\pi\)
\(948\) 0 0
\(949\) 17.3956 0.564684
\(950\) 11.1159 0.360647
\(951\) 0 0
\(952\) 0 0
\(953\) −5.32011 −0.172335 −0.0861677 0.996281i \(-0.527462\pi\)
−0.0861677 + 0.996281i \(0.527462\pi\)
\(954\) 0 0
\(955\) −5.07041 −0.164075
\(956\) 71.1614 2.30152
\(957\) 0 0
\(958\) −7.30523 −0.236021
\(959\) 0 0
\(960\) 0 0
\(961\) 13.8604 0.447109
\(962\) 127.441 4.10888
\(963\) 0 0
\(964\) −26.0125 −0.837806
\(965\) 7.68733 0.247464
\(966\) 0 0
\(967\) −3.41973 −0.109971 −0.0549855 0.998487i \(-0.517511\pi\)
−0.0549855 + 0.998487i \(0.517511\pi\)
\(968\) −10.4453 −0.335724
\(969\) 0 0
\(970\) −18.7070 −0.600647
\(971\) 29.1855 0.936608 0.468304 0.883567i \(-0.344865\pi\)
0.468304 + 0.883567i \(0.344865\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 84.0668 2.69367
\(975\) 0 0
\(976\) 7.30544 0.233842
\(977\) 3.93703 0.125957 0.0629784 0.998015i \(-0.479940\pi\)
0.0629784 + 0.998015i \(0.479940\pi\)
\(978\) 0 0
\(979\) −29.1187 −0.930638
\(980\) 0 0
\(981\) 0 0
\(982\) −35.7807 −1.14181
\(983\) 44.8604 1.43082 0.715412 0.698703i \(-0.246239\pi\)
0.715412 + 0.698703i \(0.246239\pi\)
\(984\) 0 0
\(985\) 4.82456 0.153723
\(986\) −65.5791 −2.08846
\(987\) 0 0
\(988\) −20.1626 −0.641457
\(989\) 10.0692 0.320182
\(990\) 0 0
\(991\) −42.7912 −1.35931 −0.679653 0.733534i \(-0.737870\pi\)
−0.679653 + 0.733534i \(0.737870\pi\)
\(992\) 26.7103 0.848052
\(993\) 0 0
\(994\) 0 0
\(995\) −4.32516 −0.137117
\(996\) 0 0
\(997\) −19.7207 −0.624562 −0.312281 0.949990i \(-0.601093\pi\)
−0.312281 + 0.949990i \(0.601093\pi\)
\(998\) −66.2076 −2.09577
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8379.2.a.bq.1.1 3
3.2 odd 2 2793.2.a.w.1.3 3
7.6 odd 2 1197.2.a.m.1.1 3
21.20 even 2 399.2.a.e.1.3 3
84.83 odd 2 6384.2.a.bu.1.2 3
105.104 even 2 9975.2.a.x.1.1 3
399.398 odd 2 7581.2.a.l.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
399.2.a.e.1.3 3 21.20 even 2
1197.2.a.m.1.1 3 7.6 odd 2
2793.2.a.w.1.3 3 3.2 odd 2
6384.2.a.bu.1.2 3 84.83 odd 2
7581.2.a.l.1.1 3 399.398 odd 2
8379.2.a.bq.1.1 3 1.1 even 1 trivial
9975.2.a.x.1.1 3 105.104 even 2