Properties

Label 8379.2.a.bm.1.2
Level $8379$
Weight $2$
Character 8379.1
Self dual yes
Analytic conductor $66.907$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8379,2,Mod(1,8379)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8379.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8379, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8379 = 3^{2} \cdot 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8379.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,2,0,2,2,0,0,6,0,10,2,0,0,0,0,6,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.9066518536\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 399)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.41421\) of defining polynomial
Character \(\chi\) \(=\) 8379.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.41421 q^{2} +3.82843 q^{4} +3.82843 q^{5} +4.41421 q^{8} +9.24264 q^{10} +3.82843 q^{11} +2.82843 q^{13} +3.00000 q^{16} +3.65685 q^{17} -1.00000 q^{19} +14.6569 q^{20} +9.24264 q^{22} +1.82843 q^{23} +9.65685 q^{25} +6.82843 q^{26} +4.82843 q^{29} -3.17157 q^{31} -1.58579 q^{32} +8.82843 q^{34} +1.17157 q^{37} -2.41421 q^{38} +16.8995 q^{40} -7.65685 q^{41} -12.6569 q^{43} +14.6569 q^{44} +4.41421 q^{46} -6.17157 q^{47} +23.3137 q^{50} +10.8284 q^{52} +2.00000 q^{53} +14.6569 q^{55} +11.6569 q^{58} -10.8284 q^{59} -14.6569 q^{61} -7.65685 q^{62} -9.82843 q^{64} +10.8284 q^{65} -12.0000 q^{67} +14.0000 q^{68} -4.34315 q^{71} -10.3137 q^{73} +2.82843 q^{74} -3.82843 q^{76} +2.34315 q^{79} +11.4853 q^{80} -18.4853 q^{82} -4.17157 q^{83} +14.0000 q^{85} -30.5563 q^{86} +16.8995 q^{88} -10.8284 q^{89} +7.00000 q^{92} -14.8995 q^{94} -3.82843 q^{95} +16.8284 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 2 q^{4} + 2 q^{5} + 6 q^{8} + 10 q^{10} + 2 q^{11} + 6 q^{16} - 4 q^{17} - 2 q^{19} + 18 q^{20} + 10 q^{22} - 2 q^{23} + 8 q^{25} + 8 q^{26} + 4 q^{29} - 12 q^{31} - 6 q^{32} + 12 q^{34}+ \cdots + 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.41421 1.70711 0.853553 0.521005i \(-0.174443\pi\)
0.853553 + 0.521005i \(0.174443\pi\)
\(3\) 0 0
\(4\) 3.82843 1.91421
\(5\) 3.82843 1.71212 0.856062 0.516873i \(-0.172904\pi\)
0.856062 + 0.516873i \(0.172904\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 4.41421 1.56066
\(9\) 0 0
\(10\) 9.24264 2.92278
\(11\) 3.82843 1.15431 0.577157 0.816633i \(-0.304162\pi\)
0.577157 + 0.816633i \(0.304162\pi\)
\(12\) 0 0
\(13\) 2.82843 0.784465 0.392232 0.919866i \(-0.371703\pi\)
0.392232 + 0.919866i \(0.371703\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 3.00000 0.750000
\(17\) 3.65685 0.886917 0.443459 0.896295i \(-0.353751\pi\)
0.443459 + 0.896295i \(0.353751\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 14.6569 3.27737
\(21\) 0 0
\(22\) 9.24264 1.97054
\(23\) 1.82843 0.381253 0.190627 0.981663i \(-0.438948\pi\)
0.190627 + 0.981663i \(0.438948\pi\)
\(24\) 0 0
\(25\) 9.65685 1.93137
\(26\) 6.82843 1.33916
\(27\) 0 0
\(28\) 0 0
\(29\) 4.82843 0.896616 0.448308 0.893879i \(-0.352027\pi\)
0.448308 + 0.893879i \(0.352027\pi\)
\(30\) 0 0
\(31\) −3.17157 −0.569631 −0.284816 0.958582i \(-0.591932\pi\)
−0.284816 + 0.958582i \(0.591932\pi\)
\(32\) −1.58579 −0.280330
\(33\) 0 0
\(34\) 8.82843 1.51406
\(35\) 0 0
\(36\) 0 0
\(37\) 1.17157 0.192605 0.0963027 0.995352i \(-0.469298\pi\)
0.0963027 + 0.995352i \(0.469298\pi\)
\(38\) −2.41421 −0.391637
\(39\) 0 0
\(40\) 16.8995 2.67204
\(41\) −7.65685 −1.19580 −0.597900 0.801571i \(-0.703998\pi\)
−0.597900 + 0.801571i \(0.703998\pi\)
\(42\) 0 0
\(43\) −12.6569 −1.93015 −0.965076 0.261970i \(-0.915628\pi\)
−0.965076 + 0.261970i \(0.915628\pi\)
\(44\) 14.6569 2.20960
\(45\) 0 0
\(46\) 4.41421 0.650840
\(47\) −6.17157 −0.900216 −0.450108 0.892974i \(-0.648615\pi\)
−0.450108 + 0.892974i \(0.648615\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 23.3137 3.29706
\(51\) 0 0
\(52\) 10.8284 1.50163
\(53\) 2.00000 0.274721 0.137361 0.990521i \(-0.456138\pi\)
0.137361 + 0.990521i \(0.456138\pi\)
\(54\) 0 0
\(55\) 14.6569 1.97633
\(56\) 0 0
\(57\) 0 0
\(58\) 11.6569 1.53062
\(59\) −10.8284 −1.40974 −0.704871 0.709336i \(-0.748995\pi\)
−0.704871 + 0.709336i \(0.748995\pi\)
\(60\) 0 0
\(61\) −14.6569 −1.87662 −0.938309 0.345798i \(-0.887608\pi\)
−0.938309 + 0.345798i \(0.887608\pi\)
\(62\) −7.65685 −0.972421
\(63\) 0 0
\(64\) −9.82843 −1.22855
\(65\) 10.8284 1.34310
\(66\) 0 0
\(67\) −12.0000 −1.46603 −0.733017 0.680211i \(-0.761888\pi\)
−0.733017 + 0.680211i \(0.761888\pi\)
\(68\) 14.0000 1.69775
\(69\) 0 0
\(70\) 0 0
\(71\) −4.34315 −0.515437 −0.257718 0.966220i \(-0.582971\pi\)
−0.257718 + 0.966220i \(0.582971\pi\)
\(72\) 0 0
\(73\) −10.3137 −1.20713 −0.603564 0.797314i \(-0.706253\pi\)
−0.603564 + 0.797314i \(0.706253\pi\)
\(74\) 2.82843 0.328798
\(75\) 0 0
\(76\) −3.82843 −0.439151
\(77\) 0 0
\(78\) 0 0
\(79\) 2.34315 0.263624 0.131812 0.991275i \(-0.457920\pi\)
0.131812 + 0.991275i \(0.457920\pi\)
\(80\) 11.4853 1.28409
\(81\) 0 0
\(82\) −18.4853 −2.04136
\(83\) −4.17157 −0.457890 −0.228945 0.973439i \(-0.573528\pi\)
−0.228945 + 0.973439i \(0.573528\pi\)
\(84\) 0 0
\(85\) 14.0000 1.51851
\(86\) −30.5563 −3.29498
\(87\) 0 0
\(88\) 16.8995 1.80149
\(89\) −10.8284 −1.14781 −0.573905 0.818922i \(-0.694572\pi\)
−0.573905 + 0.818922i \(0.694572\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 7.00000 0.729800
\(93\) 0 0
\(94\) −14.8995 −1.53677
\(95\) −3.82843 −0.392788
\(96\) 0 0
\(97\) 16.8284 1.70867 0.854334 0.519724i \(-0.173965\pi\)
0.854334 + 0.519724i \(0.173965\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 36.9706 3.69706
\(101\) 3.48528 0.346798 0.173399 0.984852i \(-0.444525\pi\)
0.173399 + 0.984852i \(0.444525\pi\)
\(102\) 0 0
\(103\) 3.65685 0.360321 0.180160 0.983637i \(-0.442338\pi\)
0.180160 + 0.983637i \(0.442338\pi\)
\(104\) 12.4853 1.22428
\(105\) 0 0
\(106\) 4.82843 0.468978
\(107\) 2.82843 0.273434 0.136717 0.990610i \(-0.456345\pi\)
0.136717 + 0.990610i \(0.456345\pi\)
\(108\) 0 0
\(109\) 18.1421 1.73770 0.868851 0.495074i \(-0.164859\pi\)
0.868851 + 0.495074i \(0.164859\pi\)
\(110\) 35.3848 3.37381
\(111\) 0 0
\(112\) 0 0
\(113\) 12.8284 1.20680 0.603398 0.797440i \(-0.293813\pi\)
0.603398 + 0.797440i \(0.293813\pi\)
\(114\) 0 0
\(115\) 7.00000 0.652753
\(116\) 18.4853 1.71632
\(117\) 0 0
\(118\) −26.1421 −2.40658
\(119\) 0 0
\(120\) 0 0
\(121\) 3.65685 0.332441
\(122\) −35.3848 −3.20359
\(123\) 0 0
\(124\) −12.1421 −1.09040
\(125\) 17.8284 1.59462
\(126\) 0 0
\(127\) 16.9706 1.50589 0.752947 0.658081i \(-0.228632\pi\)
0.752947 + 0.658081i \(0.228632\pi\)
\(128\) −20.5563 −1.81694
\(129\) 0 0
\(130\) 26.1421 2.29282
\(131\) −10.3431 −0.903685 −0.451842 0.892098i \(-0.649233\pi\)
−0.451842 + 0.892098i \(0.649233\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −28.9706 −2.50268
\(135\) 0 0
\(136\) 16.1421 1.38418
\(137\) 13.8284 1.18144 0.590721 0.806876i \(-0.298843\pi\)
0.590721 + 0.806876i \(0.298843\pi\)
\(138\) 0 0
\(139\) −6.65685 −0.564627 −0.282314 0.959322i \(-0.591102\pi\)
−0.282314 + 0.959322i \(0.591102\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −10.4853 −0.879905
\(143\) 10.8284 0.905519
\(144\) 0 0
\(145\) 18.4853 1.53512
\(146\) −24.8995 −2.06070
\(147\) 0 0
\(148\) 4.48528 0.368688
\(149\) −3.82843 −0.313637 −0.156818 0.987627i \(-0.550124\pi\)
−0.156818 + 0.987627i \(0.550124\pi\)
\(150\) 0 0
\(151\) −9.31371 −0.757939 −0.378969 0.925409i \(-0.623721\pi\)
−0.378969 + 0.925409i \(0.623721\pi\)
\(152\) −4.41421 −0.358040
\(153\) 0 0
\(154\) 0 0
\(155\) −12.1421 −0.975280
\(156\) 0 0
\(157\) 10.6569 0.850510 0.425255 0.905074i \(-0.360184\pi\)
0.425255 + 0.905074i \(0.360184\pi\)
\(158\) 5.65685 0.450035
\(159\) 0 0
\(160\) −6.07107 −0.479960
\(161\) 0 0
\(162\) 0 0
\(163\) 21.9706 1.72087 0.860434 0.509563i \(-0.170193\pi\)
0.860434 + 0.509563i \(0.170193\pi\)
\(164\) −29.3137 −2.28902
\(165\) 0 0
\(166\) −10.0711 −0.781666
\(167\) −8.82843 −0.683164 −0.341582 0.939852i \(-0.610963\pi\)
−0.341582 + 0.939852i \(0.610963\pi\)
\(168\) 0 0
\(169\) −5.00000 −0.384615
\(170\) 33.7990 2.59226
\(171\) 0 0
\(172\) −48.4558 −3.69472
\(173\) −2.82843 −0.215041 −0.107521 0.994203i \(-0.534291\pi\)
−0.107521 + 0.994203i \(0.534291\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 11.4853 0.865736
\(177\) 0 0
\(178\) −26.1421 −1.95944
\(179\) 10.4853 0.783707 0.391853 0.920028i \(-0.371834\pi\)
0.391853 + 0.920028i \(0.371834\pi\)
\(180\) 0 0
\(181\) −11.6569 −0.866447 −0.433224 0.901286i \(-0.642624\pi\)
−0.433224 + 0.901286i \(0.642624\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 8.07107 0.595007
\(185\) 4.48528 0.329764
\(186\) 0 0
\(187\) 14.0000 1.02378
\(188\) −23.6274 −1.72321
\(189\) 0 0
\(190\) −9.24264 −0.670532
\(191\) −11.8284 −0.855875 −0.427937 0.903808i \(-0.640760\pi\)
−0.427937 + 0.903808i \(0.640760\pi\)
\(192\) 0 0
\(193\) 4.00000 0.287926 0.143963 0.989583i \(-0.454015\pi\)
0.143963 + 0.989583i \(0.454015\pi\)
\(194\) 40.6274 2.91688
\(195\) 0 0
\(196\) 0 0
\(197\) 17.4853 1.24577 0.622887 0.782312i \(-0.285959\pi\)
0.622887 + 0.782312i \(0.285959\pi\)
\(198\) 0 0
\(199\) 3.34315 0.236989 0.118495 0.992955i \(-0.462193\pi\)
0.118495 + 0.992955i \(0.462193\pi\)
\(200\) 42.6274 3.01421
\(201\) 0 0
\(202\) 8.41421 0.592022
\(203\) 0 0
\(204\) 0 0
\(205\) −29.3137 −2.04736
\(206\) 8.82843 0.615106
\(207\) 0 0
\(208\) 8.48528 0.588348
\(209\) −3.82843 −0.264818
\(210\) 0 0
\(211\) 16.4853 1.13489 0.567447 0.823410i \(-0.307931\pi\)
0.567447 + 0.823410i \(0.307931\pi\)
\(212\) 7.65685 0.525875
\(213\) 0 0
\(214\) 6.82843 0.466782
\(215\) −48.4558 −3.30466
\(216\) 0 0
\(217\) 0 0
\(218\) 43.7990 2.96644
\(219\) 0 0
\(220\) 56.1127 3.78312
\(221\) 10.3431 0.695755
\(222\) 0 0
\(223\) 21.7990 1.45977 0.729884 0.683571i \(-0.239574\pi\)
0.729884 + 0.683571i \(0.239574\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 30.9706 2.06013
\(227\) 6.34315 0.421009 0.210505 0.977593i \(-0.432489\pi\)
0.210505 + 0.977593i \(0.432489\pi\)
\(228\) 0 0
\(229\) −15.6569 −1.03463 −0.517317 0.855794i \(-0.673069\pi\)
−0.517317 + 0.855794i \(0.673069\pi\)
\(230\) 16.8995 1.11432
\(231\) 0 0
\(232\) 21.3137 1.39931
\(233\) −6.00000 −0.393073 −0.196537 0.980497i \(-0.562969\pi\)
−0.196537 + 0.980497i \(0.562969\pi\)
\(234\) 0 0
\(235\) −23.6274 −1.54128
\(236\) −41.4558 −2.69855
\(237\) 0 0
\(238\) 0 0
\(239\) −2.34315 −0.151565 −0.0757827 0.997124i \(-0.524146\pi\)
−0.0757827 + 0.997124i \(0.524146\pi\)
\(240\) 0 0
\(241\) 19.7990 1.27537 0.637683 0.770299i \(-0.279893\pi\)
0.637683 + 0.770299i \(0.279893\pi\)
\(242\) 8.82843 0.567513
\(243\) 0 0
\(244\) −56.1127 −3.59225
\(245\) 0 0
\(246\) 0 0
\(247\) −2.82843 −0.179969
\(248\) −14.0000 −0.889001
\(249\) 0 0
\(250\) 43.0416 2.72219
\(251\) 13.4853 0.851183 0.425592 0.904915i \(-0.360066\pi\)
0.425592 + 0.904915i \(0.360066\pi\)
\(252\) 0 0
\(253\) 7.00000 0.440086
\(254\) 40.9706 2.57072
\(255\) 0 0
\(256\) −29.9706 −1.87316
\(257\) −26.0000 −1.62184 −0.810918 0.585160i \(-0.801032\pi\)
−0.810918 + 0.585160i \(0.801032\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 41.4558 2.57098
\(261\) 0 0
\(262\) −24.9706 −1.54269
\(263\) −11.3137 −0.697633 −0.348817 0.937191i \(-0.613416\pi\)
−0.348817 + 0.937191i \(0.613416\pi\)
\(264\) 0 0
\(265\) 7.65685 0.470357
\(266\) 0 0
\(267\) 0 0
\(268\) −45.9411 −2.80630
\(269\) 8.00000 0.487769 0.243884 0.969804i \(-0.421578\pi\)
0.243884 + 0.969804i \(0.421578\pi\)
\(270\) 0 0
\(271\) −19.6274 −1.19228 −0.596140 0.802880i \(-0.703300\pi\)
−0.596140 + 0.802880i \(0.703300\pi\)
\(272\) 10.9706 0.665188
\(273\) 0 0
\(274\) 33.3848 2.01685
\(275\) 36.9706 2.22941
\(276\) 0 0
\(277\) 13.0000 0.781094 0.390547 0.920583i \(-0.372286\pi\)
0.390547 + 0.920583i \(0.372286\pi\)
\(278\) −16.0711 −0.963879
\(279\) 0 0
\(280\) 0 0
\(281\) −6.97056 −0.415829 −0.207914 0.978147i \(-0.566668\pi\)
−0.207914 + 0.978147i \(0.566668\pi\)
\(282\) 0 0
\(283\) 31.6274 1.88005 0.940027 0.341099i \(-0.110799\pi\)
0.940027 + 0.341099i \(0.110799\pi\)
\(284\) −16.6274 −0.986656
\(285\) 0 0
\(286\) 26.1421 1.54582
\(287\) 0 0
\(288\) 0 0
\(289\) −3.62742 −0.213377
\(290\) 44.6274 2.62061
\(291\) 0 0
\(292\) −39.4853 −2.31070
\(293\) 0.828427 0.0483972 0.0241986 0.999707i \(-0.492297\pi\)
0.0241986 + 0.999707i \(0.492297\pi\)
\(294\) 0 0
\(295\) −41.4558 −2.41365
\(296\) 5.17157 0.300592
\(297\) 0 0
\(298\) −9.24264 −0.535412
\(299\) 5.17157 0.299080
\(300\) 0 0
\(301\) 0 0
\(302\) −22.4853 −1.29388
\(303\) 0 0
\(304\) −3.00000 −0.172062
\(305\) −56.1127 −3.21300
\(306\) 0 0
\(307\) 2.48528 0.141843 0.0709213 0.997482i \(-0.477406\pi\)
0.0709213 + 0.997482i \(0.477406\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −29.3137 −1.66491
\(311\) −22.6274 −1.28308 −0.641542 0.767088i \(-0.721705\pi\)
−0.641542 + 0.767088i \(0.721705\pi\)
\(312\) 0 0
\(313\) 31.2843 1.76829 0.884146 0.467211i \(-0.154741\pi\)
0.884146 + 0.467211i \(0.154741\pi\)
\(314\) 25.7279 1.45191
\(315\) 0 0
\(316\) 8.97056 0.504634
\(317\) −29.7990 −1.67368 −0.836839 0.547449i \(-0.815599\pi\)
−0.836839 + 0.547449i \(0.815599\pi\)
\(318\) 0 0
\(319\) 18.4853 1.03498
\(320\) −37.6274 −2.10344
\(321\) 0 0
\(322\) 0 0
\(323\) −3.65685 −0.203473
\(324\) 0 0
\(325\) 27.3137 1.51509
\(326\) 53.0416 2.93770
\(327\) 0 0
\(328\) −33.7990 −1.86624
\(329\) 0 0
\(330\) 0 0
\(331\) −5.51472 −0.303116 −0.151558 0.988448i \(-0.548429\pi\)
−0.151558 + 0.988448i \(0.548429\pi\)
\(332\) −15.9706 −0.876499
\(333\) 0 0
\(334\) −21.3137 −1.16623
\(335\) −45.9411 −2.51003
\(336\) 0 0
\(337\) −6.48528 −0.353276 −0.176638 0.984276i \(-0.556522\pi\)
−0.176638 + 0.984276i \(0.556522\pi\)
\(338\) −12.0711 −0.656580
\(339\) 0 0
\(340\) 53.5980 2.90676
\(341\) −12.1421 −0.657534
\(342\) 0 0
\(343\) 0 0
\(344\) −55.8701 −3.01231
\(345\) 0 0
\(346\) −6.82843 −0.367099
\(347\) −20.4558 −1.09813 −0.549064 0.835781i \(-0.685016\pi\)
−0.549064 + 0.835781i \(0.685016\pi\)
\(348\) 0 0
\(349\) 14.0000 0.749403 0.374701 0.927146i \(-0.377745\pi\)
0.374701 + 0.927146i \(0.377745\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −6.07107 −0.323589
\(353\) 1.31371 0.0699216 0.0349608 0.999389i \(-0.488869\pi\)
0.0349608 + 0.999389i \(0.488869\pi\)
\(354\) 0 0
\(355\) −16.6274 −0.882492
\(356\) −41.4558 −2.19716
\(357\) 0 0
\(358\) 25.3137 1.33787
\(359\) 6.17157 0.325723 0.162862 0.986649i \(-0.447928\pi\)
0.162862 + 0.986649i \(0.447928\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) −28.1421 −1.47912
\(363\) 0 0
\(364\) 0 0
\(365\) −39.4853 −2.06675
\(366\) 0 0
\(367\) 29.6569 1.54808 0.774038 0.633140i \(-0.218234\pi\)
0.774038 + 0.633140i \(0.218234\pi\)
\(368\) 5.48528 0.285940
\(369\) 0 0
\(370\) 10.8284 0.562943
\(371\) 0 0
\(372\) 0 0
\(373\) 20.2843 1.05028 0.525140 0.851016i \(-0.324013\pi\)
0.525140 + 0.851016i \(0.324013\pi\)
\(374\) 33.7990 1.74770
\(375\) 0 0
\(376\) −27.2426 −1.40493
\(377\) 13.6569 0.703364
\(378\) 0 0
\(379\) −16.4853 −0.846792 −0.423396 0.905945i \(-0.639162\pi\)
−0.423396 + 0.905945i \(0.639162\pi\)
\(380\) −14.6569 −0.751881
\(381\) 0 0
\(382\) −28.5563 −1.46107
\(383\) −16.0000 −0.817562 −0.408781 0.912633i \(-0.634046\pi\)
−0.408781 + 0.912633i \(0.634046\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 9.65685 0.491521
\(387\) 0 0
\(388\) 64.4264 3.27076
\(389\) −4.34315 −0.220206 −0.110103 0.993920i \(-0.535118\pi\)
−0.110103 + 0.993920i \(0.535118\pi\)
\(390\) 0 0
\(391\) 6.68629 0.338140
\(392\) 0 0
\(393\) 0 0
\(394\) 42.2132 2.12667
\(395\) 8.97056 0.451358
\(396\) 0 0
\(397\) 5.31371 0.266687 0.133344 0.991070i \(-0.457429\pi\)
0.133344 + 0.991070i \(0.457429\pi\)
\(398\) 8.07107 0.404566
\(399\) 0 0
\(400\) 28.9706 1.44853
\(401\) 0.686292 0.0342718 0.0171359 0.999853i \(-0.494545\pi\)
0.0171359 + 0.999853i \(0.494545\pi\)
\(402\) 0 0
\(403\) −8.97056 −0.446856
\(404\) 13.3431 0.663846
\(405\) 0 0
\(406\) 0 0
\(407\) 4.48528 0.222327
\(408\) 0 0
\(409\) 5.31371 0.262746 0.131373 0.991333i \(-0.458061\pi\)
0.131373 + 0.991333i \(0.458061\pi\)
\(410\) −70.7696 −3.49506
\(411\) 0 0
\(412\) 14.0000 0.689730
\(413\) 0 0
\(414\) 0 0
\(415\) −15.9706 −0.783964
\(416\) −4.48528 −0.219909
\(417\) 0 0
\(418\) −9.24264 −0.452072
\(419\) 10.1716 0.496914 0.248457 0.968643i \(-0.420077\pi\)
0.248457 + 0.968643i \(0.420077\pi\)
\(420\) 0 0
\(421\) 19.1716 0.934365 0.467183 0.884161i \(-0.345269\pi\)
0.467183 + 0.884161i \(0.345269\pi\)
\(422\) 39.7990 1.93738
\(423\) 0 0
\(424\) 8.82843 0.428746
\(425\) 35.3137 1.71297
\(426\) 0 0
\(427\) 0 0
\(428\) 10.8284 0.523412
\(429\) 0 0
\(430\) −116.983 −5.64141
\(431\) 23.1716 1.11614 0.558068 0.829795i \(-0.311543\pi\)
0.558068 + 0.829795i \(0.311543\pi\)
\(432\) 0 0
\(433\) 8.48528 0.407777 0.203888 0.978994i \(-0.434642\pi\)
0.203888 + 0.978994i \(0.434642\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 69.4558 3.32633
\(437\) −1.82843 −0.0874655
\(438\) 0 0
\(439\) −19.7990 −0.944954 −0.472477 0.881343i \(-0.656640\pi\)
−0.472477 + 0.881343i \(0.656640\pi\)
\(440\) 64.6985 3.08438
\(441\) 0 0
\(442\) 24.9706 1.18773
\(443\) 33.6569 1.59909 0.799543 0.600609i \(-0.205075\pi\)
0.799543 + 0.600609i \(0.205075\pi\)
\(444\) 0 0
\(445\) −41.4558 −1.96520
\(446\) 52.6274 2.49198
\(447\) 0 0
\(448\) 0 0
\(449\) −26.1421 −1.23372 −0.616862 0.787071i \(-0.711596\pi\)
−0.616862 + 0.787071i \(0.711596\pi\)
\(450\) 0 0
\(451\) −29.3137 −1.38033
\(452\) 49.1127 2.31007
\(453\) 0 0
\(454\) 15.3137 0.718708
\(455\) 0 0
\(456\) 0 0
\(457\) −14.6569 −0.685619 −0.342809 0.939405i \(-0.611378\pi\)
−0.342809 + 0.939405i \(0.611378\pi\)
\(458\) −37.7990 −1.76623
\(459\) 0 0
\(460\) 26.7990 1.24951
\(461\) −22.4558 −1.04587 −0.522936 0.852372i \(-0.675164\pi\)
−0.522936 + 0.852372i \(0.675164\pi\)
\(462\) 0 0
\(463\) −20.6569 −0.960005 −0.480003 0.877267i \(-0.659364\pi\)
−0.480003 + 0.877267i \(0.659364\pi\)
\(464\) 14.4853 0.672462
\(465\) 0 0
\(466\) −14.4853 −0.671018
\(467\) −25.4853 −1.17932 −0.589659 0.807652i \(-0.700738\pi\)
−0.589659 + 0.807652i \(0.700738\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −57.0416 −2.63113
\(471\) 0 0
\(472\) −47.7990 −2.20013
\(473\) −48.4558 −2.22800
\(474\) 0 0
\(475\) −9.65685 −0.443087
\(476\) 0 0
\(477\) 0 0
\(478\) −5.65685 −0.258738
\(479\) −12.1716 −0.556133 −0.278067 0.960562i \(-0.589694\pi\)
−0.278067 + 0.960562i \(0.589694\pi\)
\(480\) 0 0
\(481\) 3.31371 0.151092
\(482\) 47.7990 2.17718
\(483\) 0 0
\(484\) 14.0000 0.636364
\(485\) 64.4264 2.92545
\(486\) 0 0
\(487\) −0.343146 −0.0155494 −0.00777471 0.999970i \(-0.502475\pi\)
−0.00777471 + 0.999970i \(0.502475\pi\)
\(488\) −64.6985 −2.92876
\(489\) 0 0
\(490\) 0 0
\(491\) 8.51472 0.384264 0.192132 0.981369i \(-0.438460\pi\)
0.192132 + 0.981369i \(0.438460\pi\)
\(492\) 0 0
\(493\) 17.6569 0.795225
\(494\) −6.82843 −0.307225
\(495\) 0 0
\(496\) −9.51472 −0.427223
\(497\) 0 0
\(498\) 0 0
\(499\) 19.9706 0.894005 0.447003 0.894533i \(-0.352491\pi\)
0.447003 + 0.894533i \(0.352491\pi\)
\(500\) 68.2548 3.05245
\(501\) 0 0
\(502\) 32.5563 1.45306
\(503\) −20.1127 −0.896781 −0.448390 0.893838i \(-0.648003\pi\)
−0.448390 + 0.893838i \(0.648003\pi\)
\(504\) 0 0
\(505\) 13.3431 0.593762
\(506\) 16.8995 0.751274
\(507\) 0 0
\(508\) 64.9706 2.88260
\(509\) 10.4853 0.464752 0.232376 0.972626i \(-0.425350\pi\)
0.232376 + 0.972626i \(0.425350\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −31.2426 −1.38074
\(513\) 0 0
\(514\) −62.7696 −2.76865
\(515\) 14.0000 0.616914
\(516\) 0 0
\(517\) −23.6274 −1.03913
\(518\) 0 0
\(519\) 0 0
\(520\) 47.7990 2.09612
\(521\) 40.9706 1.79495 0.897476 0.441062i \(-0.145398\pi\)
0.897476 + 0.441062i \(0.145398\pi\)
\(522\) 0 0
\(523\) −37.7990 −1.65283 −0.826417 0.563058i \(-0.809625\pi\)
−0.826417 + 0.563058i \(0.809625\pi\)
\(524\) −39.5980 −1.72985
\(525\) 0 0
\(526\) −27.3137 −1.19093
\(527\) −11.5980 −0.505216
\(528\) 0 0
\(529\) −19.6569 −0.854646
\(530\) 18.4853 0.802949
\(531\) 0 0
\(532\) 0 0
\(533\) −21.6569 −0.938062
\(534\) 0 0
\(535\) 10.8284 0.468154
\(536\) −52.9706 −2.28798
\(537\) 0 0
\(538\) 19.3137 0.832673
\(539\) 0 0
\(540\) 0 0
\(541\) 23.0000 0.988847 0.494424 0.869221i \(-0.335379\pi\)
0.494424 + 0.869221i \(0.335379\pi\)
\(542\) −47.3848 −2.03535
\(543\) 0 0
\(544\) −5.79899 −0.248630
\(545\) 69.4558 2.97516
\(546\) 0 0
\(547\) −5.79899 −0.247947 −0.123973 0.992286i \(-0.539564\pi\)
−0.123973 + 0.992286i \(0.539564\pi\)
\(548\) 52.9411 2.26153
\(549\) 0 0
\(550\) 89.2548 3.80584
\(551\) −4.82843 −0.205698
\(552\) 0 0
\(553\) 0 0
\(554\) 31.3848 1.33341
\(555\) 0 0
\(556\) −25.4853 −1.08082
\(557\) −14.4558 −0.612514 −0.306257 0.951949i \(-0.599077\pi\)
−0.306257 + 0.951949i \(0.599077\pi\)
\(558\) 0 0
\(559\) −35.7990 −1.51414
\(560\) 0 0
\(561\) 0 0
\(562\) −16.8284 −0.709864
\(563\) −0.485281 −0.0204522 −0.0102261 0.999948i \(-0.503255\pi\)
−0.0102261 + 0.999948i \(0.503255\pi\)
\(564\) 0 0
\(565\) 49.1127 2.06619
\(566\) 76.3553 3.20945
\(567\) 0 0
\(568\) −19.1716 −0.804421
\(569\) 45.7990 1.91999 0.959997 0.280011i \(-0.0903381\pi\)
0.959997 + 0.280011i \(0.0903381\pi\)
\(570\) 0 0
\(571\) 27.2843 1.14181 0.570906 0.821016i \(-0.306592\pi\)
0.570906 + 0.821016i \(0.306592\pi\)
\(572\) 41.4558 1.73336
\(573\) 0 0
\(574\) 0 0
\(575\) 17.6569 0.736342
\(576\) 0 0
\(577\) 18.3137 0.762410 0.381205 0.924491i \(-0.375509\pi\)
0.381205 + 0.924491i \(0.375509\pi\)
\(578\) −8.75736 −0.364258
\(579\) 0 0
\(580\) 70.7696 2.93855
\(581\) 0 0
\(582\) 0 0
\(583\) 7.65685 0.317115
\(584\) −45.5269 −1.88392
\(585\) 0 0
\(586\) 2.00000 0.0826192
\(587\) 26.6274 1.09903 0.549516 0.835483i \(-0.314812\pi\)
0.549516 + 0.835483i \(0.314812\pi\)
\(588\) 0 0
\(589\) 3.17157 0.130682
\(590\) −100.083 −4.12036
\(591\) 0 0
\(592\) 3.51472 0.144454
\(593\) −27.4853 −1.12869 −0.564343 0.825541i \(-0.690870\pi\)
−0.564343 + 0.825541i \(0.690870\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −14.6569 −0.600368
\(597\) 0 0
\(598\) 12.4853 0.510561
\(599\) 29.1127 1.18951 0.594756 0.803906i \(-0.297249\pi\)
0.594756 + 0.803906i \(0.297249\pi\)
\(600\) 0 0
\(601\) −8.68629 −0.354321 −0.177161 0.984182i \(-0.556691\pi\)
−0.177161 + 0.984182i \(0.556691\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −35.6569 −1.45086
\(605\) 14.0000 0.569181
\(606\) 0 0
\(607\) 13.8579 0.562473 0.281237 0.959638i \(-0.409255\pi\)
0.281237 + 0.959638i \(0.409255\pi\)
\(608\) 1.58579 0.0643121
\(609\) 0 0
\(610\) −135.468 −5.48494
\(611\) −17.4558 −0.706188
\(612\) 0 0
\(613\) −36.6274 −1.47937 −0.739684 0.672955i \(-0.765025\pi\)
−0.739684 + 0.672955i \(0.765025\pi\)
\(614\) 6.00000 0.242140
\(615\) 0 0
\(616\) 0 0
\(617\) 32.1716 1.29518 0.647589 0.761989i \(-0.275777\pi\)
0.647589 + 0.761989i \(0.275777\pi\)
\(618\) 0 0
\(619\) 9.34315 0.375533 0.187766 0.982214i \(-0.439875\pi\)
0.187766 + 0.982214i \(0.439875\pi\)
\(620\) −46.4853 −1.86689
\(621\) 0 0
\(622\) −54.6274 −2.19036
\(623\) 0 0
\(624\) 0 0
\(625\) 19.9706 0.798823
\(626\) 75.5269 3.01866
\(627\) 0 0
\(628\) 40.7990 1.62806
\(629\) 4.28427 0.170825
\(630\) 0 0
\(631\) −16.6569 −0.663099 −0.331549 0.943438i \(-0.607571\pi\)
−0.331549 + 0.943438i \(0.607571\pi\)
\(632\) 10.3431 0.411428
\(633\) 0 0
\(634\) −71.9411 −2.85715
\(635\) 64.9706 2.57828
\(636\) 0 0
\(637\) 0 0
\(638\) 44.6274 1.76682
\(639\) 0 0
\(640\) −78.6985 −3.11083
\(641\) 5.17157 0.204265 0.102132 0.994771i \(-0.467433\pi\)
0.102132 + 0.994771i \(0.467433\pi\)
\(642\) 0 0
\(643\) 1.37258 0.0541294 0.0270647 0.999634i \(-0.491384\pi\)
0.0270647 + 0.999634i \(0.491384\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −8.82843 −0.347350
\(647\) −6.85786 −0.269610 −0.134805 0.990872i \(-0.543041\pi\)
−0.134805 + 0.990872i \(0.543041\pi\)
\(648\) 0 0
\(649\) −41.4558 −1.62728
\(650\) 65.9411 2.58642
\(651\) 0 0
\(652\) 84.1127 3.29411
\(653\) −39.9411 −1.56302 −0.781509 0.623895i \(-0.785549\pi\)
−0.781509 + 0.623895i \(0.785549\pi\)
\(654\) 0 0
\(655\) −39.5980 −1.54722
\(656\) −22.9706 −0.896850
\(657\) 0 0
\(658\) 0 0
\(659\) 21.5147 0.838094 0.419047 0.907964i \(-0.362364\pi\)
0.419047 + 0.907964i \(0.362364\pi\)
\(660\) 0 0
\(661\) 12.2843 0.477803 0.238901 0.971044i \(-0.423213\pi\)
0.238901 + 0.971044i \(0.423213\pi\)
\(662\) −13.3137 −0.517452
\(663\) 0 0
\(664\) −18.4142 −0.714610
\(665\) 0 0
\(666\) 0 0
\(667\) 8.82843 0.341838
\(668\) −33.7990 −1.30772
\(669\) 0 0
\(670\) −110.912 −4.28489
\(671\) −56.1127 −2.16621
\(672\) 0 0
\(673\) 2.82843 0.109028 0.0545139 0.998513i \(-0.482639\pi\)
0.0545139 + 0.998513i \(0.482639\pi\)
\(674\) −15.6569 −0.603079
\(675\) 0 0
\(676\) −19.1421 −0.736236
\(677\) 16.0000 0.614930 0.307465 0.951559i \(-0.400519\pi\)
0.307465 + 0.951559i \(0.400519\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 61.7990 2.36988
\(681\) 0 0
\(682\) −29.3137 −1.12248
\(683\) −5.02944 −0.192446 −0.0962230 0.995360i \(-0.530676\pi\)
−0.0962230 + 0.995360i \(0.530676\pi\)
\(684\) 0 0
\(685\) 52.9411 2.02278
\(686\) 0 0
\(687\) 0 0
\(688\) −37.9706 −1.44761
\(689\) 5.65685 0.215509
\(690\) 0 0
\(691\) 12.0000 0.456502 0.228251 0.973602i \(-0.426699\pi\)
0.228251 + 0.973602i \(0.426699\pi\)
\(692\) −10.8284 −0.411635
\(693\) 0 0
\(694\) −49.3848 −1.87462
\(695\) −25.4853 −0.966712
\(696\) 0 0
\(697\) −28.0000 −1.06058
\(698\) 33.7990 1.27931
\(699\) 0 0
\(700\) 0 0
\(701\) −2.45584 −0.0927560 −0.0463780 0.998924i \(-0.514768\pi\)
−0.0463780 + 0.998924i \(0.514768\pi\)
\(702\) 0 0
\(703\) −1.17157 −0.0441867
\(704\) −37.6274 −1.41814
\(705\) 0 0
\(706\) 3.17157 0.119364
\(707\) 0 0
\(708\) 0 0
\(709\) −15.9706 −0.599787 −0.299894 0.953973i \(-0.596951\pi\)
−0.299894 + 0.953973i \(0.596951\pi\)
\(710\) −40.1421 −1.50651
\(711\) 0 0
\(712\) −47.7990 −1.79134
\(713\) −5.79899 −0.217174
\(714\) 0 0
\(715\) 41.4558 1.55036
\(716\) 40.1421 1.50018
\(717\) 0 0
\(718\) 14.8995 0.556044
\(719\) 0.970563 0.0361959 0.0180979 0.999836i \(-0.494239\pi\)
0.0180979 + 0.999836i \(0.494239\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 2.41421 0.0898477
\(723\) 0 0
\(724\) −44.6274 −1.65856
\(725\) 46.6274 1.73170
\(726\) 0 0
\(727\) −13.0000 −0.482143 −0.241072 0.970507i \(-0.577499\pi\)
−0.241072 + 0.970507i \(0.577499\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −95.3259 −3.52817
\(731\) −46.2843 −1.71189
\(732\) 0 0
\(733\) −22.0000 −0.812589 −0.406294 0.913742i \(-0.633179\pi\)
−0.406294 + 0.913742i \(0.633179\pi\)
\(734\) 71.5980 2.64273
\(735\) 0 0
\(736\) −2.89949 −0.106877
\(737\) −45.9411 −1.69226
\(738\) 0 0
\(739\) −8.00000 −0.294285 −0.147142 0.989115i \(-0.547008\pi\)
−0.147142 + 0.989115i \(0.547008\pi\)
\(740\) 17.1716 0.631240
\(741\) 0 0
\(742\) 0 0
\(743\) −33.1716 −1.21695 −0.608473 0.793574i \(-0.708218\pi\)
−0.608473 + 0.793574i \(0.708218\pi\)
\(744\) 0 0
\(745\) −14.6569 −0.536986
\(746\) 48.9706 1.79294
\(747\) 0 0
\(748\) 53.5980 1.95974
\(749\) 0 0
\(750\) 0 0
\(751\) 34.6274 1.26357 0.631786 0.775143i \(-0.282322\pi\)
0.631786 + 0.775143i \(0.282322\pi\)
\(752\) −18.5147 −0.675162
\(753\) 0 0
\(754\) 32.9706 1.20072
\(755\) −35.6569 −1.29769
\(756\) 0 0
\(757\) 9.34315 0.339582 0.169791 0.985480i \(-0.445691\pi\)
0.169791 + 0.985480i \(0.445691\pi\)
\(758\) −39.7990 −1.44556
\(759\) 0 0
\(760\) −16.8995 −0.613009
\(761\) 18.7990 0.681463 0.340731 0.940161i \(-0.389325\pi\)
0.340731 + 0.940161i \(0.389325\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −45.2843 −1.63833
\(765\) 0 0
\(766\) −38.6274 −1.39567
\(767\) −30.6274 −1.10589
\(768\) 0 0
\(769\) 14.3137 0.516166 0.258083 0.966123i \(-0.416909\pi\)
0.258083 + 0.966123i \(0.416909\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 15.3137 0.551152
\(773\) −2.82843 −0.101731 −0.0508657 0.998706i \(-0.516198\pi\)
−0.0508657 + 0.998706i \(0.516198\pi\)
\(774\) 0 0
\(775\) −30.6274 −1.10017
\(776\) 74.2843 2.66665
\(777\) 0 0
\(778\) −10.4853 −0.375916
\(779\) 7.65685 0.274335
\(780\) 0 0
\(781\) −16.6274 −0.594976
\(782\) 16.1421 0.577242
\(783\) 0 0
\(784\) 0 0
\(785\) 40.7990 1.45618
\(786\) 0 0
\(787\) 16.2843 0.580472 0.290236 0.956955i \(-0.406266\pi\)
0.290236 + 0.956955i \(0.406266\pi\)
\(788\) 66.9411 2.38468
\(789\) 0 0
\(790\) 21.6569 0.770516
\(791\) 0 0
\(792\) 0 0
\(793\) −41.4558 −1.47214
\(794\) 12.8284 0.455264
\(795\) 0 0
\(796\) 12.7990 0.453648
\(797\) −7.51472 −0.266185 −0.133092 0.991104i \(-0.542491\pi\)
−0.133092 + 0.991104i \(0.542491\pi\)
\(798\) 0 0
\(799\) −22.5685 −0.798418
\(800\) −15.3137 −0.541421
\(801\) 0 0
\(802\) 1.65685 0.0585056
\(803\) −39.4853 −1.39341
\(804\) 0 0
\(805\) 0 0
\(806\) −21.6569 −0.762830
\(807\) 0 0
\(808\) 15.3848 0.541235
\(809\) 24.7990 0.871886 0.435943 0.899974i \(-0.356415\pi\)
0.435943 + 0.899974i \(0.356415\pi\)
\(810\) 0 0
\(811\) −12.1421 −0.426368 −0.213184 0.977012i \(-0.568383\pi\)
−0.213184 + 0.977012i \(0.568383\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 10.8284 0.379536
\(815\) 84.1127 2.94634
\(816\) 0 0
\(817\) 12.6569 0.442807
\(818\) 12.8284 0.448535
\(819\) 0 0
\(820\) −112.225 −3.91908
\(821\) −6.85786 −0.239341 −0.119671 0.992814i \(-0.538184\pi\)
−0.119671 + 0.992814i \(0.538184\pi\)
\(822\) 0 0
\(823\) 31.9706 1.11442 0.557212 0.830370i \(-0.311871\pi\)
0.557212 + 0.830370i \(0.311871\pi\)
\(824\) 16.1421 0.562338
\(825\) 0 0
\(826\) 0 0
\(827\) 15.1127 0.525520 0.262760 0.964861i \(-0.415367\pi\)
0.262760 + 0.964861i \(0.415367\pi\)
\(828\) 0 0
\(829\) −38.1421 −1.32473 −0.662366 0.749181i \(-0.730447\pi\)
−0.662366 + 0.749181i \(0.730447\pi\)
\(830\) −38.5563 −1.33831
\(831\) 0 0
\(832\) −27.7990 −0.963757
\(833\) 0 0
\(834\) 0 0
\(835\) −33.7990 −1.16966
\(836\) −14.6569 −0.506918
\(837\) 0 0
\(838\) 24.5563 0.848285
\(839\) 45.2548 1.56237 0.781185 0.624299i \(-0.214615\pi\)
0.781185 + 0.624299i \(0.214615\pi\)
\(840\) 0 0
\(841\) −5.68629 −0.196079
\(842\) 46.2843 1.59506
\(843\) 0 0
\(844\) 63.1127 2.17243
\(845\) −19.1421 −0.658509
\(846\) 0 0
\(847\) 0 0
\(848\) 6.00000 0.206041
\(849\) 0 0
\(850\) 85.2548 2.92422
\(851\) 2.14214 0.0734315
\(852\) 0 0
\(853\) −6.37258 −0.218193 −0.109097 0.994031i \(-0.534796\pi\)
−0.109097 + 0.994031i \(0.534796\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 12.4853 0.426738
\(857\) 26.8284 0.916442 0.458221 0.888838i \(-0.348487\pi\)
0.458221 + 0.888838i \(0.348487\pi\)
\(858\) 0 0
\(859\) 30.9411 1.05570 0.527849 0.849338i \(-0.322999\pi\)
0.527849 + 0.849338i \(0.322999\pi\)
\(860\) −185.510 −6.32583
\(861\) 0 0
\(862\) 55.9411 1.90536
\(863\) −7.17157 −0.244123 −0.122062 0.992523i \(-0.538951\pi\)
−0.122062 + 0.992523i \(0.538951\pi\)
\(864\) 0 0
\(865\) −10.8284 −0.368178
\(866\) 20.4853 0.696118
\(867\) 0 0
\(868\) 0 0
\(869\) 8.97056 0.304305
\(870\) 0 0
\(871\) −33.9411 −1.15005
\(872\) 80.0833 2.71196
\(873\) 0 0
\(874\) −4.41421 −0.149313
\(875\) 0 0
\(876\) 0 0
\(877\) 21.6569 0.731300 0.365650 0.930752i \(-0.380847\pi\)
0.365650 + 0.930752i \(0.380847\pi\)
\(878\) −47.7990 −1.61314
\(879\) 0 0
\(880\) 43.9706 1.48225
\(881\) 4.62742 0.155902 0.0779508 0.996957i \(-0.475162\pi\)
0.0779508 + 0.996957i \(0.475162\pi\)
\(882\) 0 0
\(883\) −44.9706 −1.51338 −0.756690 0.653774i \(-0.773185\pi\)
−0.756690 + 0.653774i \(0.773185\pi\)
\(884\) 39.5980 1.33182
\(885\) 0 0
\(886\) 81.2548 2.72981
\(887\) 15.4558 0.518956 0.259478 0.965749i \(-0.416449\pi\)
0.259478 + 0.965749i \(0.416449\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −100.083 −3.35480
\(891\) 0 0
\(892\) 83.4558 2.79431
\(893\) 6.17157 0.206524
\(894\) 0 0
\(895\) 40.1421 1.34180
\(896\) 0 0
\(897\) 0 0
\(898\) −63.1127 −2.10610
\(899\) −15.3137 −0.510741
\(900\) 0 0
\(901\) 7.31371 0.243655
\(902\) −70.7696 −2.35637
\(903\) 0 0
\(904\) 56.6274 1.88340
\(905\) −44.6274 −1.48347
\(906\) 0 0
\(907\) −19.6569 −0.652695 −0.326348 0.945250i \(-0.605818\pi\)
−0.326348 + 0.945250i \(0.605818\pi\)
\(908\) 24.2843 0.805902
\(909\) 0 0
\(910\) 0 0
\(911\) −18.0000 −0.596367 −0.298183 0.954509i \(-0.596381\pi\)
−0.298183 + 0.954509i \(0.596381\pi\)
\(912\) 0 0
\(913\) −15.9706 −0.528548
\(914\) −35.3848 −1.17042
\(915\) 0 0
\(916\) −59.9411 −1.98051
\(917\) 0 0
\(918\) 0 0
\(919\) −43.3431 −1.42976 −0.714879 0.699248i \(-0.753518\pi\)
−0.714879 + 0.699248i \(0.753518\pi\)
\(920\) 30.8995 1.01873
\(921\) 0 0
\(922\) −54.2132 −1.78542
\(923\) −12.2843 −0.404342
\(924\) 0 0
\(925\) 11.3137 0.371992
\(926\) −49.8701 −1.63883
\(927\) 0 0
\(928\) −7.65685 −0.251349
\(929\) −16.4558 −0.539899 −0.269949 0.962875i \(-0.587007\pi\)
−0.269949 + 0.962875i \(0.587007\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −22.9706 −0.752426
\(933\) 0 0
\(934\) −61.5269 −2.01322
\(935\) 53.5980 1.75284
\(936\) 0 0
\(937\) −27.0000 −0.882052 −0.441026 0.897494i \(-0.645385\pi\)
−0.441026 + 0.897494i \(0.645385\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −90.4558 −2.95034
\(941\) −59.9411 −1.95402 −0.977012 0.213182i \(-0.931617\pi\)
−0.977012 + 0.213182i \(0.931617\pi\)
\(942\) 0 0
\(943\) −14.0000 −0.455903
\(944\) −32.4853 −1.05731
\(945\) 0 0
\(946\) −116.983 −3.80344
\(947\) 16.6863 0.542232 0.271116 0.962547i \(-0.412607\pi\)
0.271116 + 0.962547i \(0.412607\pi\)
\(948\) 0 0
\(949\) −29.1716 −0.946949
\(950\) −23.3137 −0.756397
\(951\) 0 0
\(952\) 0 0
\(953\) 26.6274 0.862547 0.431273 0.902221i \(-0.358064\pi\)
0.431273 + 0.902221i \(0.358064\pi\)
\(954\) 0 0
\(955\) −45.2843 −1.46536
\(956\) −8.97056 −0.290129
\(957\) 0 0
\(958\) −29.3848 −0.949379
\(959\) 0 0
\(960\) 0 0
\(961\) −20.9411 −0.675520
\(962\) 8.00000 0.257930
\(963\) 0 0
\(964\) 75.7990 2.44132
\(965\) 15.3137 0.492966
\(966\) 0 0
\(967\) −16.0000 −0.514525 −0.257263 0.966342i \(-0.582821\pi\)
−0.257263 + 0.966342i \(0.582821\pi\)
\(968\) 16.1421 0.518828
\(969\) 0 0
\(970\) 155.539 4.99406
\(971\) 39.7990 1.27721 0.638605 0.769535i \(-0.279512\pi\)
0.638605 + 0.769535i \(0.279512\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −0.828427 −0.0265445
\(975\) 0 0
\(976\) −43.9706 −1.40746
\(977\) −23.1127 −0.739441 −0.369720 0.929143i \(-0.620547\pi\)
−0.369720 + 0.929143i \(0.620547\pi\)
\(978\) 0 0
\(979\) −41.4558 −1.32493
\(980\) 0 0
\(981\) 0 0
\(982\) 20.5563 0.655979
\(983\) −3.45584 −0.110224 −0.0551122 0.998480i \(-0.517552\pi\)
−0.0551122 + 0.998480i \(0.517552\pi\)
\(984\) 0 0
\(985\) 66.9411 2.13292
\(986\) 42.6274 1.35753
\(987\) 0 0
\(988\) −10.8284 −0.344498
\(989\) −23.1421 −0.735877
\(990\) 0 0
\(991\) 53.2548 1.69170 0.845848 0.533424i \(-0.179095\pi\)
0.845848 + 0.533424i \(0.179095\pi\)
\(992\) 5.02944 0.159685
\(993\) 0 0
\(994\) 0 0
\(995\) 12.7990 0.405755
\(996\) 0 0
\(997\) −30.0000 −0.950110 −0.475055 0.879956i \(-0.657572\pi\)
−0.475055 + 0.879956i \(0.657572\pi\)
\(998\) 48.2132 1.52616
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8379.2.a.bm.1.2 2
3.2 odd 2 2793.2.a.o.1.1 2
7.2 even 3 1197.2.j.d.172.1 4
7.4 even 3 1197.2.j.d.856.1 4
7.6 odd 2 8379.2.a.bh.1.2 2
21.2 odd 6 399.2.j.c.172.2 yes 4
21.11 odd 6 399.2.j.c.58.2 4
21.20 even 2 2793.2.a.n.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
399.2.j.c.58.2 4 21.11 odd 6
399.2.j.c.172.2 yes 4 21.2 odd 6
1197.2.j.d.172.1 4 7.2 even 3
1197.2.j.d.856.1 4 7.4 even 3
2793.2.a.n.1.1 2 21.20 even 2
2793.2.a.o.1.1 2 3.2 odd 2
8379.2.a.bh.1.2 2 7.6 odd 2
8379.2.a.bm.1.2 2 1.1 even 1 trivial